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Abstract We investigate the effects of semantically-based crossover operators in Ge-
netic Programming, applied to real-valued symbolic regression problems. We propose
two new relations derived from the semantic distance between subtrees, known as Se-
mantic Equivalence and Semantic Similarity. These relations are used to guide variants
of the crossover operator, resulting in two new crossover operators — Semantics Aware
Crossover (SAC) and Semantic Similarity-based Crossover (SSC). SAC, was introduced
and previously studied, is added here for the purpose of comparison and analysis. SSC
extends SAC by more closely controlling the semantic distance between subtrees to
which crossover may be applied. The new operators were tested on some real-valued
symbolic regression problems and compared with Standard Crossover (SC), Context
Aware Crossover (CAC), Soft Brood Selection (SBS), and No Same Mate (NSM) se-
lection. The experimental results show on the problems examined that, with compu-
tational effort measured by the number of function node evaluations, only SSC and
SBS were significantly better than SC, and SSC was often better than SBS. Further
experiments were also conducted to analyse the perfomance sensitivity to the parame-
ter settings for SSC. This analysis leads to a conclusion that SSC is more constructive
and has higher locality than SAC, NSM and SC; we believe these are the main reasons
for the improved performance of SSC.
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1 Introduction

Genetic Programming (GP) [36, 40, 49]) researchers have only recently paid much
attention to semantic information, which has resulted in a dramatic increase in the
number of realated publications (e.g. [4, 9, 26, 28, 29, 31, 32, 43, 57]). Previously,
work in GP representation had focused mainly on syntactic aspects. From a program-
mer’s perspective, however, maintaining syntactic correctness is only part of program
construction: programs must be not only syntactically correct, but also semantically
correct. Thus incorporating semantic awareness in the GP process could improve per-
formance, extending the applicability of GP to problems that are difficult with purely
syntactic approaches. So far, semantics has been incorporated into different phases of
GP including fitness measurement [26, 29], operators execution [4, 57], valid check-
ing [33, 58] and so forth. In this work, we investigate one method to incorporate se-
mantic information into GP crossover operators for real-valued symbolic regression
problems.

Previous Evolutionary Computation research has shown that characteristics of evo-
lutionary operators such as their constructiveness, locality (small changes in genotype
resulting in small changes in phenotype), and effect on population diversity strongly
affect the performance of the resulting algorithms [7, 42, 51, 53]. However designing GP
operators with these desirable characteristics can be very difficult. We aim to incor-
porate semantics into the design of new crossover operators so as to maintain greater
semantic diversity, and provide greater constructiveness as well as higher locality than
standard crossover (SC). We investigate the effects of these semantically-based opera-
tors on the performance of GP.

This paper addresses two main objectives. The first and narrower is to propose
a new semantically-based schema for implementing crossover in GP that extends Se-
mantics Aware Crossover (SAC) in our previous work [57]. The second and broader
objective is to encourage GP researchers to pay greater attention to the use of seman-
tics to improve the efficiency of GP search. It extends [57] in a number of ways. First,
we change the way the semantics is used to constrain the crossover, resulting in a new
crossover that we call Semantic Similarity-based Crossover (SSC). SSC extends SAC
by not only encouraging exchange of semantically different material between parents,
but also limiting this to small and controllable changes. SSC and SAC are compared
with a broader class of related crossover operators in the literature and the results are
positive.

Experiments to investigate the impact of crucial parameters on SSC’s performance
are also presented, providing the basis on which to choose appropriate values for these
parameters. Subsequently, we conduct a more comprehensive analysis to investigate
the possible reasons behind the effectiveness of SSC, and in particular, why SSC works
so much better than SC, SAC and NSM. Finally, we extend the previous work by
comparison on a much broader range of target functions. All of these extensions will
be presented in detail in the following sections.

The remainder of the paper is organised as follows. In the next section we review
the literature on GP with semantic information and on GP crossover operators. Section
3 contains the detailed descriptions of our new crossovers. The experimental settings
are described in Section 4. A comparison of the effectiveness of SSC and other related
crossover operators are presented in Section 5. An analysis of parameter sensitivity for
SSC and an investigation of some of the characteristics of SSC follow in the next two



sections. The conclusions are presented in Section 8, leading to suggestions for future
research in Section 9.

2 Background

In this section, we briefly review previous work on semantics in GP and on variants of
GP crossover operators.

2.1 Semantics in Genetic Programming

Semantics is a broad concept that has been studied in a number of fields including
Natural Language [1], Psychology [10] and Computer Science [46] among others. While
the precise meaning varies from field to field, semantics is generally contrasted with
syntax: the syntax refers to the surface form of an expression, while the semantics
refers to its deeper meaning in some external World. In computer science, this external
World is generally provided by the computational model.

In Computer Science, semantics can be informally defined as the meaning of syn-
tactically correct programs or functions. Two programs that are syntactically the same
must have the same semantics, but the converse may not be true.

As a simple example, consider two small programs shown in Equations 1 and 2.
Syntactically, the first statement of each is identical, but the second statements differ.
Semantically, however, they are identical: both programs compute the same result.

r=Ly=z+uz (1)
z=1; y=2x*ux; (2)

In GP, semantics has generally been used to provide additional guidance to the GP
search. The necessary additional information is either added to or extracted from the
GP individual’s representation. Thus the available possibilities depend on the problem
domain (Boolean or real-value,...), the GP individual representation (Grammar-, Tree-
or Graph-based), and the search algorithm characteristics (fitness measure, genetic
operators,. .. ).

To date, there have been three main approaches to representing and extracting
semantics and using it to guide the evolutionary process:

1. grammar-based [8, 9, 12, 50, 58, 59]
2. formal methods [26, 28, 29, 31-33]
3. GP s-tree representation [4-6, 37, 38, 43, 57|

The most popular form of the first uses attribute grammars. Attribute grammars
are extensions of context-free grammars, in which a finite set of attributes provide
context sensitivity [34]. GP individuals expressed in the form of attribute grammar trees
can incorporate semantic information, which can be used to eliminate bad individuals
(i.e., less fit individuals) from the population [12] or to prevent generating semantically
invalid individuals as in [8, 9, 50, 58, 59]. The attributes used to present semantics
are generally problem-dependent, and it is not always obvious how to determine the
attributes for a given problem.



Recently, Johnson has advocated formal methods as a means to incorporate se-
mantic information into the GP evolutionary process [26, 28, 29]. Formal methods
are a class of mathematically-based techniques for the specification, development and
verification of software and hardware systems [45]. They support the extraction and
approximation of mathematical statements useful for system design and verification. In
Johnson’s work, semantic information extracted through formal methods, such as ab-
stract interpretation or model checking, is used to quantify the fitness of individuals on
some problems for which traditional sample-point-based fitness measure are unavailable
or misleading. In [26, 28], Johnson used interval analysis (a form of abstract interpre-
tation) to measure the fitness of individuals in solving a rectangle replacement problem
and in robot control. By contrast, Keijzer [33] used interval analysis to check whether
an individual is defined over the whole range of input values — if an individual is unde-
fined anywhere, that individual can be assigned minimal fitness or simply deleted from
the population. This allowed Keijzer to avoid discontinuities arising from protected
operators, improving the evolvability of the system. Johnson [29] used model checking
to measure individual fitness in evolving vending machine controllers. A controller is
specified by a number of computation tree logic formulas [3]. Fitness of an individual
is the number of formulas it satisfies. Subsequently, Katz and Peled [31, 32] also used
model checking to define fitness in a GP system for the mutual exclusion problem. The
advantage of formal methods lies in their strict mathematical background, potentially
helping GP to evolve computer programs. However they are also high in complexity and
difficult to implement, possibly explaining the limited research despite the advocacy of
Johnson [27]. Their main application to date has lain in evolving control strategies.

Methods for extracting semantics from expression trees depend strongly on the
problem domain. The finite inputs of Boolean domains mean that semantics can be
accurately estimated in a variety of ways. Beadle and Johnson [4] investigated the ef-
fects of directly using semantic information to guide GP crossover on Boolean problem
domains. They checked semantic equivalence between offspring and parents by trans-
forming them to Reduced Ordered Binary Decision Diagrams (ROBDDs) [14]. Two
trees are semantically equivalent if and only if they reduce to the same ROBDD. This
is used to determine which participating individuals are copied to the next generation.
If the offspring are semantically equivalent to their parents, the children are discarded
and the crossover is restarted. This process is repeated until semantically new chil-
dren are found. The authors argue that this results in increased semantic diversity
in the evolving population, and a consequent improvement in the GP performance.
This method of semantic equivalence checking is also applied to drive mutation [6] and
guide the initialisation phase of GP [5], where the authors show that it benefits for GP
in both phases. By contrast, McPhee et al. [43] extract semantic information from a
Boolean expression tree by enumerating all possible inputs. They consider the seman-
tics of two components in each tree: semantics of subtrees and semantics of context (the
remainder of an individual after removing a subtree). They experimentally measured
the variation of these semantic components throughout the GP evolutionary process.
They paid special attention to fixed-semantic subtrees: subtrees where the semantics
of the tree does not change when this subtree is replaced by another subtree. They
showed that there may be very many such fixed semantic subtrees when the tree size
increases during evolution; thus it becomes very difficult to change the semantics of
trees with crossover and mutation once the trees have become large.

To the best of our knowledge, there has been no previous research on semantic
guidance in real-valued problems before our own previous study [57]. There, we pro-



posed a new crossover operator, semantics aware crossover (SAC), based on checking
the semantic equivalence of subtrees. SAC was tested on a family of real-valued sym-
bolic regression problems, and was empirically shown to improve GP performance. SAC
differs from Beadle and Johnson’s approach [4] in two ways. First, the test domain is
real-valued rather than Boolean. For real domains, it is not generally feasible to check
semantic equivalence by reduction to a canonical form like a ROBDD. Second, the
crossover operator is guided not by the semantics of the whole program tree, but by
that of subtrees. This is inspired by recent work presented in [43] for calculating subtree
semantics. However, for real domains, measuring semantics by enumerating all possible
inputs as in [43] is also infeasible, so that the semantics must be approximated.

Recently, Krawiec and Lichocki proposed a way to measure the semantics of an
individual based on fitness cases [37]. In this work, the semantics of an individual
is defined as a vector in which each element is the output of the individual at the
corresponding input fitness case. This semantics is used to guide crossover in a method
similar to SBS, known as Approzimating Geometric Crossover (AGC). In AGC, a
number of children are generated at each crossover, the children most similar to their
parents — in terms of semantics — being added to the next generation. The experiment
is conducted on both real-valued and boolean regression problems. The results show
that AGC is no better than SC in real-value problems, and only slightly superior to
SC in boolean problems. The same kind of semantics is then used to build functional
modulation for GP [38], for which the experimental results show that it may be useful
in characterising the compositionality and difficulty of a problem, potentially leading
to performance improvements for GP.

2.2 Alternative Crossovers in Genetic Programming

It is well-known that crossover is the primary operator in GP [35]. In the standard
crossover (SC) two parents are selected, and then one subtree is randomly selected in
each parent. A procedure is called to check if these two subtrees are legal for crossover
(syntactic closure properties, depth of resulting children,...). If so, the crossover is
executed by simply swapping the two chosen subtrees, and the resulting offspring are
added to the next generation. Figure 1 shows how SC works.

Much research has concentrated on the efficiency of crossover, resulting in new and
improved operators which can be classified into three categories. These are:

1. crossovers based on syntax (structure)
2. crossovers based on context
3. crossovers based on semantics

Most of the early modifications to SC were based on syntax [24, 35, 39, 47, 48]. Koza [35]
proposed a crossover that is 90% biased to function nodes and 10% bias to terminal
nodes as crossover points. Although this method encourages the exchange of more
genetic material (bigger subtrees) between the two participating individuals, it risks
exacerbating bloat and thus making it more difficult to refine solutions in later gen-
erations [4]. O’Reilly and Oppacher [47] introduced height-fair crossover, in which all
subtree heights in the two parents are recorded, and one subtree height is randomly se-
lected. The crossover sites in both parents are then restricted to that particular height.
Ito et al. [24] presented a similar depth-dependent crossover, aiming to preserve build-
ing blocks. In this method, the probability of selecting a node is biased towards the
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Fig. 1 Standard Crossover: parents (top) and their resulting offspring after applying crossover
(bottom).

root — nodes near the root have a greater probability to be selected for crossover. The
bias of the selection probability is set by the user, and it is left unchanged during the
search process. However it is not robust: if it is not carefully set for a particular prob-
lem, the performance can be very poor [25]. In [39, 48], Poli and Langdon introduced
one-point crossover and uniform crossover. In these methods, when two parents are
selected for crossover, they are aligned based on their shapes. By aligning two parents,
the common shape of these parents (starting from the roots) can be determined. The
crossover points are then randomly selected from the nodes that lie in the common
shape. This kind of crossover has been shown especially effective on Boolean problems
as it causes a bigger genetic material exchange in earlier generations (in these gener-
ations the common shape is often very small) and yet can tune the solutions in later
generations (when the common shapes are bigger).

More recently, context has been used as extra information for the selection of
crossover points [2, 19, 41, 55, 56]. This class of crossover is perhaps closest to semantic
based crossovers. Altenberg [2] proposed a new crossover inspired by the observation
that in most animal species, breeding occurs more often than the number of surviving
offspring might suggest. In other words, viable offspring are not always produced as a
consequence of breeding. This crossover is called a Soft Brood Selection (SBS). Two
parents are selected for crossover, then IV random crossovers are performed to generate
a Brood of 2N children. The children are evaluated and sorted based on their fitness.
The two best children are copied to the next generation, the rest being discarded.
This crossover was then developed by Tackett [55, 56] by using a subset of fitness
cases to figure out which children in the Brood are added to the next generation.
Hengpraprohm and Chongstitvatana [19] proposed Selective Crossover, in which each
subtree is assigned an impact value, reflecting how well (or badly) the subtree affects



the containing tree. The impact of a subtree is determined by removing that subtree
and replacing it with a random terminal node. The change in resulting fitness is the
impact value. The crossover is performed by replacing the worst subtree of each parent
with the best subtree of the other. Majeed and Ryan [41] proposed Context Aware
Crossover (CAC); after two parents have been selected for crossover, one subtree is
randomly chosen in the first. This subtree is then crossed over into all possible locations
in the second, all generated children being evaluated. The best child (based on fitness)
is selected as the result, and copied to the next generation. The advantage of these
context-based crossovers is increased probability of producing better children. On the
other hand, it can be very time consuming to evaluate the context of each subtree.

To the best of our knowledge, the only previous use of semantics in crossover are
those previously discussed in Subsection 2.1. They include Beadle and Johnson’s [4]
Semantics Driven Crossover for Boolean problems, Krawiec and Lichocki’s [37] Ap-
proximating Geometric Crossover, and our previous work [57] on Semantics Aware
Crossover (SAC).

3 Methods

In this section we give a detailed discussion of our two crossovers. We start by briefly
describing how we measure semantics in real-valued problems. This allows us to de-
fine a concept of semantic distance, on the basis of which we propose two semantic
relationships,which we then use to define two new crossover operators.

3.1 Measuring Semantics

As discussed in Section 2, the appropriate definition of semantics for GP is far from
obvious. The semantics of an individual is often understood as the behavior of that
individual with respect to a set of input values. However the possibilities for computing
such semantics depends on the domain. For real-valued problems, both canonical-form
methods corresponding to Beadle and Johnson’s [4] Boolean ROBDDs, and complete
enumeration as in McPhee’s approach [43], are infeasible. Instead, we propose a simple
way to estimate the semantics of subtrees, in which the semantics is approximated by
evaluating the subtree on a pre-specified set of points in the problem domain. We call
this Sampling Semantics. Formally, the Sampling Semantics of any tree (subtree) is
defined as follows:

Let F be a function expressed by a tree (subtree) 7' on a domain D. Let P be a
set of points from domain D, P = {p1,p2,...oN }. Then the Sampling Semantics of T
on P in domain D is the set S = {s1, s2,..., sy} where s; = F(p;),i=1,2,..,N.

For example, suppose that we are considering the interval [0,1] and using a set of
three points, P = {0,0.5,1}, for evaluating semantics. Then the Sampling Semantics
of subtree St in Figure 2 on P is the set of three values S = {sin(1) — 0, sin(1) —
0.5, sin(1) — 1}={084,0.34, —0.16}. The value of N depends on the problems. If it is
too small, the approximate semantics might be too coarse-grained and not sufficiently
accurate. If N is too big, the approximate semantics might be more accurate, but more
time consuming to measure. The choice of P is also important. If the members of P are
too closely related to the GP function set (for example, 7 for exponential/trigonometric
functions, or e for logarithmic functions), then the semantics might be misleading. For



Fig. 2 Tree with subtree (for illustrating Sampling Semantics)

this reason, choosing them randomly may be the best solution. In this paper, the
number of points for evaluating Sampling Semantics is set as the number of fitness
cases for the problem (20 points for single variable functions and 100 points for bivariate
functions, see Section 4), and we choose the set of points P uniformly randomly from
the problem domain. 1

Based on the Sampling Semantics (SS), we define a Sampling Semantics Distance
between two subtrees. In our previous work [57], we defined the Sampling Semantics
Distance as the sum of the absolute differences for all values of SS. That is, let P =
{p1,p2,.-»pN} and Q@ = {q1,q2, ..., qn } be the SS of Subtree;(St;) and Subtrees(Sts)
on the same set of sample points, then the Sampling Semantics Distance (SSD) between
St1 and Sty was defined as:

SSD(St1, St2) = |p1 — q1] + |[p2 — @2| + ... + [pN — qn|

While the experiments in [57] showed that this SSD is beneficial, it has the undoubted
weakness that the value of the SSD depends on the number of SS points (N). To reduce
this drawback, we now use the mean of the absolute differences as the SSD between
subtrees. In other word, the SSD between St and Sto is defined as:

SSD(St1, St2) = (Ip1 — 1] + [p2 — g2 + ... + |pn — an|)/N

3.2 Semantic Relationships

Based on Sampling Semantics Distance, we can define two semantic relationships be-
tween subtrees.Two subtrees are Semantically Equivalent (SE) on a domain if their
SSD on the sample set of points is sufficiently similar (subject to a parameter called
semantic sensitivity) — formally:

SE(St1, Sta) = if SSD(St1, Sta) < € then true

else false

L Since Sampling Semantics is defined for any subtree, it can be used in particular to estimate
the semantics of the whole tree. We will use it in this way in the examples in later sections.



€ is the predefined semantic sensitivity. This subtree semantic relationship is similar
to the metric we used in [57], and was inspired by the work of Mori et al. [44] on GP
simplification. The experimental results in [44, 57] show that this semantic relationship
benefits the GP search process.

The second relationship is known as Semantic Similarity.? The intuition behind
semantic similarity is that exchange of subtrees is most likely to be beneficial if the
two subtrees are not semantically identical, but also not too semantically dissimilar.
Two subtrees St; and Sto are semantically similar on a domain if their SSD on the
sample set lies within a positive interval — formally:

SSi(St1, Sta) = if a < SSD(St1, St2) < B then true

else false

here a and 3 are two predefined constants, known as the lower and upper bounds
for semantic sensitivity, respectively. Conceivably, the best values for lower and upper
bound semantic sensitivity might be problem dependent. However we suspect that for
most symbolic regression problems, there is a wide range of appropriate values (see
Section 6, where we study various ranges of both lower and upper bound semantic
sensitivity).

We note that there is some biological motivation for this approach. In mammals,
the Major Histocompatibility Complex (MHC) genes (on chromosome 6 in humans)
play a major role in the immune response, and thus are a key part of our defences
against disease, and subject to strong and rapidly-changing evolutionary pressures.
However they also play an important role both in mate selection (partners in the same
species, but with dissimilar MHC genes, are preferred), and in speciation, because
differences in MHC that are too big may cause an immune response from the mother
to the foetus. Thus in this case at least, biology also appears to favour crossovers with
semantic similarity lying in a specific range.

We conclude this section by highlighting some important differences between our
semantic relations and fitness. First, for fitness calculation we need to know the fitness
cases, and fitness reflects how good (close to the target function) an individual is.
In measuring SS, we do not need to know the fitness cases (of course semantics can
be measured using the fitness cases, but different cases can also be used). Second,
fitness is measured for the whole individual, while SS is mainly used to encapsulate the
semantics of subtrees. The last and most important difference is the objective: fitness
is used for individual selection while SS is used to guide crossover. It is also noted that
the semantic definition in Krawiec and Lichocki [37] is a particular case of Sampling
Semantics, in which the set of sample points is the the same as the set of fitness cases,
and the semantics of the whole tree (a particular subtree) is used in crossover.

3.3 Semantics Aware Crossover

A semantics aware crossover (SAC) was first proposed in [57]. SAC is motivated by the
observation that GP crossover may exchange semantically equivalent subtrees, resulting

2 We are using similarity here in its ordinary English meaning, where A is similar to B
implies that A is not the same as B, as opposed to a common mathematical convention in
which similarity includes equivalence.



10

Fig. 4 The generated children from semantic equivalent subtree crossover.

in children that are identical to their parents. Consider the two selected parents P} and
P> shown at the top of Figure 3. P; has the semantics sin(X) + 3X and P» has the
semantics 4X. Subtree; of P; and Subtrees of Py are semantically equivalent subtrees,
both having semantics 2X, although their structures are totally different. When these
two subtrees are selected for crossover, the children are as shown in Figure 4. Obviously,
these two children have different syntax (structure) from, but identical semantics to,
their parents. C1 has semantics of sin(X) + 3X and Cs has semantics of 4X. This
leaves the fitness of the children unchanged after crossover.

SAC prevents the swapping of such semantically equivalent subtrees in crossover.
Each time two subtrees are chosen for crossover, a semantic check (using Semantic
Equivalence) is performed to determine if they are equivalent. If they are, the crossover
is aborted and instead performed on two other randomly chosen subtrees. Further detail
on SAC can be found in [57]. SAC was partly inspired by Gustafson’s No Same Mate
selection [18] in which no two individuals with the same fitness may be selected for
crossover. It, in turn, was motivated by experiments, in which he found that two parents
with the same fitness often produce children with unchanged fitness upon crossover.

3.4 Semantic Similarity-based Crossover

The new semantically based crossover, SSC, is an extension of SAC in two ways. First,
when two subtrees are selected for crossover, their semantic similarity, rather than se-
mantic equivalence, is checked. Second, semantic similarity is more difficult to satisfy
than semantic equivalence, so repeated failures may occur. As a result, SSC uses mul-
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Algorithm 1: Semantic Similarity based Crossover

select Parent 1 Pp;

select Parent 2 Ps;

Count=0;

while Count<Max_Trial do

choose a random crossover point Subtreej in Pi;

choose a random crossover point Subtrees in Pa;

randomly generate a number of points (P) on the problem domain;
measure SSD between Subtrees and Subtree; on P;

if Subtreey is similar to Subtrees then
execute crossover;

add the children to the new population;
return true;
else
L Count=Count+1;

if Count=Maz_Attempt then

choose a random crossover point Subtree; in Pi;
choose a random crossover point Subtrees in Pa;
execute crossover;

return true;

tiple trials to find a semantically similar pair, only reverting to random selection after
passing a bound on the number of trials. Algorithm 1 shows how SSC works in detail.

In our experiments, we test a range of values of Max_Trial to gain an understanding
of its effect on SSC. The motivation for SSC is to encourage exchange of semantically
different, but not wildly different, subtrees. While forcing a change in the semantics of
the individuals in the population, we want to keep this change bounded and small. We
anticipate that a smoother change in semantics of the individuals will result, and might
lead to a smoother change in fitness of the individuals after crossover. For instance,
consider two parents selected for crossover in Figure 5. Assume that we measure the
SS of a tree on the 10 points, P = {1,2,...,10}. Then the SS of parents P;, P» and
of Subtreel (St1), Subtree2 (Stz), and Subtree3 (St3) are as shown in Table 1 and
Table 2. It can be seen from these tables that St; and Sto are semantically similar
(using a=10"%, 8=0.4 as in this paper), with the SSD being only 0.09, while St;
and St3 are semantically dissimilar since the SSD is 4.5. If crossover is performed by
swapping two semantically similar subtrees (St; and Stg), the generated children are
show in Figure 6. The SS of the two children (C1, C2) are shown in Table 1. We can
also measure the SSD between C; and P; and between Co and P (as shown in columns
C1— P; and Cy — P> in Table 1). Evidently, the change of semantics through crossover
is quite small (1.1 with C1 and 1.65 with C2). This, we hope, will make for a smoother
change of fitness.

By contrast, if crossover is conducted by swapping two dissimilar subtrees (St; and
Sts), the children are shown in Figure 7. The results of the calculation of the SS of
the two children (C3 and C4) and the semantic distances between these children and
their parents are shown in Table 2. It can be seen from this table that the change
in semantics between parents and children is rather large (143 and 82.5 for C3 and
C4, respectively). This, we anticipate, will lead to an abrupt change in fitness after
CroSSOver.



12

lpz

Subtree!

Subtree? ? ?Subtree.

i iC4

Subtree:

Subtree3

@) °9

Fig. 7 Children generated by crossing over two semantically dissimilar subtrees

Table 1 Sampling semantics of parents, subtrees and children when swapping two similar
subtrees.

Points P31 Po St1  Sto St1-Sta Cp Co Ci1-P1 C2-P2
1 4 6.3 2 2.1 0.1 4.2 6 0.2 0.3
2 12 18.6 3 3.1 0.1 12.4 18 0.4 0.6
3 24 36.9 4 4.1 0.1 24.6 36 0.6 0.9
4 40 61.2 5 5.1 0.1 40.8 61 0.8 1.2
5 60 91.5 6 6.1 0.1 61.0 91 1.0 1.5
6 84 127.8 7 7.1 0.1 85.2 127 1.2 1.8
7 112 170.1 8 8.1 0.1 113.4 170 1.4 2.1
8 144 218.4 9 9.1 0.1 145.6 218 1.6 2.4
9 180 272.7 10 10.1 0.1 181.8 272 1.8 2.7
10 220 333.0 11 11.1 0.1 222.0 333 2.0 3.0
SSD 0.09 1.1 1.65

4 Experimental Settings

To experimentally investigate the possible effects of SSC in comparison with other
crossover operators, we test them on ten real-valued symbolic regression problems.
These problems are grouped into three categories: polynomial functions; trigonomet-
ric, logarithm and square-root functions; and bivariate functions. Most are taken from
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Table 2 Sampling semantics of parents, subtrees and children when swapping two different

subtrees.
Points Pq Ps St1 Sts St1-Sts Cs Cy C3-Pq Cy-P2
1 4 6.3 2 2 0 6 4.2 2 2.1
2 12 18.6 3 4 1 24 9.3 12 9.3
3 24 36.9 4 6 2 54 16.4 30 20.5
4 40 61.2 5 8 3 96 25.5 56 35.7
5 60 91.5 6 10 4 150 36.6 90 54.9
6 84 1278 7 12 5 216 49.7 132 78.1
7 112 170.1 8 14 6 294 648 182 105.3
8 144 2184 9 16 7 384 81.8 240 136.5
9 180 2727 10 18 8 486  101.0 306 171.7
10 220 333.0 11 20 9 600 122.1 380 201.0
SSD 4.5 143 82.5
Table 3 Symbolic Regression Functions.
Functions Fitcases
Fl=xz3+22+2 20 random points C [-1,1]
Fo=z*+23+22+z 20 random points C [-1,1]
Fs=ab+at4+ad+22 42 20 random points C [-1,1]
Fa=20+2%+2* + 23 +22 +2 20 random points C [-1,1]
F5 = sin(x?)cos(x) — 1 20 random points C [-1,1]
Fs = sin(x) + sin(z + 22) 20 random points C [-1,1]
Fr =log(z + 1) + log(z? + 1) 20 random points C [0,2]
Fg =z 20 random points C [0,4]
Fy = sin(x) + sin(y?) 100 random points C [-1,1]x[-1,1]
Fio = 2sin(x)cos(y) 100 random points C [-1,1]x[-1,1]

Table 4 Run and Evolutionary Parameter Values.

Parameter Value
Selection Tournament
Tournament size 3

Crossover probability 0.9
Mutation probability 0.05

Initial Max depth 6

Max depth 15

Max depth of mutation tree 5

Non-terminals
Terminals

Raw fitness
Hit

Successful run
Trials per treatment

+, -, *, / (protected versions),

sin, cos, exp, log (protected versions)

X, 1 for single variable problems,

and X,Y for bivariable problems

sum of absolute error on all fitness cases

when an individual has an

absolute error < 0.01 on a fitness case

when an individual scores hits on all fitness cases
100 independent runs for each value
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the works of Hoali et al. [20], Keijzer [33], and Johnson [30]. These functions are shown
in Table 3 and the main parameters used for our experiments are given in Table 4. The
parameter settings are similar to our previous work [57]. Although these experiments
purely concern crossover, we have retained mutation at a low rate, because we aim to
study crossover in the context of a normal GP run. Note that the number of gener-
ations and the population size are not specified in Table 4; they will be determined
appropriately for each experiment. Note also that the raw fitness function is the sum
of the absolute error over all fitness cases, and a run is considered as successful when
some individual hits (i.e. absolute error <0.01) every fitness case.

We divided our experiments into three sets. The first set investigates the per-
formance of SSC. SSC was compared with five other crossover operators: Standard
Crossover (SC), Semantics Aware Crossover (SAC), Context Aware Crossover (CAC),
Soft Brood Selection (SBS), and No Same Mate (NSM) selection. The second set
analyses the sensitivity of SSC’s parameters — including lower and upper semantic sen-
sttivities, maximum number of trials (Max_Trial), and number of sample points. The
last set of experiments investigate some characteristics of SSC, including the rate of se-
mantically equivalent crossover events, semantic diversity, locality, and constructivity.
These three sets of experiments are detailed in the following sections.

5 Comparative Results

This section presents our experimental results on the performance of SSC in comparison
with SC, SAC, NSM, CAC, and SBS. When comparing different methods, one of the
fundamental questions is how to compare their performance in a fair way. Traditionally,
GP researchers often set up a predetermined population size and number of generations.
Depending on the methods employed, the standard approach of comparing performance
in terms of fitness at each generation may not be completely fair, due to possible
differences in computational overhead.

An alternative, and often better, way is to run different GP systems (e.g., using
different crossover methods) with the same predefined number of individual fitness
evaluations. This would not, however, be fair in the context of this paper, because
the semantic subtree checking in SSC and SAC may be performed on much smaller
subtrees than the individuals (whole trees), and hence may cost much less. Moreover
because of differences in bloat, the average size of the individuals in different methods
may also differ [11, 22].

Here, we use a measure based on the number of function node evaluations to es-
timate the computational cost of each GP run. This kind of measurement has been
adopted in a number of recent GP studies [23, 60]. By using the number of node eval-
uations, we can readily estimate the additional computational effort of non-standard
crossovers used in the experiments in this paper (i.e SAC, SSC, CAC, SBS).g. In these
experiments, the number of node evaluations is set to 15 * 10%. This value was exper-
imentally determined as allowing our base comparator, SC, to easily find solutions in
the easy problems (F}), with about 50% successful runs, but not allowing it to readily
find solutions to harder problems, with only about 5% success in Fj.

The experimental settings of these experiments were as follows. For all methods,
the GP basic parameters were as in Table 4. The population size for SC, SAC, SSC

3 We assume that the computation costs of all primitive functions are the same, or at least
negligibly different when compared to the cost of individual fitness evaluation
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Table 5 Number of successful runs out of 100 runs

Ms F1 F2 F3 F4 Fb5 F6 F7 F8 F9 F10
SC 48 22 7 4 20 35 35 16 7 18
NSM 48 16 4 4 19 36 40 28 4 17
SAC2 53 25 7 4 17 32 25 13 4 4
SAC3 56 19 6 2 21 23 25 12 3 8
SAC4 53 17 11 1 20 23 29 14 3 8
SAC5H 53 17 11 1 19 27 30 12 3 8
CAC1 34 19 7 7 12 22 25 9 1 15
CAC2 34 20 7 7 13 23 25 9 2 16
CAC4 35 22 7 8 12 22 26 10 3 16
SBS31 43 15 9 6 31 28 31 17 13 33
SBS32 42 26 7 8 36 27 44 30 17 27
SBS34 51 21 10 9 34 33 46 25 26 33
SBS41 41 22 9 5 31 34 38 25 19 33
SBS42 50 22 17 10 41 32 51 24 24 33
SBS44 40 25 16 9 35 43 42 27 33 34
SSC 8 66 28 22 10 48 56 59 21 25 47
SSC12 67 33 14 12 47 47 66 38 37 51
SSC16 55 39 20 11 46 44 67 29 30 59
SSC20 58 27 10 9 52 48 63 26 39 51

and NSM were set to 500 as in [57]. For SAC, the semantic sensitivity was set to
10~ with X=2, 3, 4, and 5.4. For SSC, the lower and upper semantic sensitivity were
set to 107* and 0.4, respectively. The maximum number of attempts to form an SSC
crossover Max_Trial was set to 8, 12, 16, and 20, forming four schemas of SSCP. These
values were determined from the experiments in Section 6, where they were found to
be suitable values for the performances of SSC.

The population sizes we use for CAC and SBS follow previous research, where
they are set much smaller than the population size for SC. Here, we chose 200 as
in [37, 42]. For CAC, we followed the Majeed and Ryan [42], in using CAC only after
80% of the node evaluations of a run. We also extended CAC with a scheme similar to
Tackett’s [56], checking child fitness not only by using all fitness cases, but also through
a subset of fitness cases. Ratios of 1/X (X=1, 2, and 4)% were used in this experiment
(i.e. only 1/X of the fitness cases were used to find the best of breed individual, reducing
the overall cost).

For SBS [56], the original experiments used 4 brood sizes (2, 3, 4, 5). Here we used
the best two (3, 4). To measure the fitness of the individuals in the brood, we used
only a portion of the fitness cases, with a 1/X (X =1, 2, 4) ratio.”

To examine and compare the performance of these methods, we recorded two classic
performance metrics, namely mean best fitness and the percentage of successful runs.
The percentage of successful runs are recorded in Table 5, it should be noted here that
a run is called successful run if it can find an individual that scores hits on all fitness
cases, where a hit means that for that case, absolute error <0.01. In the result tables,
Ms is a shorthand for Methods. In each setting, the best-performing schema is printed

4 SACs with different X are denoted as SACX (with X=2, 3, 4, and 5)
5 Denoted as SSCX, where X is 8, 12, 16, and 20

6 Denoted as CACX with X=1, 2, and 4

7 Denoted as SBSXY, with X=3, 4 and Y=1, 2, 4.
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Table 6 The mean best fitness of 100 runs. A Wilcoxon signed-rank test was conducted; if a
treatment is better than SC with a confidence level of 99%, the result is printed in italic face

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
SC 0.18 0.26 0.39 0.41 0.21 0.22 0.13 0.26 5.54 2.26
NSM 0.16 0.29 0.34 0.40 0.19 0.17 0.11 0.19 5.44 2.16

SAC2 0.16 0.27 0.42 0.50 0.22 0.23 0.15 0.27 5.99 3.19
SAC3 0.13 0.27 0.42 0.48 0.18 0.23 0.15 0.27 5.77 3.13
SAC4 0.15 0.29 0.41 0.46 0.17 0.22 0.15 0.26 5.77 3.03
SAC5H 0.15 0.29 0.40 0.46 0.17 0.21 0.15 0.26 5.77 2.98

CAC1 0.33 0.41 0.51 0.53 0.31 0.42 0.17 0.35 7.83 4.40
CAC2 0.32 0.41 0.52 0.53 0.31 0.42 0.17 0.35 7.38 4.30
CAC4 0.33 0.41 0.53 0.53 0.30 0.42 0.17 0.35 7.80 4.32

SBS31 0.18 0.29 0.30 0.36 0.17 0.30 0.15 0.19 4.78 2.75
SBS32 0.18 0.23 0.28 0.36 0.13 0.28 0.10 0.18 4.47 2.77
SBS34 0.16 0.23 0.51 0.38 0.18 0.21 0.11 0.19 4.17 2.90
SBS41 0.18 0.26 0.27 0.38 0.12 0.20 0.13 0.20 4.40 2.75
SBS42 0.12 0.24 0.29 0.30 0.12 0.18 0.10 0.16 3.95 2.76
SBS44 0.18 0.24 0.33 0.35 0.15 0.16 0.11 0.19 2.85 1.75

SSC8 0.09 0.15 0.19 0.29 0.10 0.09 0.07 0.15 3.91 1.58
SSC12 0.07 0.17 0.18 0.28 0.10 0.12 0.07 0.18 3.54 1.45
SSC16 0.10 0.15 0.23 0.26 0.10 0.10 0.06 0.14 38.11 1.22
SSC20 0.08 0.18 0.28 0.50 0.09 0.10 0.06 0.14 2.64 1.28

in bold face. We can see that only SBS and SSC are definitely better than SC; while
the performances of NSM and SAC are very similarl to SC, CAC is often poorer. The
reason might lie in the high cost of the method CAC uses to find the best crossover
site, with the result that it quickly reaches the maximum function node evaluations,
and the run terminates.

Turning specifically to SSC and SBS, we find that SSC is often better, and more
consistently so, than SBS. While SSC is consistently superior on all tested functions,
SBS seems to perform similarly to SC on some functions, such as Fy, F» and Fg. For
SBS, reducing the number of fitness cases used to choose individuals from the brood
improves the performance. It is not clear, however, to what extent we can reduce the
number of fitness cases to further enhance the performance. In some cases, reduc-
ing only 2 times performs better than 4 times. For SSC, it seems that the values of
Max_Trial from 8 to 20 give consistently good performance. In general, SSC performs
better than SBS, and is the best of all methods on the the tested problems.

Table 6 shows the best fitness found, averaged over all 100 runs of each GP system.
The results are consistent with those in Table 5, in that SAC and NSM are mostly
equal to SC, CAC is often worse than SC, and only SBS and SSC are better than SC.
The table again shows the consistently superior performance of SSC where it is better
than SC on all test functions, while SBS is less convincing on three problems: Fi, Fa,
Fg, and Fig. It can also be seen that although both SSC and SBS are superior to SC,
the margin of improvement is different: SBS is often only slightly better than SC while
SSC is widely better than SC in all cases.

We tested the statistical significance of the results in Table 6 using a Wilcoxon
signed-rank test with a confidence level of 99%. In Table 6, if a run is significantly
better than SC, its result is printed in italic face. It can be seen that while NSM is
only significantly better than SC on one function (Fg), SBS is regularly significantly
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Table 7 The mean best fitness of 100 runs of SSC with different parameter values. SSCUX
shows the effect of upper bound semantic sensitivity, SSCLX of lower bound semantic sensi-
tivity, SSCMTX that of Max_Trial (X) and SSCNPX that of the number of sample points.

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
SSCU01 0.12 0.18 0.24 0.35 0.12 0.14 0.10 0.19 2.65 0.98
SSCU02 0.09 0.17 0.20 0.30 0.09 0.10 0.08 0.15 1.95 0.83
SSCU04 0.08 0.14 0.21 0.27 0.11 0.07 0.07 0.11 1.00 0.70
SSCU06 0.06 0.16 0.22 0.28 0.11 0.07 0.08 0.12 2.01 0.68
SSCU08 0.06 0.19 0.21 0.29 0.14 0.12 0.08 0.13 2.43 0.96
SSCU1 0.09 0.19 0.26 0.31 0.16 0.15 0.10 0.15 2.53 1.26
SSCL1 0.10 0.16 0.24 0.31 0.15 0.11 0.10 0.15 1.75 1.06
SSCL2 0.06 0.14 0.22 0.27 0.10 0.07 0.07 0.13 1.32 0.66
SSCL3 0.09 0.15 0.22 0.26 0.11 0.08 0.07 0.12 0.99 0.73
SSCL4 0.08 0.14 0.21 0.27 0.12 0.07 0.07 0.11 1.00 0.70
SSCL5 0.09 0.15 0.22 0.29 0.13 0.07 0.07 0.11 1.01 0.73

SSCMT4 0.10 0.20 0.23 0.32 0.12 0.11 0.10 0.15 1.86 0.85
SSCMTS 0.08 0.15 0.21 0.24 0.11 0.09 0.07 0.13 1.12 0.71
SSCMT12 0.08 0.14 0.21 0.27 0.12 0.07 0.07 0.11 1.00 0.70
SSCMT16 0.09 0.16 0.19 0.26 0.10 0.09 0.07 0.11 0.98 0.78
SSCMT20 0.08 0.15 0.19 0.22 0.09 0.08 0.07 0.10 1.20 0.66

SSCNP05 0.07 0.16 0.20 0.25 0.10 0.08 0.11 0.16 1.28 0.70
SSCNP1 0.08 0.14 0.21 0.27 0.12 0.07 0.07 0.11 1.00 0.70
SSCNP2 0.07 0.14 0.21 0.26 0.11 0.07 0.09 0.13 1.11 0.79

better than SC, except on some specific functions, Fi, Fs, Fg, F7, and Fig. SSC is
always superior to SC in all cases and on all tested problems.

6 SSC Parameter Sensitivity Analysis

The experiments in this section investigate the effect of changing some parameters of
SSC. The GP parameters were setup as in Table 4. The population size was set at 500.
Four parameters of SSC were investigated, namely, lower bound semantic sensitivity
(LBSS), upper bound semantic sensitivity (UBSS), Max_Trial (MT), and the number
of sample points (NP) used for semantic checking. First, we examined the effect of the
most important parameter, UBSS. We fixed the other parameters as follows: LBSS:
10~%, MT: 12, and NP: 20 points for single variable functions and 100 for bivariate
functions. The UBSS was set at 6 values: 0.1, 0.2, 0.4, 0.6, 0.8, and 1.8

The second experiment analysed the effect of LBSS. In this experiment, the other
parameters were set as follows: UBSS= 0.4, MT= 12, and NP= number of fitness cases.
Five values for LBSS were investigated, i.e. 107~ where (X=1, 2, 3, 4, and 5)A9

The third experiment tested sensitivity to the number of trials allowed in selecting
similar subtrees in SSC (MT). For this experiment, LBSS= 10~4, UBSS=0.4, and NP=
number of fitness cases. MT was set at 4, 8, 12, 16, 20.10

The final experiment observed the effect of changing the number of sample points
in semantic checking (NP). The experimental settings in this experiment were: LBSS=

8 Denoted as SSCUX where X is 0.1, 0.2, 0.4, 0.6, 0.8, or 1
9 Denoted as SSCLX with X=1, 2, 3, 4, and 5.
10 Denoted as SSCMTX, with X=4, 8, 12, 16, and 20.
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Table 8 The percentage of SSC that successfully exchange two semantically similar subtrees

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
SSCU01 42.1 40.9 45.6 42.2 39.6 49.3 25.2 27.9 39.8 46.4
SSCU02 57.6 62.4 62.8 61.9 68.3 73.2 52.7 44.1 56.3 64.2
SSCuo04 77.2 81.1 79.4 78.4 81.2 85.4 81.2 67.3 74.8 80.5
SSCU06 94.5 95.1 95.2 95.2 95.5 96.1 97.6 88.9 93.4 95.2
SSCuo7 97.2 98.4 98.3 98.3 98.5 97.7 99.3 95.4 96.4 98.5
SSCU1 99.6 99.8 99.8 99.7 99.9 99.7 99.9 98.9 99.3 99.6

SSCNP4 42.4 41.6 42.1 41.2 44.0 48.5 47.6 29.4 38.2 44.6
SSCNP8 64.9 67.5 66.3 66.5 68.3 74.5 71.2 52.4 62.5 68.2
SSCNP12 77.2 81.1 79.4 78.4 81.2 85.4 81.2 67.3 74.8 80.5
SSCNP16 85.5 86.9 86.4 86.2 88.9 90.5 89.1 74.3 82.4 86.8
SSCNP20 90.4 91.5 90.8 90.7 93.4 93.9 92.8 83.5 93.8 96.4

10_47 UBSS=0.4, and MT= 12. NP was set to a ratio of 1/2, 1 or 2 of the number of
fitness cases.'!

To estimate the effect of changing these parameters, we recorded the best fitness of
a run. These values were averaged over 100 runs, the results being shown in Table 7. We
can see that the value of UBSS has a remarkable effect on the performance of SSC. It
seems that values from 0.2 to 0.8 are suitable for the problems under test, with values
from 0.4 to 0.6 being the best. If UBSS is too small (0.1) or too big (1) the performance
of SSC is poorer. This can be explained by recording the percentage of SSC that
successfully selects two semantically similar subtrees, as shown in Table 8. 12 We can
see that if UBSS is too small, only a few SSCs can succeed in exchanging semantically
similar subtrees (from 30% to 40% when UBSS is 0.1), so that SSC underperforms.!?
By contrast, if UBSS is too large, it is almost trivial to find semantically similar subtrees
(almost 100% for UBSS=1) because most subtrees are sufficiently semantically similar,
so that SSC behaves like SC.

While changing UBSS has a remarkable effect on SSC, LBSS has almost no effect
on performance provided it is sufficiently small. Table 7 shows that while LBSS was set
to small values (from 1072 to 1075)7 the performance of SSC was almost unchanged.
In order to understand this, we recorded the percentage of subtrees with SSD smaller
than 10™2 that are actually semantically identical. In fact, 99% of such semantically
equivalent subtrees actually have the same semantics. Thus 99% of these subtrees
would have satisfied the equivalence condition regardless of the values of LBSS. Only
in the case when LBSS gets too big, e.g. 0.1 , does SSC have poorer performance.
In this case, SSC prevents swapping of subtrees with similar but unequal semantics.
We recorded how many subtree checks found a nonzero SSD smaller than 0.1; this
happened approximately 30% of the time, misleading SSC. In general, we can see that
LBSS is only required to be sufficiently small, and perhaps any value under 10~2 would
be suitable.

The third parameter investigated is the number of unsuccessful trials permitted
in selecting semantically similar subtrees (MT). Values of MT from 8 to 20 keep the

11 Denoted as SSCNPX with X=0.5, 1 or 2.
12 The values for SSCLX and SSCPX are not shown in this table as they have little effect.

13 We have tried increasing the Max_Trial to compensate for decreasing the upper bound.
This was unsuccessful, as if UBSS is too small, the exchange of semantics between the two
parents is also too small, so that SSC is more readily trapped in local optima.
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performance of SSC roughly consistent. When MT is too small, e.g. MT = 4, the per-
formance of SSC is worse. This can also be understood by observing the percentage of
SSC events that successfully exchanged two semantically similar subtrees. For MT=4,
only 30% to 40% of SSC events successfully exchanged subtrees, while this figure rises
to about 90% for MT=20. Thus further increasing MT may not help, because nearly
all crossover events have already successfully exchanged semantically similar subtrees.

The last parameter under investigation is the number of sample points (NP) on
which the semantics was measured. Usually, this number is set equal to the number of
fitness cases. The results in Table 7 show that there was little effect when this value
was doubled, or when it was halved.

Overall, these results highlight some important issues in determining the values for
SSC parameters. It seems that UBSS should lie in the range 0.2 to 0.8, LBSS should
be less than 1072, MT in the range 8 to 20, and NP similar to the number of fitness
cases so long as this number is not too big.

7 Some Characteristics of Semantic Similarity based Crossover

This section analyses some characteristics of SSC, namely the rate at which seman-
tically equivalent crossover events occur, the semantic diversity resulting from such
crossovers, the locality of the operator, and its constructive effect. The results were
compared with SC;, SAC and NSM. The GP parameter settings in this section are
described in Table 4, with the population size being set to 500 and the number of
generation to 50. Five configurations of SAC were used, with semantic sensitivities set
to 10~X with X=1, 2, 3, 4, and 5.1 For SSC, LBSS was set to 10~* and UBSS to 0.4.
NP was set equal to the number of fitness cases. Five configurations of SSC were used,
with MT varying through 4, 8, 12, 16, and 20.

7.1 Rates of Semantically Equivalent Crossover Events

The first set of results record the extent of semantically equivalent exchanges arising
from the three crossover operators. Here we say that a crossover operation is an equiv-
alent crossover if it is performed by exchanging two semantically equivalent subtrees.
Since the new crossover operators (SAC and SSC) work by checking the semantics
of subtrees and trying to prevent the exchange of semantically equivalent subtrees, it
would be informative to see how frequently this actually happens. This information
shows us how frequently SC fails to change the semantics of individuals (i.e. makes
semantically unproductive crossovers), and the extent to which SAC, and especially
SSC, can overcome this problem. The results are shown in Table 9.

It can be seen from Table 9 that the overall average for equivalent crossovers in
SC was around 15%; NSM behaved similarly, only reducing the rate by about 1%.
By contrast, these values for both SAC and SSC were substantially improved, ranging
from 2% to 3% for SAC, and from 2% to 5% for SSC (except when MT is very small,
e,g MT = 4). It is clear that SAC and SSC are more semantically exploratory than
SC and NSM on these problems. It should also be noted here that 99% of pairs of se-
mantically equivalent subtrees consist of subtrees with identical semantics. As a result,
approximately 99% of such crossovers leave the fitnesses of the chidren unchanged.

4 Denoted as SACX, for X=1, 2, 3, 4, or 5.
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Table 9 The percentage of Semantically Equivalent Crossover for four crossover operators:
SC, NSM, SAC and SSC.

Ms F1 F2 F3 F4 Fb5 F6 F7 F8 F9 F10
SC 15.5 14.4 14.7 14.1 13.2 15.7 14.3 14.4 12.4 14.1
NSM 14.9 14.1 14.5 13.8 12.5 14.8 14.2 14.1 11.5 12.7

SAC1 3.54 3.12 3.18 3.12 3.28 3.84 3.32 3.34 3.49 3.67
SAC2 2.18 1.88 1.93 1.86 1.53 2.24 1.80 1.89 1.49 1.99
SAC3 2.16 1.85 1.90 1.65 1.52 2.08 1.77 1.88 1.47 2.01
SAC4 2.15 1.83 1.88 1.84 1.52 2.04 1.75 1.86 1.46 1.97
SAC5H 2.10 1.82 1.87 1.84 1.51 2.01 1.72 1.81 1.46 2.03

SSC4 8.87 8.33 8.35 8.06 6.83 7.81 7.27 9.80 7.63 6.56
SSC8 5.92 4.76 4.97 4.76 3.89 3.88 4.00 6.94 4.76 3.75
SSC12 4.11 2.76 3.10 3.04 2.25 2.38 2.70 5.08 3.24 2.84
SSC16 2.80 1.99 2.27 2.00 1.39 1.61 1.65 3.94 1.99 2.04
SSC20 2.29 1.49 1.57 1.40 0.96 1.19 1.24 2.82 1.49 1.76

Table 10 The percentage of generating new semantics for SC, NSM, SAC and SSC (i.e.
differing in terms of the semantic equivalence measure).

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
SC 62.9 67.9 67.6 68.1 61.5 67.0 66.4 61.0 74.8 74.9
NSM 66.9 70.4 70.1 72.2 63.2 70.9 71.1 66.6 78.3 77.6

SAC1 70.2 73.5 75.1 76.1 65.2 74.1 73.7 70.2 82.1 84.6
SAC2 71.3 74.5 77.4 77.6 66.5 75.9 76.7 717 83.8 86.7
SAC3 72.1 74.7 77.6 78.3 67.7 76.9 75.4 71.7 84.1 86.3
SAC4 71.6 75.1 77.4 77.5 66.1 76.7 75.2 71.5 84.1 86.5
SAC5 71.4 74.9 77.1 77.5 65.9 76.8 75.4 71.8 84.3 85.8

SSC4 72.1 76.3 77.4 79.1 69.2 76.3 75.6 75.5 78.7 82.8
SSC8 75.9 80.7 80.8 82.9 73.6 82.7 81.3 74.8 80.8 89.3
SSC12 78.9 84.1 84.5 84.3 78.3 83.8 82.8 76.9 85.8 90.2
SSC16 78.8 85.9 85.6 87.2 78.1 86.9 85.2 78.6 89.8 91.6
SSC20 77.9 85.3 86.7 87.4 79.1 84.5 83.9 78.7 88.9 91.0

The improved semantic exploratory capacity of SAC and SSC can potentially lead
to more semantic diversity, in that they could generate more new semantics than SC
and NSM. Here, crossover A is considered to generate more semantic diversity than
crossover B if A generates semantically new children, differing from the semantics of
the parents, at a higher rate than B. In Table 10 we measured this rate for each
crossover configuration. In table 10 we see that while NSM was only slightly better
than SC, SAC was better than both, while SSC was better than all other crossover
operators in this respect. Interestingly, although SAC was often better than SSC in
preventing equivalent crossovers, by keeping semantic changes small, SSC was generally
better than SAC at producing semantically diverse crossovers. We note that SAC and
SSC cannot guarantee the generation of semantically new offspring, despite trying to
swap semantically different subtrees. We suspect this arises from the existence of fixed-
semantic subtrees similar to those whose existence McPhee demonstrated in Boolean
domains [43].
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Table 11 The average change of fitness after crossover for SC, NSM, SAC, and SSC (averaged
over the whole population and 100 runs.

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
SC 9.74 9.21 10.5 10.6 7.30 7.44 8.13 9.36 17.8 20.1
NSM 7.64 8.30 9.21 10.1 6.00 6.34 7.40 7.84 14.7 18.5

SAC1 8.42 8.71 9.54 10.9 7.01 6.54 7.05 7.96 15.9 17.7
SAC2 8.38 8.69 9.42 10.8 6.93 6.48 6.96 7.85 15.8 17.5
SAC3 8.03 8.63 9.19 10.3 6.82 6.56 6.92 7.66 15.5 17.3
SAC4 7.88 8.64 9.03 10.4 7.14 6.65 7.30 7.60 15.5 17.1
SAC5H 7.88 8.70 9.43 10.4 7.18 6.78 7.25 7.68 15.4 17.4

SSC4 6.83 6.41 6.72 7.11 5.06 4.60 5.38 6.50 13.1 13.5
SSC8 5.12 5.01 5.69 5.45 3.58 3.47 3.87 5.84 12.4 9.50
SSC12 4.07 4.00 4.90 4.97 3.09 2.70 3.32 5.26 11.3 8.76
SSC16 4.34 3.44 4.26 4.10 2.84 2.58 2.82 4.45 9.25 7.83
SSC20 4.19 3.22 3.55 3.90 2.56 2.26 2.97 3.64 7.32 9.15

7.2 Operator Locality

The next set of experments analyse the locality of SSC compared with SAC, SC and
NSM. It is generally believed that using a representation with high locality (small
change in genotype correspond to small change in phenotype) is important for efficient
evolutionary search [15-17, 21, 52]. It is also generally agreed that designing a search
operator for GP ensuring which achieves this is very difficult. Thus most current GP
representations and operators are low-locality — a small (syntactic) change from parent
to child can cause a large semantic change. Our new crossover operator (SSC) differs
from others in directly controlling the scale of change in terms of semantics rather than
syntax.

To compare locality, we measured the fitness change between parents and children
in crossover. For example, suppose two individuals having fitness of 10 and 15 are
selected for crossover, and their children have fitness of 17 and 9. The change of fitness
is Abs(17 — 10) + Abs(9 — 15) = 13 (for this purpose, we compare the fitness of a child
with that of the parent in which it is rooted). This value was averaged over the whole
population and over 100 runs. The average fitness change of individuals before and
after crossover is shown in Table 11.

Table 11 shows that the step size of the fitness change for SSC was much smaller
than for either SAC, SC or NSM. This leads to smoother fitness change over time for
SSC than for the others. This is important, as it is not easy to ensure the locality
property GP. The table also reveals that the fitness change in SAC and NSM were
only slightly smoother than in SC.

7.3 Constructive Effects

The previous results show that SAC and SSC are more semantically productive than
SC and NSM, and that SSC has higher locality than the others. Does this help SSC
(and maybe SAC) to generate better children than their parents (more constructive
crossover)? We measured the constructive effect of SAC, SSC, NSM and SC, using
Majeed’s [42] method. However we adapt the method slightly, only comparing the
fitness of a child with that of the parent in which it is rooted.
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Table 12 The percentage of semi-constructive crossovers of SC, NSM, SAC, and SSC (i.e. at
least one child is better than the corresponding parent.

Ms F1 F2 F3 F4 Fb5 F6 F7 F8 F9 F10
SC 19.2 21.2 21.0 21.1 18.7 21.1 21.4 18.6 28.2 28.9
NSM 22.2 23.3 22.5 23.8 19.5 23.8 24.1 21.5 31.6 30.6

SAC1 24.7 26.3 26.5 26.7 22.3 26.1 27.2 24.2 34.1 34.2
SAC2 25.4 26.3 27.8 27.8 23.5 27.5 28.8 25.6 36.0 36.9
SAC3 25.9 26.5 27.8 28.3 23.8 28.2 27.6 25.5 36.2 36.7
SAC4 25.7 27.0 27.7 27.8 23.2 28.2 27.4 25.5 36.4 37.4
SAC5H 25.7 26.9 27.6 27.9 22.9 28.6 27.5 25.6 36.2 37.1

SSC4 26.9 28.2 29.0 29.3 25.7 28.9 28.7 25.9 33.4 36.8
SSC8 30.0 32.1 32.0 32.7 29.9 33.9 33.2 29.0 36.8 41.2
SSC12 32.7 35.5 34.6 34.3 32.9 35.5 35.2 31.9 38.5 43.1
SSC16 33.3 37.1 35.9 37.1 33.6 37.2 36.3 34.1 41.5 43.3
SSC20 32.7 36.7 37.0 36.9 34.7 36.0 36.0 34.0 41.4 42.8

Table 13 The percentage of full-constructive crossovers of SC, NSM, SAC, and SSC (i.e.
where both children are better than the corresponding parents.

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
SC 2.06 2.27 2.23 2.24 1.96 2.32 2.36 1.88 3.46 3.74
NSM 2.26 2.46 2.37 2.66 1.97 2.56 2.59 2.15 3.90 3.78

SAC1 2.82 3.04 3.05 3.02 2.46 3.11 3.25 2.65 4.51 4.67
SAC2 2.90 3.04 3.29 3.25 2.67 3.24 3.49 2.89 4.95 4.87
SAC3 3.05 3.10 3.29 3.36 2.65 3.35 3.32 2.81 4.94 4.91
SAC4 3.03 3.17 3.25 3.28 2.57 3.39 3.29 2.82 4.96 4.94
SAC5 3.01 3.18 3.20 3.31 2.52 3.43 3.28 2.82 4.92 4.92

SSC4 3.60 3.80 3.78 3.92 3.20 3.94 3.63 3.07 4.68 5.18
SSC8 4.25 4.58 4.54 4.65 3.96 5.11 4.53 3.89 5.17 6.04
SSC12 4.70 5.21 5.07 5.02 4.51 5.38 4.88 4.43 5.45 6.35
SSC16 4.76 5.55 5.26 5.49 4.65 5.73 5.12 4.85 6.00 6.34
SSC20 4.73 5.34 5.39 5.47 4.86 5.49 5.01 4.73 5.86 6.31

We can distinguish semi-constructive crossovers from full-constructive crossovers.
Let us assume that two parents P; and P» are selected for crossover, generating two
children C7, Cy (Cq rooted in P and Cy rooted in Py). Then, a crossover is called
semi-constructive if it generates at least one child that is better than its parents. In
other words, the condition (Cy is better than P; OR Cy is better than Ps) is used to
count semi-constructive crossovers. When the condition is more strict — both children
are better than their parents (Cj is better than Py AND Cs is better than Pa) — the
crossover is called full-constructive. A crossover that is not semi-constructive nor full-
constructive is called destructive.

The semi-constructive and full-constructive crossovers’ results for SSC, SAC, NSM
and SC are shown in Table 12 and Table 13, respectively. It can be seen from Ta-
ble 12 that while NSM is only slightly more semi-constructive than SC, both SSC
and SAC were more semi-constructive than SC and NSM. This is a consequence of
the greater semantic diversity of SAC and SSC relative to SC and NSM. Usually, the
semi-constructive crossover rate of SAC is from 5% to 7% higher than SC, and of
SSC from 12% to 18% higher. These increases are particularly important because the
semi-constructive rate for SC was fairly small (about 20%).
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Table 13 shows how difficult it is for GP standard crossover to generate improved
solutions. The percentage of fully constructive crossovers for SC and NSM were roughly
the same, at only 2% for one-variable functions and 3% for bivariate functions. By
adding semantics to control the crossover operator, far more full-constructive behaviour
is obtained. SAC often scored 1.5 times higher than SC and NSM in frequency of
full-constructive events, and SSC around 2 to 3 times higher. SSC generated more
full-constructive events than SAC (up to 1.5 times) on both univariate and bivariate
functions.

8 Conclusions

In this paper, we have proposed a new method for measuring semantics of real-valued
symbolic regression problems, which we called Sampling Semantics (SS). Using it, we
can define the semantic distance between two subtrees; we then proposed two semantic
relations (Semantic Equivalence and Semantic Similarity) for determining the semantic
acceptability of exchanging two subtrees. These semantic relations are used to guide
crossover, resulting in two new semantically based crossover operators for GP: Seman-
tics Aware Crossover (SAC) and Semantic Similarity-based Crossover (SSC). The new
operators were tested on a class of real-valued symbolic regression problems and com-
pared with some similar schemas including No Same Mate (NSM), Soft Brood Selection
(SBS) and Context Aware Crossover (CAC), as well as standard GP crossover (SC).
On a wide range of problems, only SSC and SBS were consistently better than SC, and
of them SSC is the most effective crossover operator.

We also investigated the effect of various parameters on SSC to determine ranges
of suitable values. Some characteristics of SSC were analysed, showing that both SAC
and SSC improve the resulting semantic diversity. We showed that SSC achieves higher
locality than either SAC, NSM or SC. We argue that this is the main reason for its
better constructive effect compared to SAC, NSM and SC. This results in a substantial,
and statistically significant, improvement in performance from SSC, while SAC and
NSM generate almost equivalent performance to SC.

8.1 Assumptions and Limitations

Although this paper has shown that many benefits are to be gained from incorporating
semantics into the design of crossover operators for GP, there are some limitations.
First, the paper focuses on the domain of real-valued problems, leaving other domains
an open question. 15 Second, the semantic sensitivities were experimentally determined
and might not be the best choices either for these problems, and/or for others. Adaptive
mechanisms to determine these values are currently under investigation.

We hypothesised that fixed semantics might occur in real-valued trees as in Boolean
trees, but further studies need to be conducted to understand whether fixed semantics
really occurs, and if so, what form it takes in real-valued problem domains.

15 In fact one simple way to use our method is to transform boolean function learning prob-
lems to real-valued ones as in [54].
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9 Future work

In the near future, we plan to extend this work in a number of ways. First, we will
apply SSC to some more difficult symbolic regression problems (problems that have
more complex-structured solutions). For these problems, we predict that making small
changes in semantics will be both more difficult, but also more important. Second,
SSC could be used to enhance some previously proposed crossover operators, which
are based purely on the structure of trees — such as crossover with bias on the depth
of nodes [24], one point crossover and uniform crossover [39, 48]. Another potential
research direction is to apply SSC to other problem domains, such as the Boolean
problems that have been previously investigated in [43]. In this case, it may be even
more difficult to generate children that differ semantically from their parents, so that
the benefits may be greater. Last but not least, we plan to investigate suitable ranges for
the lower and upper bound semantic sensitivity values for various classes of problems.
In this paper, these values were manually and experimentally specified; however, it may
be possible to allow these values to self-adapt during the evolutionary process [13].
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