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Abstract. Evolution and learning are two different forms of adaptation
by which the organism can change their behaviour to cope with prob-
lems posed by the environment. The second form of adaptation occurs
when individuals exhibit plasticity in response to environmental condi-
tions that may strengthen their survival. Learning has been shown to
be beneficial to the evolutionary process through the Baldwin Effect.
This line of thought has also been employed in evolving adaptive neural
networks, in which learning algorithms, such as Backpropagation, can
be used to enhance the adaptivity of the population. Most work focuses
on evolving learning agents in separate environments, this means each
agent experiences its own environment (mostly similar), and has no in-
teractive effect on others (e.g., the more one gains, the more another
loses). The competition for survival in such settings is not that strong, if
being compared to that of a multi-agent (or shared) environment . This
paper investigates an evolving population of self-taught neural networks
– networks that can teach themselves – in a shared environment. Exper-
imental results show that learning presents an effect in increasing the
performance of the evolving multi-agent system. Indications for future
work on evolving neural networks are also presented.

Keywords: The Baldwin Effect · Neural Networks · Neuroevolution ·
Meta-learning · Self-learning.

1 Introduction

For many biological organisms, adaptation is necessary for survival and reproduc-
tion in an uncertain environment. There are two important kinds of adaptation
that should be distinguished. The first is a change at the genetic level of a pop-
ulation, in which organisms reproduce selectively subject to mechanisms, like
mutation or sexual recombination, which maintain inter-individual variability.
This is usually modeled in terms of biological evolution, which causes changes in
the population from one generation to the next. The second adaptation mecha-
nism, on the other hand, is the phenotypic change at the individual level. This
can be called lifetime-adaptation which changes the phenotypic behaviour of the
organism during its lifetime. Plausibly, lifetime adaptation happens at a quicker
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pace than the evolutionary process which takes place through the generational
timescale, preparing the organism for rapid uncertain environments.

The idea that learning can influence evolution in a Darwinian framework was
discussed by psychologists and evolutionary biologists over one hundred years
ago ([1, 2]), through ‘A new factor in evolution’ called the Baldwin Effect.
However, it gradually gained more attention since the classic paper by Hinton
and Nowlan ([3]) which demonstrated an instance of the Baldwin effect in com-
puter simulation. This line of research motivated the idea of evolving neural
networks, or neuroevolution (NE), in which one can observe learning and evolu-
tion interacting with each other in creating adaptive neural networks [4], [5], [6].
Regardless of how learning is implemented, most studies focus on how learning
helps evolution to solve an individual problem – this means each agent solves
its own problem (and their problems are copies of each other) – there is no mu-
tual interactive effect between learning agents when they learn and compete for
survival during their lifetime.

The main aim of this paper is to investigate, through computer simulation,
how learning and evolution can provide adaptive advantage in a multi-agent
system. We design a neural architecture allowing for lifetime learning, more
specifically for the ability to teach oneself. To show the effect of self-taught
agents we simulate a simple environment called MiniWorld in which agents have
to compete with each others for food in order to survive. In the remainder of this
contribution, we initially present some prior research on learning and evolution,
including brief literature review on learning and evolving neural networks. We
then describe the experiments undertaken. The results from these experiments
are analysed and discussed, and finally, conclusions and several interesting future
research opportunities are proposed.

2 Learning and Evolution

2.1 The Baldwin Effect

Most organisms need to learn to adapt to their changing environments. Learn-
ing is essential for both living organisms, including humans and animals, and
artificial learning agents. Organisms, living or digital, need to learn new behav-
iors to solve tasks that cannot be solved effectively by innate (or genetically
encoded) behaviors. Learning shows its powerful advantages when the environ-
ment changes [7]. During the lifetime of an individual organism, if its environ-
ment changes in a way that its previous knowledge cannot be enough to survive,
it has to learn new behaviors or knowledge to adapt to the novel circumstance.
Otherwise, it will be unfit, thus having less chance to survive.

It is very interesting that the Baldwin Effect was first demonstrated compu-
tationally [3] around 20 years before it was first empirically verified in nature [8].
In 1987, the Cognitive Scientist Geoffrey Hinton and his colleague Kevin Nowlan
at CMU presented a classic paper [3] to demonstrate an instance of the Baldwin
effect in the computer. Hinton and Nowlan (henceforth H&N) used a genetic
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algorithm [9] to evolve a population in an extreme landscape called Needle-in-
a-haystack, showing that learning can help evolution to search for the solution
when evolution alone fails to do so. An interesting idea that can be extracted
from their work is that instead of genetically fixing the genotype, it is wiser to
let just a portion of the genotype genetically fixed, and the other be plastic that
allows for changes through learning. It is these plastic individuals that promote
the evolutionary process to search for the optimal solution, although the H&N
landscape is static.

The model developed by Hinton and Nowlan, though simple, is interesting,
opening up the trend followed by a number of research papers investigating the
interaction between learning and evolution. Following the framework of Hinton
and Nowlan, there have been a number of other papers studying the Baldwin
effect in the NK-fitness landscape, which was developed by Stuart Kauffman
[10] to model ‘tunably rugged‘ fitness landscapes. Problems within that kind of
landscape are shown to fall in NP-completeness category [10]. Several notable
studies of the Baldwin effect in the NK-model include work by Giles Mayley [11],
and some others [12]. Their results, again, demonstrated that the Baldwin effect
does occur and the allowance for lifetime learning, in the form of individual
learning, helps evolutionary search overcome the difficulty of a rugged fitness
landscape.

2.2 Learning and Evolution in Neural Networks

There have also been several studies investigating the interaction between learn-
ing and evolution in Neural Networks. Most use the so-called Neuroevolution
approach to test if neural network learning facilitates an evolutionary process,
often represented by an evolutionary algorithm. Some notable papers on this line
of research include [13], and several works by Stefano Nolfi, Domenico Parisi on
Evolutionary Robotics [4], [6], to name but a few. All of these papers attempted
to confirm the existence of the Baldwin effect, by showing how learning interacts
with evolution making the system perform better than with evolution alone.

Todd and Miller [14] investigated an imaginary underwater environment in
which organisms have to eat food and avoid poison. Each agent was born in one
of the two feeding patches, and has to decide whether to consume substances
floating by. Those substances can be either food or poison, with colour either
red or green. The association between the colour (red or green) and the sub-
stance (food or poison) varies between feeding patches. Therefore, an agent has
to decide whether to eat or pass a substance based on its sensory experience.
Moreover, there is no feedback given to an individual agent that could be used
to discriminate between food and poison [14]. Todd and Miller showed that the
combination of evolution and learning in the form of Hebbian Rule [15] in a sim-
ple neural network can do better than both evolution and learning alone in this
scenario. One point to be noted here is that this is an imaginary environment,
there is no movement in the environment by the agent. The story here can be
understood as a population of disembodied neural network learning to classify
the representation of food and poison.
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Another study on this topic includes [13] in which neural networks have
to classify food and poison. The neural synaptic connections are both evolved
using an evolutionary algorithm and learned by the Delta Rule (a simple form
of Backpropagation on single layer network). It was also shown that learning
enhances the evolving population in terms of food-poison classification. Like
the work by Todd and Miller, there is no movement in the environment or the
interaction between the neural network and the environment containing food
and poison. This is also a disembodied case.

Nolfi and his colleagues simulated a population of simulated embodied ani-
mats (or artificial organisms) controlled by neural networks situated in a grid-
world, with four actions (turn 90◦ right or left, move one cell forward, or stay
still in the current cell). The evolutionary task is to evolve action strategies to
collect food effectively, while each agent learns to predict the sensory inputs to
neural networks for each time step. Learning was implemented using Backprop-
agation based on the error between the actual and the predicted sensory inputs.
It was shown that learning to predict is able to enhance the evolutionary pro-
cess and increase the fitness of the population. The same observation was also
validated as true when learning performs a XOR function ([6]. In these studies,
each animat, or simulated embodied agent, lives in its own copy of the world.
Therefore, there is no interaction between these agents while they are foraging
during their lifetime.

There have also been several other studies using the idea of learning and
evolution in neural networks, including [16], [17], [18], showing how the inter-
play between learning and evolution in evolving neural networks enhances the
performance the evolving system. Yet most of the work use disembodied and
unsituated neural networks or there is no interaction between learning agents
in the environment – they live in their own copies of the environment, solving
their own problems, having no effect on the performance of others. Please refer
to [19] for some more recent studies on evolving plastic neural networks (neural
networks that learn).

In this study, we investigate the interaction between learning and evolution
in a multi-agent system – a system containing multiple situated agents living
together and doing their tasks while competing with each other. Each agent is
controlled by a neural network but situated (and has a soft-embodiment). This
means, the way an agent acts and moves in the world affects the subsequent
sensory inputs, hence the future behaviour of that agent. We also propose an
architecture called self-taught neural network – neural network that can teach
itself during the lifetime interaction with the environment. Simulations to in-
vestigate between evolution and learning in evolving self-taught neural networks
are described in the following section.
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Fig. 1. MiniWorld – The environment of agents and food, 640x640.

3 Simulation setup

3.1 The simulated world

We simulate a continuous 2D-world, called MiniWorld, with dimension 640x640.
It contains 50 food particles randomly uniformly distributed. Each piece of food
is represented by a squared image with size 10x10, locating at a random posi-
tion in range [0, 640] for each dimension. Each food has an energy value. For
simplicity, in our simulation we set the energy value of 1 for every food particle.
Because the state-space of the world is continuous, not discrete like that of a grid
space, and the size of food is much smaller than the dimension of the world, the
dispersal of food is sparse enough to complexify the foraging task investigated
in this paper. One property of MiniWorld is it has no strict boundary, and we
implement the so-called toroidal – this means when an agent moves beyond an
edge, it appears in the opposite edge. The visualisation of the sample world is
shown in Figure 1.

3.2 Agent

We also simulate an evolving population of 20 agents in MiniWorld. Each agent
is represented by an squared image with size 10x10, the same size as the food
particle. Each agent has a food counter representing the total energy the agent
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Fig. 2. Agent situated in an environment seeing food

got during its life. The food counter of an agent increases by the energy level
of the food that the agent eats (hence by 1 in our simulation). When an agent
happens to collide with a food patch, the food is eaten and another food piece
randomly spawns in the environment but at a different random location. The
collision detection criterion is specified by the distance between the two bodies.
This shows how the soft-body affects the movement and the performance of an
agent in its environment. By the re-appearance of food, the environment changes
as an agent eats a food.

Every agent has a heading (in principle) of movement in the environment.
In our simulation, we assume that every agent has a priori ability to sense the
angle between its current heading and the food if appearing in its visual range.
The visual range of each agent is a circle with radius 4. Each agent takes as
inputs three sensory information, which can be the binary value 0 or 1, about
what it sees from the left, front, and right in its visual range. If there is no food
appearing in its visual range, the sensory inputs are all set to 0. If there is food
appearing on the left (front, or right), the left (front, or right) sensor is set to 1;
otherwise, the sensor is 0.

Let θ (in degree) be the angle between the agent and the food particle in its
visual sense. An agent determines whether a food appears in its left, front, or
right location in its visual range be the following rule:

15 <θ < 45 => right

θ ≤ 15 or θ ≥ 345 => front

315 <θ < 345 => left

A examplar visualisation of an agent and its relationship with food in the
environment is shown in Figure 2.

Unlike [4] [6] in which each agent has its own copy of the world, we let all
agents live in the same MiniWorld. They feed for their own survival during their
life. The more an agent eats, the less the chance for others to feed themselves.
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Fig. 3. Neural network controller for each situated agent. Connection weights can be
created by evolutionary process, but can also be changed during the lifetime of an
agent.

This creates a stronger competition in the population. When an agent moves for
foraging, it changes the environment in which other agents live, changing how
others sense the world as well. This forms a more complex dynamics, even in
simple scenario we are investigating in this paper.

The default velocity (or speed) for each agent is 1. Every agent has three basic
movements: Turn left by 9 degrees and move, move forward by double speed,
turn right by 9 degrees and move. For simplicity, these rules are pre-defined by
the system designer of MiniWorld. We can imagine the perfect scenario like if
an agent sees a food in front, it doubles the speed and move forward to catch
the food. If the agent sees the food on the left (right), it would like to turn to
the left (right) and move forward to the food particle. The motor action of an
agent is guided by its neural network as described below.

3.3 The neural network controller

Each agent is controlled by a fully-connected neural network to determine its
movements in the environment. What an agent decides to do changes the world
the agent lives in, changing the next sensory information it receives, hence the
next behaviour. This forms a sensory-motor dynamics and a neural network acts
as a situated cognitive module having the role to guide an agent to behave adap-
tively, or Situated Cognition even in such a simple case like what is presenting
in this paper. Each neural network includes 3 layers with 3 input nodes in input
layer, 10 nodes in hidden layer, and 3 nodes in output layers.

The first layer takes as input what an agent senses from the environment in
its visual range (described above). The output layer produces three values as a
motor-guidance for how an agent should behave in the world after processing
sensory information. The maximum value amongst these three values is chosen
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as a motor action as whether an agent should turn left, right, or move forward
(as described above). All neurons except the inputs use a sigmoidal activation
function. All connections (or synaptic strengths) are initialised as Gaussian(0,
1). These weights are first initialised as innate, or merely specified by the geno-
type of an agent, but also have the potential to change during the lifetime of
that agent.

The architectural design of neural network controller is visualised in Figure
3. In fact, the neural architecture as shown in Figure 3 has no ability to learn,
or to teach itself. In the following section, we extend this architecture to allow
for self-taught learning agents.

3.4 The Self-taught neural architecture

To allow for self-taught ability, the neural controller for each agent now has
two modules: one is called Action Module, the other is called Reinforce-
ment Module. The action module has the same network as previously shown
in Figure 3. This module takes as inputs the sensory information and produces
reinforcement outputs in order to guide the motor action of an agent. The rein-
forcement module has the same set of inputs as the action module, but possesses
separate sets of hidden and output neurons. The goal of reinforcement network
is to provide reinforcement signals to guide the behaviour of each agent. The
topology of a neural network in this case is visualised in Figure 4.

The difference between the output of the reinforcement module and the ac-
tion module is used as the error of the output behaviour of the action module.
That error is used to update the weights in action modules through Backprop-
agation [20]. Through that learning process, the action module approximates
its output activation towards the output of the reinforcement module. In fact,
the reinforcement and the action modules are not necessary to have the same
topology. For convenience, in our simulation we allow the reinforcement module
possesses the same neuronal structure as the action module, but has 10 hid-
den neurons separate from the hidden neurons of the action module, hence the
connections. The learning rate is 0.01.

In the following sections, we describe simulations we use to investigate the
evolutionary consequence of lifetime learning.

3.5 Simulation 1: Evolution alone (EVO)

In this simulation, we evolving a population of agents without learning ability.
The neural network controller for each agent is the one described in Figure 3.
The genotype of each agent is the weight matrix of its neural network, and the
evolutionary process takes place as we evolve a population of weights, a common
approach in Neuroevolution (NE) [21].

Selection chooses individuals based on the number of food eaten in the forag-
ing task employed as the fitness value. The higher the number of food eaten, the
higher the fitness value. For crossover, two individuals are selected as parents,
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Fig. 4. Self-taught neural network.

namely parent1 and parent2. The two selected individuals produce one offspring,
called child. We implement crossover as the more the successful of a parent, the
more the chance its weights are copied to the child. The weight matrices of the
child can be simply described as the algorithm below.

Algorithm 1 Crossover

1: function Crossover(parent1, parent2)
2: rate = parent1.fitness/parent2.fitness comment: fitness ratio

3: child.weights = copy(parent2.weights)
4: for in ∈ len(child.weights) do
5: if random() < rate then
6: child.weights[i] = parent1.weights[i]
7: end if
8: end for
9: end function

Once a child has been created, that child will be mutated based on a prede-
fined mutation rate. In our work, mutation rate is set to 0.05. A random number
is generated, if that number is less than mutation rate, mutation occurs, and vice
versa. If mutation occurs for each weight in the child, that weight is added by a
random number from the range [-0.05, 0.05], a slight mutation. After that, the
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newly born individual is placed in a new population. This process is repeated un-
til the new population is filled 100 new individual agents. No elitism is employed
in our evolutionary algorithm.

The population goes through a total of 100 generations, with 10000 time
steps per generation. At each time step, an agent does the following activities:
Receiving sensory inputs, computing its output, updating its new heading and
location. In evolution alone simulation, the agent cannot perform any kind of
learning during its lifetime. After that, the population undergoes selection and
reproduction processes.

3.6 Simulation 2: Evolution of Self-taught agents (EVO+Self-taught)

In this simulation, we allow lifetime learning, in addition to the evolutionary
algorithm, to update the weights of neural network controllers when agents in-
teract with the environment. We evolve a population of Self-taught agents –
agents that can teach themselves. The self-taught agent has a self-taught neu-
ral network architecture as described previously and shown in Figure 4. During
the lifetime of an agent, the reinforcement modules produce outputs in order
to guide the weight-updating process of the action module. Only the weights of
action modules can be changed by learning, the weights of reinforcement module
are genetically specified in the same evolutionary process as specified above in
Evolution alone simulation.

We use the same parameter setting for evolution as in EVO simulation above.
At each time step, an agent does the following activities: Receiving sensory in-
puts, computing its output, updating its new heading and location, and updating
the weights in action module by self-teaching. After one step, the agent updates
its fitness by the number of food eaten. After that, the population undergoes
selection and reproduction processes as in Evolution alone.

Remember that we are fitting learning and evolution in a Darwinian frame-
work, not Lamarckian. This means what will be learned during the lifetime of
an agent (the weights in action module) is not passed down onto the offspring.
Results and analysis are described in the section below.

3.7 Simulation 3: Random Self-taught agents (Random-Self-taught)

We conduct another simulation in which all agents are self-taught agents – having
self-taught networks that can teach themselves during lifetime. What differs from
simulation 2 is that at the beginning of every generation, all weights are randomly
initialised, rather than updated by an evolutionary algorithm like in simulation
1. The learning agents here are initialised as blank-slates, or tabula rasa, having
no predisposition to learn or some sort of priori knowledge about the world. The
reason for this simulation is that we are curious whether evolution brings any
benefit to learning in MiniWorld. In other words, we would like to see if there
is a synergy between evolution and learning, not just how learning can affect
evolution.

Experimental results are presented and discussed in the following section.
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Fig. 5. Comparison of eating ability. a) Left: Best Fitness b) Right: Average Fitness

4 Results and Analysis

4.1 Learning Facilitates Evolution

At first, we compare the eating performance, in terms of the best and the average
food eaten, of the population in EVO and EVO+Self-taught simulations. All
results are averaged over 30 independent runs.

We look at the dynamics of the eating ability over generations. It can be
observed in the left of Figure 5 that there is a difference in the best eating ability
between the two populations, EVO and EVO+Self-taught. We can see that the
best eating performance of self-taught population is more stable than that of the
evolution alone. Even the distinction does not look obviously significant, but it
still has some implication.

In biology, even a little difference in the dynamic over generations often shows
something more interesting than it looks. In this scenario, we know that every
agent has to compete with each others for energy during their lifetime, hence
for the selection process at the end of each generation. The better movement an
agent makes in an environment, the more the chance it approaches the food. The
more an agent absorbs, the less the others can get in one time step during the
lifetime. From this we can come up with an idea as follows: In an environmental
circumstance in which there are quite a few agents without adaptive behaviour,
or not having produced adaptive movements, the best agent tends to have more
chance to eat because its competitors are poorer enough to go against it. In
other words, in such a population the competition between individual agents is
strong enough but there is little competitive pressure for the best agent because
the remaining is inferior than it. On the other hand, if in a population there is
not a small portion of agents producing good actions in the environment, the
competition between individuals agents is absolutely stronger, even for the best
agent.
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Fig. 6. Boxplot. a) Left: Best Fitness b) Right: Average Fitness.

With this in mind, we are curious whether the population of self-taught
agents or that of innate agents alone has better performance. We also need to
look at the average fitness of the two populations over time. It can be obviously
seen in Figure 5b) that there is a clear difference between the average eating
ability between the two populations of interest. The average agent in EVO+Self-
taught eats 20-30 food particles more than the average agent in EVO population
alone. This means, on the whole, the EVO+Self-taught multi-agent system eats
approximately 400-600 food particles more than the EVO population alone.

Matching the analysis of both the best and the average eating ability, it can
be claimed that the combination of evolution and learning results in a higher
performance, promoting the whole population, more than evolution alone. The
average fitness says an average self-taught agent eats more food and an average
agent in EVO population. This also means the ability of self-teaching equips an
average agent produces more adaptive actions in MiniWorld. Thus, the compe-
tition for food between self-taught agents is higher than that of agents in EVO
alone population. Up to this point, the best agent in EVO+Self-taught can also
be thought of having better ability than the best agent in EVO alone population,
despite having not that higher performance as shown in Figure 5. The best self-
taught agent has to compete more with better average agents, but still produce
good enough actions and get more food than the best agent in EVO population
with less competitive pressure.

In addition to the dynamic analysis, if we think more about statistical results
we can also cut off the generational timescale, assuming that we are seeking for
the best and the average food eaten in MiniWorld after 100 generations. This
looks like an usual analysis when applying evolutionary algorithms to solve a
particular problem. We average the result over 30 runs. The boxplots in Figure
6 show that the best food eaten in Self-taught population is likely to be similar
to the best food eaten in EVO population after 100 generations.

If we look into the average fitness (food eaten) after 100 generations, it can
be clearly seen that the self-taught population shows a clear higher performance
than the EVO population. This all shows that the combination of learning and



Title Suppressed Due to Excessive Length 13

evolution increases the adaptivity of the population measured by the number of
food eaten in any case.

4.2 Evolution Facilitates Learning

We have seen how learning during lifetime facilitates the evolving population
of self-taught agents, having higher performance in a multi-agent environment
compared to EVO alone. One curious question here is whether the Baldwin-like
Effect has occurred?

This is why we conduct the third simulation in which the neural networks of
self-taught agents are all randomly initialised, without the participation of evo-
lution. It can be observed in both the left and the right of 5 that the population
of randomly self-taught agents has lower performance than that of EVO+Self-
taught, especially when it comes to the performance of the whole population
(average fitness in our scenario). It is also interesting that in our simulation,
the blank-slate population by learning even cannot outperform the evolving
population without learning.

It is plausible here to conclude that learning, as a faster adaptation, can
provide more adaptive advantage than the slower evolutionary process when
the environment is dynamic like in MiniWorld. However, it is evolution that
provides a good base for self-taught agents to learn better adaptive behaviours
in future generations rather than learning as blank-slates in Random-Self-taught
population.

5 Conclusion and Future Work

We have shown how the learning can enhance the performance of the multi-
agent system in MiniWorld. The architecture of self-taught neural networks was
proposed to illustrate the idea of self-taught agents – learning by oneself without
external supervision in the environment. Based on a specific world and param-
eter settings, the Baldwin-like Effect has been been demonstrated. The ability
to teach oneself has been shown to provide some sort of adaptive advantage
over agents without any learning ability. Simultaneously, evolution has also been
shown to facilitate future learning, better than learning as blank-slates without
priori knowledge about the world. Computer simulations are simple enough to
illustrate the idea of research, yet still have indications for future work.

First, with respect to computational modeling technique the Neuroevolution
method used in this paper is a bit highly engineering design – this means the
architecture of the neural network (both action module and reinforcement mod-
ule) is handcrafted by the system designer. Evolution and learning only affect
the weights of the fixed topology to find good enough combination of weights.
One trivial thought can be varying the structure of the neural networks used in
our simulation and see how the performance would be varying. Different meth-
ods and algorithms in evolving neural networks (both weights and topology) can
be taken into account [19].
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Parameter setting of MiniWorld environment can show some more interesting
effects than trivially for tuning the performance, and this can be worth future
investigations. For example, the number of agents in MiniWorld is 20 and the
number of food is kept constant as 50. What if we vary the number of food so that
it is much larger than the number of agent? In this scenario, there distribution
of food in MiniWorld is denser and, on average, each agent has more chance
to get more energy, reducing competition pressure between agents during their
lifetime. But what if we set the number of agents more than the number of
food in MiniWorld? This would lead to a severe competition between individual
agents in the population. Whether the better self-taught learners have more
competitive advantage over the others in this scenario is an interesting question
to be investigated in the future.

Another way to complexify MiniWorld is to include other substances, for
example food and poison in the same environment. The agent then has to solve
two tasks: the task of producing adaptive movement to approach substance in
the environment and simultaneously the task of discriminating between food
and poison to consume. It is plausible to think that having the ability to teach
oneself will show more adaptive since there is no external supervision in the
environment and relying on evolution alone is not adaptive when the environment
is increasingly dynamic.

When it comes to theoretical and biological understanding, learning can also
be classified into two types: asocial (or individual) learning and social learning.
The former is learning by directly interacting with the environment, e.g. trial-
and-error. The latter is learning from others, e.g. imitation learning. The ability
to teach oneself can be considered a form of asocial learning. Social learning has
been shown to complimentary to asocial learning in some work, including [22],
[23] [24]. It is often said that the combination of social and asocial learning can
result in higher performance than both social and asocial learning alone [22]. Yet
in these studies each agent solves its own problem – there is no real interactive
effect between individual agents. There is no competition for survival between
agents during their lifetime. Individual agents compete with each other only
through the selection process. The competition in these circumstances is a bit
low. One curious question arising here is whether the same observation can be
made when asocial and social agents are living in the same environment, sharing
the resource of energy and competing for survival during their lifetime. If the
competition is too strong, it is plausible to think that learning by oneself seems
to be the best strategy when no one is motivated to share survival information
to others. On the other hand, when the resource is surplus, learning from others
can have more advantages. This will be an interesting exploration in the future,
which can contribute to the understanding of the evolutionary consequences of
learning (asocial and social) in different environments.

Last but not less important, the idea of self-taught neural networks can be
powerful when there is no external supervision (or label in Machine Learning
terminology). The algorithm and technique used in this paper can be a potential
technique to solve unsupervised learning or reinforcement learning problems. We
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are curious whether evolution can provide a better base to learn than learning
as blank-slates, to achieve human-level intelligence like what was claimed by
DeepMind in games [25].
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