
Genetic Programming and Evolvable Machines manuscript No.

(will be inserted by the editor)

Semantically-based Crossover in Genetic Programming:

Application to Real-valued Symbolic Regression

Nguyen Quang Uy · Nguyen Xuan Hoai ·

Michael O’Neill · R.I. McKay ·

Edgar Galván-López.

Received: date / Accepted: date

Abstract We investigate the effects of semantically-based crossover operators in Ge-

netic Programming, applied to real-valued symbolic regression problems. We propose

two new relations derived from the semantic distance between subtrees, known as Se-

mantic Equivalence and Semantic Similarity. These relations are used to guide variants

of the crossover operator, resulting in two new crossover operators – Semantics Aware

Crossover (SAC) and Semantic Similarity-based Crossover (SSC). SAC, was introduced

and previously studied, is added here for the purpose of comparison and analysis. SSC

extends SAC by more closely controlling the semantic distance between subtrees to

which crossover may be applied. The new operators were tested on some real-valued

symbolic regression problems and compared with Standard Crossover (SC), Context

Aware Crossover (CAC), Soft Brood Selection (SBS), and No Same Mate (NSM) se-

lection. The experimental results show on the problems examined that, with compu-

tational effort measured by the number of function node evaluations, only SSC and

SBS were significantly better than SC, and SSC was often better than SBS. Further

experiments were also conducted to analyse the perfomance sensitivity to the parame-

ter settings for SSC. This analysis leads to a conclusion that SSC is more constructive

and has higher locality than SAC, NSM and SC; we believe these are the main reasons

for the improved performance of SSC.

Keywords Genetic Programming · Semantics · Crossover · Symbolic Regression ·

Locality.

Nguyen Quang Uy and Michael O’Neill and Edgar Galván-López
Natural Computing Research & Applications Group, University College Dublin, Ireland
Tel.: ++353-86-236-6125
Fax: ++353-1-7165396
E-mail: quanguyhn@gmail.com, m.oneill@ucd.ie, edgar.galvan@ucd.ie

Nguyen Xuan Hoai and R.I. (Bob) McKay
School of Computer Science and Engineering, Seoul National University, Korea
E-mail: nxhoai@gmail.com, rimsnucse@gmail.com

2

1 Introduction

Genetic Programming (GP) [36, 40, 49]) researchers have only recently paid much

attention to semantic information, which has resulted in a dramatic increase in the

number of realated publications (e.g. [4, 9, 26, 28, 29, 31, 32, 43, 57]). Previously,

work in GP representation had focused mainly on syntactic aspects. From a program-

mer’s perspective, however, maintaining syntactic correctness is only part of program

construction: programs must be not only syntactically correct, but also semantically

correct. Thus incorporating semantic awareness in the GP process could improve per-

formance, extending the applicability of GP to problems that are difficult with purely

syntactic approaches. So far, semantics has been incorporated into different phases of

GP including fitness measurement [26, 29], operators execution [4, 57], valid check-

ing [33, 58] and so forth. In this work, we investigate one method to incorporate se-

mantic information into GP crossover operators for real-valued symbolic regression

problems.

Previous Evolutionary Computation research has shown that characteristics of evo-

lutionary operators such as their constructiveness, locality (small changes in genotype

resulting in small changes in phenotype), and effect on population diversity strongly

affect the performance of the resulting algorithms [7, 42, 51, 53]. However designing GP

operators with these desirable characteristics can be very difficult. We aim to incor-

porate semantics into the design of new crossover operators so as to maintain greater

semantic diversity, and provide greater constructiveness as well as higher locality than

standard crossover (SC). We investigate the effects of these semantically-based opera-

tors on the performance of GP.

This paper addresses two main objectives. The first and narrower is to propose

a new semantically-based schema for implementing crossover in GP that extends Se-

mantics Aware Crossover (SAC) in our previous work [57]. The second and broader

objective is to encourage GP researchers to pay greater attention to the use of seman-

tics to improve the efficiency of GP search. It extends [57] in a number of ways. First,

we change the way the semantics is used to constrain the crossover, resulting in a new

crossover that we call Semantic Similarity-based Crossover (SSC). SSC extends SAC

by not only encouraging exchange of semantically different material between parents,

but also limiting this to small and controllable changes. SSC and SAC are compared

with a broader class of related crossover operators in the literature and the results are

positive.

Experiments to investigate the impact of crucial parameters on SSC’s performance

are also presented, providing the basis on which to choose appropriate values for these

parameters. Subsequently, we conduct a more comprehensive analysis to investigate

the possible reasons behind the effectiveness of SSC, and in particular, why SSC works

so much better than SC, SAC and NSM. Finally, we extend the previous work by

comparison on a much broader range of target functions. All of these extensions will

be presented in detail in the following sections.

The remainder of the paper is organised as follows. In the next section we review

the literature on GP with semantic information and on GP crossover operators. Section

3 contains the detailed descriptions of our new crossovers. The experimental settings

are described in Section 4. A comparison of the effectiveness of SSC and other related

crossover operators are presented in Section 5. An analysis of parameter sensitivity for

SSC and an investigation of some of the characteristics of SSC follow in the next two

3

sections. The conclusions are presented in Section 8, leading to suggestions for future

research in Section 9.

2 Background

In this section, we briefly review previous work on semantics in GP and on variants of

GP crossover operators.

2.1 Semantics in Genetic Programming

Semantics is a broad concept that has been studied in a number of fields including

Natural Language [1], Psychology [10] and Computer Science [46] among others. While

the precise meaning varies from field to field, semantics is generally contrasted with

syntax: the syntax refers to the surface form of an expression, while the semantics

refers to its deeper meaning in some external World. In computer science, this external

World is generally provided by the computational model.

In Computer Science, semantics can be informally defined as the meaning of syn-

tactically correct programs or functions. Two programs that are syntactically the same

must have the same semantics, but the converse may not be true.

As a simple example, consider two small programs shown in Equations 1 and 2.

Syntactically, the first statement of each is identical, but the second statements differ.

Semantically, however, they are identical: both programs compute the same result.

x = 1; y = x + x; (1)

x = 1; y = 2 ∗ x; (2)

In GP, semantics has generally been used to provide additional guidance to the GP

search. The necessary additional information is either added to or extracted from the

GP individual’s representation. Thus the available possibilities depend on the problem

domain (Boolean or real-value,...), the GP individual representation (Grammar-, Tree-

or Graph-based), and the search algorithm characteristics (fitness measure, genetic

operators,. . .).

To date, there have been three main approaches to representing and extracting

semantics and using it to guide the evolutionary process:

1. grammar-based [8, 9, 12, 50, 58, 59]

2. formal methods [26, 28, 29, 31–33]

3. GP s-tree representation [4–6, 37, 38, 43, 57]

The most popular form of the first uses attribute grammars. Attribute grammars

are extensions of context-free grammars, in which a finite set of attributes provide

context sensitivity [34]. GP individuals expressed in the form of attribute grammar trees

can incorporate semantic information, which can be used to eliminate bad individuals

(i.e., less fit individuals) from the population [12] or to prevent generating semantically

invalid individuals as in [8, 9, 50, 58, 59]. The attributes used to present semantics

are generally problem-dependent, and it is not always obvious how to determine the

attributes for a given problem.

4

Recently, Johnson has advocated formal methods as a means to incorporate se-

mantic information into the GP evolutionary process [26, 28, 29]. Formal methods

are a class of mathematically-based techniques for the specification, development and

verification of software and hardware systems [45]. They support the extraction and

approximation of mathematical statements useful for system design and verification. In

Johnson’s work, semantic information extracted through formal methods, such as ab-

stract interpretation or model checking, is used to quantify the fitness of individuals on

some problems for which traditional sample-point-based fitness measure are unavailable

or misleading. In [26, 28], Johnson used interval analysis (a form of abstract interpre-

tation) to measure the fitness of individuals in solving a rectangle replacement problem

and in robot control. By contrast, Keijzer [33] used interval analysis to check whether

an individual is defined over the whole range of input values – if an individual is unde-

fined anywhere, that individual can be assigned minimal fitness or simply deleted from

the population. This allowed Keijzer to avoid discontinuities arising from protected

operators, improving the evolvability of the system. Johnson [29] used model checking

to measure individual fitness in evolving vending machine controllers. A controller is

specified by a number of computation tree logic formulas [3]. Fitness of an individual

is the number of formulas it satisfies. Subsequently, Katz and Peled [31, 32] also used

model checking to define fitness in a GP system for the mutual exclusion problem. The

advantage of formal methods lies in their strict mathematical background, potentially

helping GP to evolve computer programs. However they are also high in complexity and

difficult to implement, possibly explaining the limited research despite the advocacy of

Johnson [27]. Their main application to date has lain in evolving control strategies.

Methods for extracting semantics from expression trees depend strongly on the

problem domain. The finite inputs of Boolean domains mean that semantics can be

accurately estimated in a variety of ways. Beadle and Johnson [4] investigated the ef-

fects of directly using semantic information to guide GP crossover on Boolean problem

domains. They checked semantic equivalence between offspring and parents by trans-

forming them to Reduced Ordered Binary Decision Diagrams (ROBDDs) [14]. Two

trees are semantically equivalent if and only if they reduce to the same ROBDD. This

is used to determine which participating individuals are copied to the next generation.

If the offspring are semantically equivalent to their parents, the children are discarded

and the crossover is restarted. This process is repeated until semantically new chil-

dren are found. The authors argue that this results in increased semantic diversity

in the evolving population, and a consequent improvement in the GP performance.

This method of semantic equivalence checking is also applied to drive mutation [6] and

guide the initialisation phase of GP [5], where the authors show that it benefits for GP

in both phases. By contrast, McPhee et al. [43] extract semantic information from a

Boolean expression tree by enumerating all possible inputs. They consider the seman-

tics of two components in each tree: semantics of subtrees and semantics of context (the

remainder of an individual after removing a subtree). They experimentally measured

the variation of these semantic components throughout the GP evolutionary process.

They paid special attention to fixed-semantic subtrees: subtrees where the semantics

of the tree does not change when this subtree is replaced by another subtree. They

showed that there may be very many such fixed semantic subtrees when the tree size

increases during evolution; thus it becomes very difficult to change the semantics of

trees with crossover and mutation once the trees have become large.

To the best of our knowledge, there has been no previous research on semantic

guidance in real-valued problems before our own previous study [57]. There, we pro-

5

posed a new crossover operator, semantics aware crossover (SAC), based on checking

the semantic equivalence of subtrees. SAC was tested on a family of real-valued sym-

bolic regression problems, and was empirically shown to improve GP performance. SAC

differs from Beadle and Johnson’s approach [4] in two ways. First, the test domain is

real-valued rather than Boolean. For real domains, it is not generally feasible to check

semantic equivalence by reduction to a canonical form like a ROBDD. Second, the

crossover operator is guided not by the semantics of the whole program tree, but by

that of subtrees. This is inspired by recent work presented in [43] for calculating subtree

semantics. However, for real domains, measuring semantics by enumerating all possible

inputs as in [43] is also infeasible, so that the semantics must be approximated.

Recently, Krawiec and Lichocki proposed a way to measure the semantics of an

individual based on fitness cases [37]. In this work, the semantics of an individual

is defined as a vector in which each element is the output of the individual at the

corresponding input fitness case. This semantics is used to guide crossover in a method

similar to SBS, known as Approximating Geometric Crossover (AGC). In AGC, a

number of children are generated at each crossover, the children most similar to their

parents – in terms of semantics – being added to the next generation. The experiment

is conducted on both real-valued and boolean regression problems. The results show

that AGC is no better than SC in real-value problems, and only slightly superior to

SC in boolean problems. The same kind of semantics is then used to build functional

modulation for GP [38], for which the experimental results show that it may be useful

in characterising the compositionality and difficulty of a problem, potentially leading

to performance improvements for GP.

2.2 Alternative Crossovers in Genetic Programming

It is well-known that crossover is the primary operator in GP [35]. In the standard

crossover (SC) two parents are selected, and then one subtree is randomly selected in

each parent. A procedure is called to check if these two subtrees are legal for crossover

(syntactic closure properties, depth of resulting children,. . .). If so, the crossover is

executed by simply swapping the two chosen subtrees, and the resulting offspring are

added to the next generation. Figure 1 shows how SC works.

Much research has concentrated on the efficiency of crossover, resulting in new and

improved operators which can be classified into three categories. These are:

1. crossovers based on syntax (structure)

2. crossovers based on context

3. crossovers based on semantics

Most of the early modifications to SC were based on syntax [24, 35, 39, 47, 48]. Koza [35]

proposed a crossover that is 90% biased to function nodes and 10% bias to terminal

nodes as crossover points. Although this method encourages the exchange of more

genetic material (bigger subtrees) between the two participating individuals, it risks

exacerbating bloat and thus making it more difficult to refine solutions in later gen-

erations [4]. O’Reilly and Oppacher [47] introduced height-fair crossover, in which all

subtree heights in the two parents are recorded, and one subtree height is randomly se-

lected. The crossover sites in both parents are then restricted to that particular height.

Ito et al. [24] presented a similar depth-dependent crossover, aiming to preserve build-

ing blocks. In this method, the probability of selecting a node is biased towards the

6

cos

*

+ +

X 1 1
X

+

1

sin X

+

(a) (b)

(c) (d)

*

X

X

*

++ +*

1 X

XX sin 1 1
XX

+

cos

Fig. 1 Standard Crossover: parents (top) and their resulting offspring after applying crossover
(bottom).

root – nodes near the root have a greater probability to be selected for crossover. The

bias of the selection probability is set by the user, and it is left unchanged during the

search process. However it is not robust: if it is not carefully set for a particular prob-

lem, the performance can be very poor [25]. In [39, 48], Poli and Langdon introduced

one-point crossover and uniform crossover. In these methods, when two parents are

selected for crossover, they are aligned based on their shapes. By aligning two parents,

the common shape of these parents (starting from the roots) can be determined. The

crossover points are then randomly selected from the nodes that lie in the common

shape. This kind of crossover has been shown especially effective on Boolean problems

as it causes a bigger genetic material exchange in earlier generations (in these gener-

ations the common shape is often very small) and yet can tune the solutions in later

generations (when the common shapes are bigger).

More recently, context has been used as extra information for the selection of

crossover points [2, 19, 41, 55, 56]. This class of crossover is perhaps closest to semantic

based crossovers. Altenberg [2] proposed a new crossover inspired by the observation

that in most animal species, breeding occurs more often than the number of surviving

offspring might suggest. In other words, viable offspring are not always produced as a

consequence of breeding. This crossover is called a Soft Brood Selection (SBS). Two

parents are selected for crossover, then N random crossovers are performed to generate

a Brood of 2N children. The children are evaluated and sorted based on their fitness.

The two best children are copied to the next generation, the rest being discarded.

This crossover was then developed by Tackett [55, 56] by using a subset of fitness

cases to figure out which children in the Brood are added to the next generation.

Hengpraprohm and Chongstitvatana [19] proposed Selective Crossover, in which each

subtree is assigned an impact value, reflecting how well (or badly) the subtree affects

7

the containing tree. The impact of a subtree is determined by removing that subtree

and replacing it with a random terminal node. The change in resulting fitness is the

impact value. The crossover is performed by replacing the worst subtree of each parent

with the best subtree of the other. Majeed and Ryan [41] proposed Context Aware

Crossover (CAC); after two parents have been selected for crossover, one subtree is

randomly chosen in the first. This subtree is then crossed over into all possible locations

in the second, all generated children being evaluated. The best child (based on fitness)

is selected as the result, and copied to the next generation. The advantage of these

context-based crossovers is increased probability of producing better children. On the

other hand, it can be very time consuming to evaluate the context of each subtree.

To the best of our knowledge, the only previous use of semantics in crossover are

those previously discussed in Subsection 2.1. They include Beadle and Johnson’s [4]

Semantics Driven Crossover for Boolean problems, Krawiec and Lichocki’s [37] Ap-

proximating Geometric Crossover, and our previous work [57] on Semantics Aware

Crossover (SAC).

3 Methods

In this section we give a detailed discussion of our two crossovers. We start by briefly

describing how we measure semantics in real-valued problems. This allows us to de-

fine a concept of semantic distance, on the basis of which we propose two semantic

relationships,which we then use to define two new crossover operators.

3.1 Measuring Semantics

As discussed in Section 2, the appropriate definition of semantics for GP is far from

obvious. The semantics of an individual is often understood as the behavior of that

individual with respect to a set of input values. However the possibilities for computing

such semantics depends on the domain. For real-valued problems, both canonical-form

methods corresponding to Beadle and Johnson’s [4] Boolean ROBDDs, and complete

enumeration as in McPhee’s approach [43], are infeasible. Instead, we propose a simple

way to estimate the semantics of subtrees, in which the semantics is approximated by

evaluating the subtree on a pre-specified set of points in the problem domain. We call

this Sampling Semantics. Formally, the Sampling Semantics of any tree (subtree) is

defined as follows:

Let F be a function expressed by a tree (subtree) T on a domain D. Let P be a

set of points from domain D, P = {p1, p2, ...pN}. Then the Sampling Semantics of T

on P in domain D is the set S = {s1, s2, ..., sN} where si = F (pi), i = 1, 2, .., N .

For example, suppose that we are considering the interval [0,1] and using a set of

three points, P = {0, 0.5, 1}, for evaluating semantics. Then the Sampling Semantics

of subtree St in Figure 2 on P is the set of three values S = {sin(1) − 0, sin(1) −

0.5, sin(1) − 1}={084, 0.34,−0.16}. The value of N depends on the problems. If it is

too small, the approximate semantics might be too coarse-grained and not sufficiently

accurate. If N is too big, the approximate semantics might be more accurate, but more

time consuming to measure. The choice of P is also important. If the members of P are

too closely related to the GP function set (for example, π for exponential/trigonometric

functions, or e for logarithmic functions), then the semantics might be misleading. For

8

St

+

XX

1

sin

* −

log

X

Fig. 2 Tree with subtree (for illustrating Sampling Semantics)

this reason, choosing them randomly may be the best solution. In this paper, the

number of points for evaluating Sampling Semantics is set as the number of fitness

cases for the problem (20 points for single variable functions and 100 points for bivariate

functions, see Section 4), and we choose the set of points P uniformly randomly from

the problem domain. 1

Based on the Sampling Semantics (SS), we define a Sampling Semantics Distance

between two subtrees. In our previous work [57], we defined the Sampling Semantics

Distance as the sum of the absolute differences for all values of SS. That is, let P =

{p1, p2, ..., pN} and Q = {q1, q2, ..., qN} be the SS of Subtree1(St1) and Subtree2(St2)

on the same set of sample points, then the Sampling Semantics Distance (SSD) between

St1 and St2 was defined as:

SSD(St1, St2) = |p1 − q1| + |p2 − q2| + + |pN − qN |

While the experiments in [57] showed that this SSD is beneficial, it has the undoubted

weakness that the value of the SSD depends on the number of SS points (N). To reduce

this drawback, we now use the mean of the absolute differences as the SSD between

subtrees. In other word, the SSD between St1 and St2 is defined as:

SSD(St1, St2) = (|p1 − q1| + |p2 − q2| + + |pN − qN |)/N

3.2 Semantic Relationships

Based on Sampling Semantics Distance, we can define two semantic relationships be-

tween subtrees.Two subtrees are Semantically Equivalent (SE) on a domain if their

SSD on the sample set of points is sufficiently similar (subject to a parameter called

semantic sensitivity) – formally:

SE(St1,St2) = if SSD(St1,St2) < ǫ then true

else false

1 Since Sampling Semantics is defined for any subtree, it can be used in particular to estimate
the semantics of the whole tree. We will use it in this way in the examples in later sections.

9

ǫ is the predefined semantic sensitivity. This subtree semantic relationship is similar

to the metric we used in [57], and was inspired by the work of Mori et al. [44] on GP

simplification. The experimental results in [44, 57] show that this semantic relationship

benefits the GP search process.

The second relationship is known as Semantic Similarity.2 The intuition behind

semantic similarity is that exchange of subtrees is most likely to be beneficial if the

two subtrees are not semantically identical, but also not too semantically dissimilar.

Two subtrees St1 and St2 are semantically similar on a domain if their SSD on the

sample set lies within a positive interval – formally:

SSi(St1,St2) = if α < SSD(St1,St2) < β then true

else false

here α and β are two predefined constants, known as the lower and upper bounds

for semantic sensitivity, respectively. Conceivably, the best values for lower and upper

bound semantic sensitivity might be problem dependent. However we suspect that for

most symbolic regression problems, there is a wide range of appropriate values (see

Section 6, where we study various ranges of both lower and upper bound semantic

sensitivity).

We note that there is some biological motivation for this approach. In mammals,

the Major Histocompatibility Complex (MHC) genes (on chromosome 6 in humans)

play a major role in the immune response, and thus are a key part of our defences

against disease, and subject to strong and rapidly-changing evolutionary pressures.

However they also play an important role both in mate selection (partners in the same

species, but with dissimilar MHC genes, are preferred), and in speciation, because

differences in MHC that are too big may cause an immune response from the mother

to the foetus. Thus in this case at least, biology also appears to favour crossovers with

semantic similarity lying in a specific range.

We conclude this section by highlighting some important differences between our

semantic relations and fitness. First, for fitness calculation we need to know the fitness

cases, and fitness reflects how good (close to the target function) an individual is.

In measuring SS, we do not need to know the fitness cases (of course semantics can

be measured using the fitness cases, but different cases can also be used). Second,

fitness is measured for the whole individual, while SS is mainly used to encapsulate the

semantics of subtrees. The last and most important difference is the objective: fitness

is used for individual selection while SS is used to guide crossover. It is also noted that

the semantic definition in Krawiec and Lichocki [37] is a particular case of Sampling

Semantics, in which the set of sample points is the the same as the set of fitness cases,

and the semantics of the whole tree (a particular subtree) is used in crossover.

3.3 Semantics Aware Crossover

A semantics aware crossover (SAC) was first proposed in [57]. SAC is motivated by the

observation that GP crossover may exchange semantically equivalent subtrees, resulting

2 We are using similarity here in its ordinary English meaning, where A is similar to B
implies that A is not the same as B, as opposed to a common mathematical convention in
which similarity includes equivalence.

10

sin

*

+ +

XX 1 1
X

+

1

+

*

1

X

+

P1 P2

Subtree1 Subtree2

X

Fig. 3 Semantics equivalent subtrees are selected

C2
*

+ +

X 1 1

+

X

sin
X X

+

1

+

*

1

Subtree2 Subtree1

X

C1

Fig. 4 The generated children from semantic equivalent subtree crossover.

in children that are identical to their parents. Consider the two selected parents P1 and

P2 shown at the top of Figure 3. P1 has the semantics sin(X) + 3X and P2 has the

semantics 4X. Subtree1 of P1 and Subtree2 of P2 are semantically equivalent subtrees,

both having semantics 2X, although their structures are totally different. When these

two subtrees are selected for crossover, the children are as shown in Figure 4. Obviously,

these two children have different syntax (structure) from, but identical semantics to,

their parents. C1 has semantics of sin(X) + 3X and C2 has semantics of 4X. This

leaves the fitness of the children unchanged after crossover.

SAC prevents the swapping of such semantically equivalent subtrees in crossover.

Each time two subtrees are chosen for crossover, a semantic check (using Semantic

Equivalence) is performed to determine if they are equivalent. If they are, the crossover

is aborted and instead performed on two other randomly chosen subtrees. Further detail

on SAC can be found in [57]. SAC was partly inspired by Gustafson’s No Same Mate

selection [18] in which no two individuals with the same fitness may be selected for

crossover. It, in turn, was motivated by experiments, in which he found that two parents

with the same fitness often produce children with unchanged fitness upon crossover.

3.4 Semantic Similarity-based Crossover

The new semantically based crossover, SSC, is an extension of SAC in two ways. First,

when two subtrees are selected for crossover, their semantic similarity, rather than se-

mantic equivalence, is checked. Second, semantic similarity is more difficult to satisfy

than semantic equivalence, so repeated failures may occur. As a result, SSC uses mul-

11

Algorithm 1: Semantic Similarity based Crossover

select Parent 1 P1;
select Parent 2 P2;
Count=0;
while Count<Max Trial do

choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
randomly generate a number of points (P) on the problem domain;
measure SSD between Subtree2 and Subtree1 on P ;
if Subtree1 is similar to Subtree2 then

execute crossover;
add the children to the new population;
return true;

else
Count=Count+1;

if Count=Max Attempt then
choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
execute crossover;
return true;

tiple trials to find a semantically similar pair, only reverting to random selection after

passing a bound on the number of trials. Algorithm 1 shows how SSC works in detail.

In our experiments, we test a range of values of Max Trial to gain an understanding

of its effect on SSC. The motivation for SSC is to encourage exchange of semantically

different, but not wildly different, subtrees. While forcing a change in the semantics of

the individuals in the population, we want to keep this change bounded and small. We

anticipate that a smoother change in semantics of the individuals will result, and might

lead to a smoother change in fitness of the individuals after crossover. For instance,

consider two parents selected for crossover in Figure 5. Assume that we measure the

SS of a tree on the 10 points, P = {1, 2, ..., 10}. Then the SS of parents P1, P2 and

of Subtree1 (St1), Subtree2 (St2), and Subtree3 (St3) are as shown in Table 1 and

Table 2. It can be seen from these tables that St1 and St2 are semantically similar

(using α=10−4, β=0.4 as in this paper), with the SSD being only 0.09, while St1
and St3 are semantically dissimilar since the SSD is 4.5. If crossover is performed by

swapping two semantically similar subtrees (St1 and St2), the generated children are

show in Figure 6. The SS of the two children (C1, C2) are shown in Table 1. We can

also measure the SSD between C1 and P1 and between C2 and P2 (as shown in columns

C1 −P1 and C2 −P2 in Table 1). Evidently, the change of semantics through crossover

is quite small (1.1 with C1 and 1.65 with C2). This, we hope, will make for a smoother

change of fitness.

By contrast, if crossover is conducted by swapping two dissimilar subtrees (St1 and

St3), the children are shown in Figure 7. The results of the calculation of the SS of

the two children (C3 and C4) and the semantic distances between these children and

their parents are shown in Table 2. It can be seen from this table that the change

in semantics between parents and children is rather large (143 and 82.5 for C3 and

C4, respectively). This, we anticipate, will lead to an abrupt change in fitness after

crossover.

12

1.1

*

X 3 X

+ +Subtree1

X

P2P1

Subtree3

*

*

2

Subtree2 *

X 1

Fig. 5 Parents for crossover

Subtree1

*

X 3 X

C2C1

Subtree3

*

*

2

*+

X1.1

Subtree2 +

X 1

Fig. 6 Children generated by crossing over two semantically similar subtrees

C3
*

X

C4
*

*

2

+

X 1

Subtree1

3 X

Subtree3* +

X1.1

Subtree2

Fig. 7 Children generated by crossing over two semantically dissimilar subtrees

Table 1 Sampling semantics of parents, subtrees and children when swapping two similar
subtrees.

Points P1 P2 St1 St2 St1-St2 C1 C2 C1-P1 C2-P2

1 4 6.3 2 2.1 0.1 4.2 6 0.2 0.3
2 12 18.6 3 3.1 0.1 12.4 18 0.4 0.6
3 24 36.9 4 4.1 0.1 24.6 36 0.6 0.9
4 40 61.2 5 5.1 0.1 40.8 61 0.8 1.2
5 60 91.5 6 6.1 0.1 61.0 91 1.0 1.5
6 84 127.8 7 7.1 0.1 85.2 127 1.2 1.8
7 112 170.1 8 8.1 0.1 113.4 170 1.4 2.1
8 144 218.4 9 9.1 0.1 145.6 218 1.6 2.4
9 180 272.7 10 10.1 0.1 181.8 272 1.8 2.7
10 220 333.0 11 11.1 0.1 222.0 333 2.0 3.0

SSD 0.09 1.1 1.65

4 Experimental Settings

To experimentally investigate the possible effects of SSC in comparison with other

crossover operators, we test them on ten real-valued symbolic regression problems.

These problems are grouped into three categories: polynomial functions; trigonomet-

ric, logarithm and square-root functions; and bivariate functions. Most are taken from

13

Table 2 Sampling semantics of parents, subtrees and children when swapping two different
subtrees.

Points P1 P2 St1 St3 St1-St3 C3 C4 C3-P1 C4-P2

1 4 6.3 2 2 0 6 4.2 2 2.1
2 12 18.6 3 4 1 24 9.3 12 9.3
3 24 36.9 4 6 2 54 16.4 30 20.5
4 40 61.2 5 8 3 96 25.5 56 35.7
5 60 91.5 6 10 4 150 36.6 90 54.9
6 84 127.8 7 12 5 216 49.7 132 78.1
7 112 170.1 8 14 6 294 64.8 182 105.3
8 144 218.4 9 16 7 384 81.8 240 136.5
9 180 272.7 10 18 8 486 101.0 306 171.7
10 220 333.0 11 20 9 600 122.1 380 201.0

SSD 4.5 143 82.5

Table 3 Symbolic Regression Functions.

Functions Fitcases

F1 = x3 + x2 + x 20 random points ⊆ [-1,1]
F2 = x4 + x3 + x2 + x 20 random points ⊆ [-1,1]
F3 = x5 + x4 + x3 + x2 + x 20 random points ⊆ [-1,1]
F4 = x6 + x5 + x4 + x3 + x2 + x 20 random points ⊆ [-1,1]
F5 = sin(x2)cos(x) − 1 20 random points ⊆ [-1,1]
F6 = sin(x) + sin(x + x2) 20 random points ⊆ [-1,1]
F7 = log(x + 1) + log(x2 + 1) 20 random points ⊆ [0,2]
F8 =

√
x 20 random points ⊆ [0,4]

F9 = sin(x) + sin(y2) 100 random points ⊆ [-1,1]x[-1,1]
F10 = 2sin(x)cos(y) 100 random points ⊆ [-1,1]x[-1,1]

Table 4 Run and Evolutionary Parameter Values.

Parameter Value

Selection Tournament
Tournament size 3
Crossover probability 0.9
Mutation probability 0.05
Initial Max depth 6
Max depth 15
Max depth of mutation tree 5
Non-terminals +, -, *, / (protected versions),

sin, cos, exp, log (protected versions)
Terminals X, 1 for single variable problems,

and X,Y for bivariable problems
Raw fitness sum of absolute error on all fitness cases
Hit when an individual has an

absolute error < 0.01 on a fitness case
Successful run when an individual scores hits on all fitness cases
Trials per treatment 100 independent runs for each value

14

the works of Hoai et al. [20], Keijzer [33], and Johnson [30]. These functions are shown

in Table 3 and the main parameters used for our experiments are given in Table 4. The

parameter settings are similar to our previous work [57]. Although these experiments

purely concern crossover, we have retained mutation at a low rate, because we aim to

study crossover in the context of a normal GP run. Note that the number of gener-

ations and the population size are not specified in Table 4; they will be determined

appropriately for each experiment. Note also that the raw fitness function is the sum

of the absolute error over all fitness cases, and a run is considered as successful when

some individual hits (i.e. absolute error <0.01) every fitness case.

We divided our experiments into three sets. The first set investigates the per-

formance of SSC. SSC was compared with five other crossover operators: Standard

Crossover (SC), Semantics Aware Crossover (SAC), Context Aware Crossover (CAC),

Soft Brood Selection (SBS), and No Same Mate (NSM) selection. The second set

analyses the sensitivity of SSC’s parameters – including lower and upper semantic sen-

sitivities, maximum number of trials (Max Trial), and number of sample points. The

last set of experiments investigate some characteristics of SSC, including the rate of se-

mantically equivalent crossover events, semantic diversity, locality, and constructivity.

These three sets of experiments are detailed in the following sections.

5 Comparative Results

This section presents our experimental results on the performance of SSC in comparison

with SC, SAC, NSM, CAC, and SBS. When comparing different methods, one of the

fundamental questions is how to compare their performance in a fair way. Traditionally,

GP researchers often set up a predetermined population size and number of generations.

Depending on the methods employed, the standard approach of comparing performance

in terms of fitness at each generation may not be completely fair, due to possible

differences in computational overhead.

An alternative, and often better, way is to run different GP systems (e.g., using

different crossover methods) with the same predefined number of individual fitness

evaluations. This would not, however, be fair in the context of this paper, because

the semantic subtree checking in SSC and SAC may be performed on much smaller

subtrees than the individuals (whole trees), and hence may cost much less. Moreover

because of differences in bloat, the average size of the individuals in different methods

may also differ [11, 22].

Here, we use a measure based on the number of function node evaluations to es-

timate the computational cost of each GP run. This kind of measurement has been

adopted in a number of recent GP studies [23, 60]. By using the number of node eval-

uations, we can readily estimate the additional computational effort of non-standard

crossovers used in the experiments in this paper (i.e SAC, SSC, CAC, SBS).3. In these

experiments, the number of node evaluations is set to 15 ∗ 106. This value was exper-

imentally determined as allowing our base comparator, SC, to easily find solutions in

the easy problems (F1), with about 50% successful runs, but not allowing it to readily

find solutions to harder problems, with only about 5% success in F4.

The experimental settings of these experiments were as follows. For all methods,

the GP basic parameters were as in Table 4. The population size for SC, SAC, SSC

3 We assume that the computation costs of all primitive functions are the same, or at least
negligibly different when compared to the cost of individual fitness evaluation

15

Table 5 Number of successful runs out of 100 runs

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SC 48 22 7 4 20 35 35 16 7 18

NSM 48 16 4 4 19 36 40 28 4 17

SAC2 53 25 7 4 17 32 25 13 4 4
SAC3 56 19 6 2 21 23 25 12 3 8
SAC4 53 17 11 1 20 23 29 14 3 8
SAC5 53 17 11 1 19 27 30 12 3 8

CAC1 34 19 7 7 12 22 25 9 1 15
CAC2 34 20 7 7 13 23 25 9 2 16
CAC4 35 22 7 8 12 22 26 10 3 16

SBS31 43 15 9 6 31 28 31 17 13 33
SBS32 42 26 7 8 36 27 44 30 17 27
SBS34 51 21 10 9 34 33 46 25 26 33
SBS41 41 22 9 5 31 34 38 25 19 33
SBS42 50 22 17 10 41 32 51 24 24 33
SBS44 40 25 16 9 35 43 42 27 33 34

SSC 8 66 28 22 10 48 56 59 21 25 47
SSC12 67 33 14 12 47 47 66 38 37 51
SSC16 55 39 20 11 46 44 67 29 30 59

SSC20 58 27 10 9 52 48 63 26 39 51

and NSM were set to 500 as in [57]. For SAC, the semantic sensitivity was set to

10−X with X=2, 3, 4, and 5.4. For SSC, the lower and upper semantic sensitivity were

set to 10−4 and 0.4, respectively. The maximum number of attempts to form an SSC

crossover Max Trial was set to 8, 12, 16, and 20, forming four schemas of SSC5. These

values were determined from the experiments in Section 6, where they were found to

be suitable values for the performances of SSC.

The population sizes we use for CAC and SBS follow previous research, where

they are set much smaller than the population size for SC. Here, we chose 200 as

in [37, 42]. For CAC, we followed the Majeed and Ryan [42], in using CAC only after

80% of the node evaluations of a run. We also extended CAC with a scheme similar to

Tackett’s [56], checking child fitness not only by using all fitness cases, but also through

a subset of fitness cases. Ratios of 1/X (X=1, 2, and 4)6 were used in this experiment

(i.e. only 1/X of the fitness cases were used to find the best of breed individual, reducing

the overall cost).

For SBS [56], the original experiments used 4 brood sizes (2, 3, 4, 5). Here we used

the best two (3, 4). To measure the fitness of the individuals in the brood, we used

only a portion of the fitness cases, with a 1/X (X =1, 2, 4) ratio.7

To examine and compare the performance of these methods, we recorded two classic

performance metrics, namely mean best fitness and the percentage of successful runs.

The percentage of successful runs are recorded in Table 5, it should be noted here that

a run is called successful run if it can find an individual that scores hits on all fitness

cases, where a hit means that for that case, absolute error <0.01. In the result tables,

Ms is a shorthand for Methods. In each setting, the best-performing schema is printed

4 SACs with different X are denoted as SACX (with X=2, 3, 4, and 5)
5 Denoted as SSCX, where X is 8, 12, 16, and 20
6 Denoted as CACX with X=1, 2, and 4
7 Denoted as SBSXY, with X=3, 4 and Y=1, 2, 4.

16

Table 6 The mean best fitness of 100 runs. A Wilcoxon signed-rank test was conducted; if a
treatment is better than SC with a confidence level of 99%, the result is printed in italic face

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SC 0.18 0.26 0.39 0.41 0.21 0.22 0.13 0.26 5.54 2.26

NSM 0.16 0.29 0.34 0.40 0.19 0.17 0.11 0.19 5.44 2.16

SAC2 0.16 0.27 0.42 0.50 0.22 0.23 0.15 0.27 5.99 3.19
SAC3 0.13 0.27 0.42 0.48 0.18 0.23 0.15 0.27 5.77 3.13
SAC4 0.15 0.29 0.41 0.46 0.17 0.22 0.15 0.26 5.77 3.03
SAC5 0.15 0.29 0.40 0.46 0.17 0.21 0.15 0.26 5.77 2.98

CAC1 0.33 0.41 0.51 0.53 0.31 0.42 0.17 0.35 7.83 4.40
CAC2 0.32 0.41 0.52 0.53 0.31 0.42 0.17 0.35 7.38 4.30
CAC4 0.33 0.41 0.53 0.53 0.30 0.42 0.17 0.35 7.80 4.32

SBS31 0.18 0.29 0.30 0.36 0.17 0.30 0.15 0.19 4.78 2.75
SBS32 0.18 0.23 0.28 0.36 0.13 0.28 0.10 0.18 4.47 2.77
SBS34 0.16 0.23 0.31 0.33 0.13 0.21 0.11 0.19 4.17 2.90
SBS41 0.18 0.26 0.27 0.38 0.12 0.20 0.13 0.20 4.40 2.75
SBS42 0.12 0.24 0.29 0.30 0.12 0.18 0.10 0.16 3.95 2.76
SBS44 0.18 0.24 0.33 0.35 0.15 0.16 0.11 0.19 2.85 1.75

SSC8 0.09 0.15 0.19 0.29 0.10 0.09 0.07 0.15 3.91 1.53

SSC12 0.07 0.17 0.18 0.28 0.10 0.12 0.07 0.13 3.54 1.45

SSC16 0.10 0.15 0.23 0.26 0.10 0.10 0.06 0.14 3.11 1.22

SSC20 0.08 0.18 0.23 0.30 0.09 0.10 0.06 0.14 2.64 1.23

in bold face. We can see that only SBS and SSC are definitely better than SC; while

the performances of NSM and SAC are very similarl to SC, CAC is often poorer. The

reason might lie in the high cost of the method CAC uses to find the best crossover

site, with the result that it quickly reaches the maximum function node evaluations,

and the run terminates.

Turning specifically to SSC and SBS, we find that SSC is often better, and more

consistently so, than SBS. While SSC is consistently superior on all tested functions,

SBS seems to perform similarly to SC on some functions, such as F1, F2 and F6. For

SBS, reducing the number of fitness cases used to choose individuals from the brood

improves the performance. It is not clear, however, to what extent we can reduce the

number of fitness cases to further enhance the performance. In some cases, reduc-

ing only 2 times performs better than 4 times. For SSC, it seems that the values of

Max Trial from 8 to 20 give consistently good performance. In general, SSC performs

better than SBS, and is the best of all methods on the the tested problems.

Table 6 shows the best fitness found, averaged over all 100 runs of each GP system.

The results are consistent with those in Table 5, in that SAC and NSM are mostly

equal to SC, CAC is often worse than SC, and only SBS and SSC are better than SC.

The table again shows the consistently superior performance of SSC where it is better

than SC on all test functions, while SBS is less convincing on three problems: F1, F2,

F6, and F10. It can also be seen that although both SSC and SBS are superior to SC,

the margin of improvement is different: SBS is often only slightly better than SC while

SSC is widely better than SC in all cases.

We tested the statistical significance of the results in Table 6 using a Wilcoxon

signed-rank test with a confidence level of 99%. In Table 6, if a run is significantly

better than SC, its result is printed in italic face. It can be seen that while NSM is

only significantly better than SC on one function (F8), SBS is regularly significantly

17

Table 7 The mean best fitness of 100 runs of SSC with different parameter values. SSCUX
shows the effect of upper bound semantic sensitivity, SSCLX of lower bound semantic sensi-

tivity, SSCMTX that of Max Trial (X) and SSCNPX that of the number of sample points.

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SSCU01 0.12 0.18 0.24 0.35 0.12 0.14 0.10 0.19 2.65 0.98
SSCU02 0.09 0.17 0.20 0.30 0.09 0.10 0.08 0.15 1.95 0.83
SSCU04 0.08 0.14 0.21 0.27 0.11 0.07 0.07 0.11 1.00 0.70
SSCU06 0.06 0.16 0.22 0.28 0.11 0.07 0.08 0.12 2.01 0.68
SSCU08 0.06 0.19 0.21 0.29 0.14 0.12 0.08 0.13 2.43 0.96
SSCU1 0.09 0.19 0.26 0.31 0.16 0.15 0.10 0.15 2.53 1.26

SSCL1 0.10 0.16 0.24 0.31 0.15 0.11 0.10 0.15 1.75 1.06
SSCL2 0.06 0.14 0.22 0.27 0.10 0.07 0.07 0.13 1.32 0.66
SSCL3 0.09 0.15 0.22 0.26 0.11 0.08 0.07 0.12 0.99 0.73
SSCL4 0.08 0.14 0.21 0.27 0.12 0.07 0.07 0.11 1.00 0.70
SSCL5 0.09 0.15 0.22 0.29 0.13 0.07 0.07 0.11 1.01 0.73

SSCMT4 0.10 0.20 0.23 0.32 0.12 0.11 0.10 0.15 1.86 0.85
SSCMT8 0.08 0.15 0.21 0.24 0.11 0.09 0.07 0.13 1.12 0.71
SSCMT12 0.08 0.14 0.21 0.27 0.12 0.07 0.07 0.11 1.00 0.70
SSCMT16 0.09 0.16 0.19 0.26 0.10 0.09 0.07 0.11 0.98 0.78
SSCMT20 0.08 0.15 0.19 0.22 0.09 0.08 0.07 0.10 1.20 0.66

SSCNP05 0.07 0.16 0.20 0.25 0.10 0.08 0.11 0.16 1.28 0.70
SSCNP1 0.08 0.14 0.21 0.27 0.12 0.07 0.07 0.11 1.00 0.70
SSCNP2 0.07 0.14 0.21 0.26 0.11 0.07 0.09 0.13 1.11 0.79

better than SC, except on some specific functions, F1, F2, F6, F7, and F10. SSC is

always superior to SC in all cases and on all tested problems.

6 SSC Parameter Sensitivity Analysis

The experiments in this section investigate the effect of changing some parameters of

SSC. The GP parameters were setup as in Table 4. The population size was set at 500.

Four parameters of SSC were investigated, namely, lower bound semantic sensitivity

(LBSS), upper bound semantic sensitivity (UBSS), Max Trial (MT), and the number

of sample points (NP) used for semantic checking. First, we examined the effect of the

most important parameter, UBSS. We fixed the other parameters as follows: LBSS:

10−4, MT: 12, and NP: 20 points for single variable functions and 100 for bivariate

functions. The UBSS was set at 6 values: 0.1, 0.2, 0.4, 0.6, 0.8, and 1.8

The second experiment analysed the effect of LBSS. In this experiment, the other

parameters were set as follows: UBSS= 0.4, MT= 12, and NP= number of fitness cases.

Five values for LBSS were investigated, i.e. 10−X where (X=1, 2, 3, 4, and 5).9

The third experiment tested sensitivity to the number of trials allowed in selecting

similar subtrees in SSC (MT). For this experiment, LBSS= 10−4, UBSS=0.4, and NP=

number of fitness cases. MT was set at 4, 8, 12, 16, 20.10

The final experiment observed the effect of changing the number of sample points

in semantic checking (NP). The experimental settings in this experiment were: LBSS=

8 Denoted as SSCUX where X is 0.1, 0.2, 0.4, 0.6, 0.8, or 1
9 Denoted as SSCLX with X=1, 2, 3, 4, and 5.

10 Denoted as SSCMTX, with X=4, 8, 12, 16, and 20.

18

Table 8 The percentage of SSC that successfully exchange two semantically similar subtrees

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SSCU01 42.1 40.9 45.6 42.2 39.6 49.3 25.2 27.9 39.8 46.4
SSCU02 57.6 62.4 62.8 61.9 68.3 73.2 52.7 44.1 56.3 64.2
SSCU04 77.2 81.1 79.4 78.4 81.2 85.4 81.2 67.3 74.8 80.5
SSCU06 94.5 95.1 95.2 95.2 95.5 96.1 97.6 88.9 93.4 95.2
SSCU07 97.2 98.4 98.3 98.3 98.5 97.7 99.3 95.4 96.4 98.5
SSCU1 99.6 99.8 99.8 99.7 99.9 99.7 99.9 98.9 99.3 99.6

SSCNP4 42.4 41.6 42.1 41.2 44.0 48.5 47.6 29.4 38.2 44.6
SSCNP8 64.9 67.5 66.3 66.5 68.3 74.5 71.2 52.4 62.5 68.2
SSCNP12 77.2 81.1 79.4 78.4 81.2 85.4 81.2 67.3 74.8 80.5
SSCNP16 85.5 86.9 86.4 86.2 88.9 90.5 89.1 74.3 82.4 86.8
SSCNP20 90.4 91.5 90.8 90.7 93.4 93.9 92.8 83.5 93.8 96.4

10−4, UBSS=0.4, and MT= 12. NP was set to a ratio of 1/2, 1 or 2 of the number of

fitness cases.11

To estimate the effect of changing these parameters, we recorded the best fitness of

a run. These values were averaged over 100 runs, the results being shown in Table 7. We

can see that the value of UBSS has a remarkable effect on the performance of SSC. It

seems that values from 0.2 to 0.8 are suitable for the problems under test, with values

from 0.4 to 0.6 being the best. If UBSS is too small (0.1) or too big (1) the performance

of SSC is poorer. This can be explained by recording the percentage of SSC that

successfully selects two semantically similar subtrees, as shown in Table 8. 12 We can

see that if UBSS is too small, only a few SSCs can succeed in exchanging semantically

similar subtrees (from 30% to 40% when UBSS is 0.1), so that SSC underperforms.13

By contrast, if UBSS is too large, it is almost trivial to find semantically similar subtrees

(almost 100% for UBSS=1) because most subtrees are sufficiently semantically similar,

so that SSC behaves like SC.

While changing UBSS has a remarkable effect on SSC, LBSS has almost no effect

on performance provided it is sufficiently small. Table 7 shows that while LBSS was set

to small values (from 10−2 to 10−5), the performance of SSC was almost unchanged.

In order to understand this, we recorded the percentage of subtrees with SSD smaller

than 10−2 that are actually semantically identical. In fact, 99% of such semantically

equivalent subtrees actually have the same semantics. Thus 99% of these subtrees

would have satisfied the equivalence condition regardless of the values of LBSS. Only

in the case when LBSS gets too big, e.g. 0.1 , does SSC have poorer performance.

In this case, SSC prevents swapping of subtrees with similar but unequal semantics.

We recorded how many subtree checks found a nonzero SSD smaller than 0.1; this

happened approximately 30% of the time, misleading SSC. In general, we can see that

LBSS is only required to be sufficiently small, and perhaps any value under 10−2 would

be suitable.

The third parameter investigated is the number of unsuccessful trials permitted

in selecting semantically similar subtrees (MT). Values of MT from 8 to 20 keep the

11 Denoted as SSCNPX with X=0.5, 1 or 2.
12 The values for SSCLX and SSCPX are not shown in this table as they have little effect.
13 We have tried increasing the Max Trial to compensate for decreasing the upper bound.

This was unsuccessful, as if UBSS is too small, the exchange of semantics between the two
parents is also too small, so that SSC is more readily trapped in local optima.

19

performance of SSC roughly consistent. When MT is too small, e.g. MT = 4, the per-

formance of SSC is worse. This can also be understood by observing the percentage of

SSC events that successfully exchanged two semantically similar subtrees. For MT=4,

only 30% to 40% of SSC events successfully exchanged subtrees, while this figure rises

to about 90% for MT=20. Thus further increasing MT may not help, because nearly

all crossover events have already successfully exchanged semantically similar subtrees.

The last parameter under investigation is the number of sample points (NP) on

which the semantics was measured. Usually, this number is set equal to the number of

fitness cases. The results in Table 7 show that there was little effect when this value

was doubled, or when it was halved.

Overall, these results highlight some important issues in determining the values for

SSC parameters. It seems that UBSS should lie in the range 0.2 to 0.8, LBSS should

be less than 10−2, MT in the range 8 to 20, and NP similar to the number of fitness

cases so long as this number is not too big.

7 Some Characteristics of Semantic Similarity based Crossover

This section analyses some characteristics of SSC, namely the rate at which seman-

tically equivalent crossover events occur, the semantic diversity resulting from such

crossovers, the locality of the operator, and its constructive effect. The results were

compared with SC, SAC and NSM. The GP parameter settings in this section are

described in Table 4, with the population size being set to 500 and the number of

generation to 50. Five configurations of SAC were used, with semantic sensitivities set

to 10−X with X=1, 2, 3, 4, and 5.14 For SSC, LBSS was set to 10−4 and UBSS to 0.4.

NP was set equal to the number of fitness cases. Five configurations of SSC were used,

with MT varying through 4, 8, 12, 16, and 20.

7.1 Rates of Semantically Equivalent Crossover Events

The first set of results record the extent of semantically equivalent exchanges arising

from the three crossover operators. Here we say that a crossover operation is an equiv-

alent crossover if it is performed by exchanging two semantically equivalent subtrees.

Since the new crossover operators (SAC and SSC) work by checking the semantics

of subtrees and trying to prevent the exchange of semantically equivalent subtrees, it

would be informative to see how frequently this actually happens. This information

shows us how frequently SC fails to change the semantics of individuals (i.e. makes

semantically unproductive crossovers), and the extent to which SAC, and especially

SSC, can overcome this problem. The results are shown in Table 9.

It can be seen from Table 9 that the overall average for equivalent crossovers in

SC was around 15%; NSM behaved similarly, only reducing the rate by about 1%.

By contrast, these values for both SAC and SSC were substantially improved, ranging

from 2% to 3% for SAC, and from 2% to 5% for SSC (except when MT is very small,

e,g MT = 4). It is clear that SAC and SSC are more semantically exploratory than

SC and NSM on these problems. It should also be noted here that 99% of pairs of se-

mantically equivalent subtrees consist of subtrees with identical semantics. As a result,

approximately 99% of such crossovers leave the fitnesses of the chidren unchanged.

14 Denoted as SACX, for X=1, 2, 3, 4, or 5.

20

Table 9 The percentage of Semantically Equivalent Crossover for four crossover operators:
SC, NSM, SAC and SSC.

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SC 15.5 14.4 14.7 14.1 13.2 15.7 14.3 14.4 12.4 14.1

NSM 14.9 14.1 14.5 13.8 12.5 14.8 14.2 14.1 11.5 12.7

SAC1 3.54 3.12 3.18 3.12 3.28 3.84 3.32 3.34 3.49 3.67
SAC2 2.18 1.88 1.93 1.86 1.53 2.24 1.80 1.89 1.49 1.99
SAC3 2.16 1.85 1.90 1.65 1.52 2.08 1.77 1.88 1.47 2.01
SAC4 2.15 1.83 1.88 1.84 1.52 2.04 1.75 1.86 1.46 1.97
SAC5 2.10 1.82 1.87 1.84 1.51 2.01 1.72 1.81 1.46 2.03

SSC4 8.87 8.33 8.35 8.06 6.83 7.81 7.27 9.80 7.63 6.56
SSC8 5.92 4.76 4.97 4.76 3.89 3.88 4.00 6.94 4.76 3.75
SSC12 4.11 2.76 3.10 3.04 2.25 2.38 2.70 5.08 3.24 2.84
SSC16 2.80 1.99 2.27 2.00 1.39 1.61 1.65 3.94 1.99 2.04
SSC20 2.29 1.49 1.57 1.40 0.96 1.19 1.24 2.82 1.49 1.76

Table 10 The percentage of generating new semantics for SC, NSM, SAC and SSC (i.e.
differing in terms of the semantic equivalence measure).

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SC 62.9 67.9 67.6 68.1 61.5 67.0 66.4 61.0 74.8 74.9

NSM 66.9 70.4 70.1 72.2 63.2 70.9 71.1 66.6 78.3 77.6

SAC1 70.2 73.5 75.1 76.1 65.2 74.1 73.7 70.2 82.1 84.6
SAC2 71.3 74.5 77.4 77.6 66.5 75.9 76.7 71.7 83.8 86.7
SAC3 72.1 74.7 77.6 78.3 67.7 76.9 75.4 71.7 84.1 86.3
SAC4 71.6 75.1 77.4 77.5 66.1 76.7 75.2 71.5 84.1 86.5
SAC5 71.4 74.9 77.1 77.5 65.9 76.8 75.4 71.8 84.3 85.8

SSC4 72.1 76.3 77.4 79.1 69.2 76.3 75.6 75.5 78.7 82.8
SSC8 75.9 80.7 80.8 82.9 73.6 82.7 81.3 74.8 80.8 89.3
SSC12 78.9 84.1 84.5 84.3 78.3 83.8 82.8 76.9 85.8 90.2
SSC16 78.8 85.9 85.6 87.2 78.1 86.9 85.2 78.6 89.8 91.6
SSC20 77.9 85.3 86.7 87.4 79.1 84.5 83.9 78.7 88.9 91.0

The improved semantic exploratory capacity of SAC and SSC can potentially lead

to more semantic diversity, in that they could generate more new semantics than SC

and NSM. Here, crossover A is considered to generate more semantic diversity than

crossover B if A generates semantically new children, differing from the semantics of

the parents, at a higher rate than B. In Table 10 we measured this rate for each

crossover configuration. In table 10 we see that while NSM was only slightly better

than SC, SAC was better than both, while SSC was better than all other crossover

operators in this respect. Interestingly, although SAC was often better than SSC in

preventing equivalent crossovers, by keeping semantic changes small, SSC was generally

better than SAC at producing semantically diverse crossovers. We note that SAC and

SSC cannot guarantee the generation of semantically new offspring, despite trying to

swap semantically different subtrees. We suspect this arises from the existence of fixed-

semantic subtrees similar to those whose existence McPhee demonstrated in Boolean

domains [43].

21

Table 11 The average change of fitness after crossover for SC, NSM, SAC, and SSC (averaged
over the whole population and 100 runs.

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SC 9.74 9.21 10.5 10.6 7.30 7.44 8.13 9.36 17.8 20.1

NSM 7.64 8.30 9.21 10.1 6.00 6.34 7.40 7.84 14.7 18.5

SAC1 8.42 8.71 9.54 10.9 7.01 6.54 7.05 7.96 15.9 17.7
SAC2 8.38 8.69 9.42 10.8 6.93 6.48 6.96 7.85 15.8 17.5
SAC3 8.03 8.63 9.19 10.3 6.82 6.56 6.92 7.66 15.5 17.3
SAC4 7.88 8.64 9.03 10.4 7.14 6.65 7.30 7.60 15.5 17.1
SAC5 7.88 8.70 9.43 10.4 7.18 6.78 7.25 7.68 15.4 17.4

SSC4 6.83 6.41 6.72 7.11 5.06 4.60 5.38 6.50 13.1 13.5
SSC8 5.12 5.01 5.69 5.45 3.58 3.47 3.87 5.84 12.4 9.50
SSC12 4.07 4.00 4.90 4.97 3.09 2.70 3.32 5.26 11.3 8.76
SSC16 4.34 3.44 4.26 4.10 2.84 2.58 2.82 4.45 9.25 7.83
SSC20 4.19 3.22 3.55 3.90 2.56 2.26 2.97 3.64 7.32 9.15

7.2 Operator Locality

The next set of experments analyse the locality of SSC compared with SAC, SC and

NSM. It is generally believed that using a representation with high locality (small

change in genotype correspond to small change in phenotype) is important for efficient

evolutionary search [15–17, 21, 52]. It is also generally agreed that designing a search

operator for GP ensuring which achieves this is very difficult. Thus most current GP

representations and operators are low-locality – a small (syntactic) change from parent

to child can cause a large semantic change. Our new crossover operator (SSC) differs

from others in directly controlling the scale of change in terms of semantics rather than

syntax.

To compare locality, we measured the fitness change between parents and children

in crossover. For example, suppose two individuals having fitness of 10 and 15 are

selected for crossover, and their children have fitness of 17 and 9. The change of fitness

is Abs(17− 10) + Abs(9− 15) = 13 (for this purpose, we compare the fitness of a child

with that of the parent in which it is rooted). This value was averaged over the whole

population and over 100 runs. The average fitness change of individuals before and

after crossover is shown in Table 11.

Table 11 shows that the step size of the fitness change for SSC was much smaller

than for either SAC, SC or NSM. This leads to smoother fitness change over time for

SSC than for the others. This is important, as it is not easy to ensure the locality

property GP. The table also reveals that the fitness change in SAC and NSM were

only slightly smoother than in SC.

7.3 Constructive Effects

The previous results show that SAC and SSC are more semantically productive than

SC and NSM, and that SSC has higher locality than the others. Does this help SSC

(and maybe SAC) to generate better children than their parents (more constructive

crossover)? We measured the constructive effect of SAC, SSC, NSM and SC, using

Majeed’s [42] method. However we adapt the method slightly, only comparing the

fitness of a child with that of the parent in which it is rooted.

22

Table 12 The percentage of semi-constructive crossovers of SC, NSM, SAC, and SSC (i.e. at
least one child is better than the corresponding parent.

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SC 19.2 21.2 21.0 21.1 18.7 21.1 21.4 18.6 28.2 28.9

NSM 22.2 23.3 22.5 23.8 19.5 23.8 24.1 21.5 31.6 30.6

SAC1 24.7 26.3 26.5 26.7 22.3 26.1 27.2 24.2 34.1 34.2
SAC2 25.4 26.3 27.8 27.8 23.5 27.5 28.8 25.6 36.0 36.9
SAC3 25.9 26.5 27.8 28.3 23.8 28.2 27.6 25.5 36.2 36.7
SAC4 25.7 27.0 27.7 27.8 23.2 28.2 27.4 25.5 36.4 37.4
SAC5 25.7 26.9 27.6 27.9 22.9 28.6 27.5 25.6 36.2 37.1

SSC4 26.9 28.2 29.0 29.3 25.7 28.9 28.7 25.9 33.4 36.8
SSC8 30.0 32.1 32.0 32.7 29.9 33.9 33.2 29.0 36.8 41.2
SSC12 32.7 35.5 34.6 34.3 32.9 35.5 35.2 31.9 38.5 43.1
SSC16 33.3 37.1 35.9 37.1 33.6 37.2 36.3 34.1 41.5 43.3
SSC20 32.7 36.7 37.0 36.9 34.7 36.0 36.0 34.0 41.4 42.8

Table 13 The percentage of full-constructive crossovers of SC, NSM, SAC, and SSC (i.e.
where both children are better than the corresponding parents.

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SC 2.06 2.27 2.23 2.24 1.96 2.32 2.36 1.88 3.46 3.74

NSM 2.26 2.46 2.37 2.66 1.97 2.56 2.59 2.15 3.90 3.78

SAC1 2.82 3.04 3.05 3.02 2.46 3.11 3.25 2.65 4.51 4.67
SAC2 2.90 3.04 3.29 3.25 2.67 3.24 3.49 2.89 4.95 4.87
SAC3 3.05 3.10 3.29 3.36 2.65 3.35 3.32 2.81 4.94 4.91
SAC4 3.03 3.17 3.25 3.28 2.57 3.39 3.29 2.82 4.96 4.94
SAC5 3.01 3.18 3.20 3.31 2.52 3.43 3.28 2.82 4.92 4.92

SSC4 3.60 3.80 3.78 3.92 3.20 3.94 3.63 3.07 4.68 5.18
SSC8 4.25 4.58 4.54 4.65 3.96 5.11 4.53 3.89 5.17 6.04
SSC12 4.70 5.21 5.07 5.02 4.51 5.38 4.88 4.43 5.45 6.35
SSC16 4.76 5.55 5.26 5.49 4.65 5.73 5.12 4.85 6.00 6.34
SSC20 4.73 5.34 5.39 5.47 4.86 5.49 5.01 4.73 5.86 6.31

We can distinguish semi-constructive crossovers from full-constructive crossovers.

Let us assume that two parents P1 and P2 are selected for crossover, generating two

children C1, C2 (C1 rooted in P2 and C2 rooted in P2). Then, a crossover is called

semi-constructive if it generates at least one child that is better than its parents. In

other words, the condition (C1 is better than P1 OR C2 is better than P2) is used to

count semi-constructive crossovers. When the condition is more strict – both children

are better than their parents (C1 is better than P1 AND C2 is better than P2) – the

crossover is called full-constructive. A crossover that is not semi-constructive nor full-

constructive is called destructive.

The semi-constructive and full-constructive crossovers’ results for SSC, SAC, NSM

and SC are shown in Table 12 and Table 13, respectively. It can be seen from Ta-

ble 12 that while NSM is only slightly more semi-constructive than SC, both SSC

and SAC were more semi-constructive than SC and NSM. This is a consequence of

the greater semantic diversity of SAC and SSC relative to SC and NSM. Usually, the

semi-constructive crossover rate of SAC is from 5% to 7% higher than SC, and of

SSC from 12% to 18% higher. These increases are particularly important because the

semi-constructive rate for SC was fairly small (about 20%).

23

Table 13 shows how difficult it is for GP standard crossover to generate improved

solutions. The percentage of fully constructive crossovers for SC and NSM were roughly

the same, at only 2% for one-variable functions and 3% for bivariate functions. By

adding semantics to control the crossover operator, far more full-constructive behaviour

is obtained. SAC often scored 1.5 times higher than SC and NSM in frequency of

full-constructive events, and SSC around 2 to 3 times higher. SSC generated more

full-constructive events than SAC (up to 1.5 times) on both univariate and bivariate

functions.

8 Conclusions

In this paper, we have proposed a new method for measuring semantics of real-valued

symbolic regression problems, which we called Sampling Semantics (SS). Using it, we

can define the semantic distance between two subtrees; we then proposed two semantic

relations (Semantic Equivalence and Semantic Similarity) for determining the semantic

acceptability of exchanging two subtrees. These semantic relations are used to guide

crossover, resulting in two new semantically based crossover operators for GP: Seman-

tics Aware Crossover (SAC) and Semantic Similarity-based Crossover (SSC). The new

operators were tested on a class of real-valued symbolic regression problems and com-

pared with some similar schemas including No Same Mate (NSM), Soft Brood Selection

(SBS) and Context Aware Crossover (CAC), as well as standard GP crossover (SC).

On a wide range of problems, only SSC and SBS were consistently better than SC, and

of them SSC is the most effective crossover operator.

We also investigated the effect of various parameters on SSC to determine ranges

of suitable values. Some characteristics of SSC were analysed, showing that both SAC

and SSC improve the resulting semantic diversity. We showed that SSC achieves higher

locality than either SAC, NSM or SC. We argue that this is the main reason for its

better constructive effect compared to SAC, NSM and SC. This results in a substantial,

and statistically significant, improvement in performance from SSC, while SAC and

NSM generate almost equivalent performance to SC.

8.1 Assumptions and Limitations

Although this paper has shown that many benefits are to be gained from incorporating

semantics into the design of crossover operators for GP, there are some limitations.

First, the paper focuses on the domain of real-valued problems, leaving other domains

an open question. 15 Second, the semantic sensitivities were experimentally determined

and might not be the best choices either for these problems, and/or for others. Adaptive

mechanisms to determine these values are currently under investigation.

We hypothesised that fixed semantics might occur in real-valued trees as in Boolean

trees, but further studies need to be conducted to understand whether fixed semantics

really occurs, and if so, what form it takes in real-valued problem domains.

15 In fact one simple way to use our method is to transform boolean function learning prob-
lems to real-valued ones as in [54].

24

9 Future work

In the near future, we plan to extend this work in a number of ways. First, we will

apply SSC to some more difficult symbolic regression problems (problems that have

more complex-structured solutions). For these problems, we predict that making small

changes in semantics will be both more difficult, but also more important. Second,

SSC could be used to enhance some previously proposed crossover operators, which

are based purely on the structure of trees – such as crossover with bias on the depth

of nodes [24], one point crossover and uniform crossover [39, 48]. Another potential

research direction is to apply SSC to other problem domains, such as the Boolean

problems that have been previously investigated in [43]. In this case, it may be even

more difficult to generate children that differ semantically from their parents, so that

the benefits may be greater. Last but not least, we plan to investigate suitable ranges for

the lower and upper bound semantic sensitivity values for various classes of problems.

In this paper, these values were manually and experimentally specified; however, it may

be possible to allow these values to self-adapt during the evolutionary process [13].

Acknowledgements

This paper was funded under a Postgraduate Scholarship from the Irish Research

Council for Science Engineering and Technology (IRCSET). The authors would like to

thank the members of NCRA (Natural Computing Research & Applications Group)

at University College Dublin.

References

1. C. Alan. Meaning and Language: An introduction to Semantics and Pragmatics.

Oxford Textbooks in Linguistics, Cambridge, UK, 2004.

2. L. Altenberg. The evolution of evolvability in genetic programming. In K. E.

Kinnear, Jr., editor, Advances in Genetic Programming, chapter 3, pages 47–74.

MIT Press, 1994.

3. C. Baier and J. P. Katoen. Principle of Model Checking. MIT Press, 2008.

4. L. Beadle and C. Johnson. Semantically driven crossover in genetic programming.

In Proceedings of the IEEE World Congress on Computational Intelligence, pages

111–116. IEEE Press, 2008.

5. L. Beadle and C. G. Johnson. Semantic analysis of program initialisation in genetic

programming. Genetic Programming and Evolvable Machines, 10(3):307–337, Sep

2009.

6. L. Beadle and C. G. Johnson. Semantically driven mutation in genetic program-

ming. In A. Tyrrell, editor, 2009 IEEE Congress on Evolutionary Computation,

pages 1336–1342, Trondheim, Norway, 18-21 May 2009. IEEE Computational In-

telligence Society, IEEE Press.

7. E. K. Burke, S. Gustafson, and G. Kendall. Diversity in genetic programming: An

analysis of measures and correlation with fitness. IEEE Transactions on Evolu-

tionary Computation, 8(1):47–62, 2004.

8. R. Cleary and M. O’Neill. Solving knapsack problems with attribute grammars.

In Proceedings of the Grammatical Evolution Workshop, 2004.

25

9. R. Cleary and M. O’Neill. An attribute grammar decoder for the 01 multi-

constrained knapsack problem. In Proceedings of the Evolutionary Computation

in Combinatorial Optimization, pages 34–45. Springer Verlag, April 2005.

10. A. M. Collins and M. R. Quillian. Retrieval time from semantic memory. Journal

of Verbal Learning and Verbal Behavior,, 8:240–247, 1969.

11. J. M. Daida, D. S. Ampy, M. Ratanasavetavadhana, H. Li, and O. Chaudhri.

Challenges with verification, repeatability, and meaningful comparison in genetic

programming: Gibson’s magic. In Proceedings of the Genetic and Evolutionary

Computation Conference, (GECCO’1999), pages 1851–1858. Morgan Kaufmann,

1999.

12. M. de la Cruz Echeanda, A. O. de la Puente, and M. Alfonseca. Attribute grammar

evolution. In Proceedings of the IWINAC 2005, pages 182–191. Springer Verlag

Berlin Heidelberg, 2005.

13. K. Deb and H. G. Beyer. Self-adaptation in real-parameter genetic algorithms

with simulated binary crossover. In Proceedings of the Genetic and Evolutionary

Computation Conference, pages 172–179. Morgan Kaufmann, July 1999.

14. R. E.Bryant. Graph-based algorithms for Boolean function manipulation. IEEE

Transactions on Computers, C-35:677–691, 1986.

15. E. Galvan-Lopez and M. O’Neill. On the Effects of Locality in a Permutation

Problem: The Sudoku Problem. In CIG. IEEE, 2009.

16. E. Galvan-Lopez and M. O’Neill. Towards Understanding the Effects of Locality in

Genetic Programming. In MICAI, Lecture Notes in Computer Science. Springer,

2009.

17. J. Gottlieb and G. Raidl. The effects of locality on the dynamics of decoder-based

evolutionary search. In Proceedings of the Genetic and Evolutionary Computation

Conference, page 283290. ACM, 2000.

18. S. Gustafson, E. K. Burke, and N. Krasnogor. On improving genetic programming

for symbolic regression. In Proceedings of the 2005 IEEE Congress on Evolutionary

Computation, volume 1, pages 912–919, Edinburgh, UK, 2005. IEEE Press.

19. S. Hengpraprohm and P. Chongstitvatana. Selective crossover in genetic program-

ming. In Proceedings of ISCIT International Symposium on Communications and

Information Technologies, pages 14–16, November 2001.

20. N. X. Hoai, R. McKay, and D. Essam. Solving the symbolic regression problem

with tree-adjunct grammar guided genetic programming: The comparative results.

In Proceedings of the 2002 Congress on Evolutionary Computation (CEC2002),

pages 1326–1331. IEEE Press, 2002.

21. N. X. Hoai, R. I. McKay, and D. Essam. Representation and structural difficulty in

genetic programming. IEEE Transection on Evolutionary Computation, 10(2):157–

166, 2006.

22. N. X. Hoai, R. I. B. McKay, D. Essam, and H. Abbass. Toward an alternative

comparison between different genetic programming systems. In M. Keijzer, U.-M.

O’Reilly, S. M. Lucas, E. Costa, and T. Soule, editors, Genetic Programming 7th

European Conference, EuroGP 2004, Proceedings, volume 3003 of LNCS, pages

67–77. Springer-Verlag, 2004.

23. T.-H. Hoang, D. Essam, R. I. B. McKay, and X. H. Nguyen. Building on suc-

cess in genetic programming:adaptive variation & developmental evaluation. In

Proceedings of the 2007 International Symposium on Intelligent Computation and

Applications (ISICA), Wuhan, China, Sep 2007. China University of Geosciences

Press.

26

24. T. Ito, H. Iba, and S. Sato. Depth-dependent crossover for genetic programming.

In Proceedings of the 1998 IEEE World Congress on Computational Intelligence,

pages 775–780. IEEE Press, May 1998.

25. T. Ito, H. Iba, and S. Sato. A self-tuning mechanism for depth-dependent crossover.

In Advances in Genetic Programming, page 377399. IEEE Press, June 1999.

26. C. Johnson. Deriving genetic programming fitness properties by static analysis.

In Proceedings of the 4th European Conference on Genetic Programming (Eu-

roGP2002), pages 299–308. Springer, 2002.

27. C. Johnson. Genetic programming with guaranteed constraints. In Recent Advances

in Soft Computing, pages 134–140. The Nottingham Trent University, 2002.

28. C. Johnson. What can automatic programming learn from theoretical computer

science. In Proceedings of the UK Workshop on Computational Intelligence. Uni-

versity of Birmingham, 2002.

29. C. Johnson. Genetic programming with fitness based on model checking. In Pro-

ceedings of the 10th European Conference on Genetic Programming (EuroGP2002),

pages 114–124. Springer, 2007.

30. C. Johnson. Genetic programming crossover: Does it cross over? In Proceedings

of the 12th European Conference on Genetic Programming (EuroGP2009), pages

97–108. Springer, 2009.

31. G. Katz and D. Peled. Genetic programming and model checking: Synthesizing new

mutual exclusion algorithms. Automated Technology for Verification and Analysis,

Lecture Notes in Computer Science, 5311:33–47, 2008.

32. G. Katz and D. Peled. Model checking-based genetic programming with an applica-

tion to mutual exclusion. Tools and Algorithms for the Construction and Analysis

of Systems, 4963:141–156, 2008.

33. M. Keijzer. Improving symbolic regression with interval arithmetic and linear

scaling. In Proceedings of EuroGP’2003, pages 70–82. Springer-Verlag, April 2003.

34. D. Knuth. Semantics of context-free languages. Mathematical Systems Theory,

2:95, 1968.

35. J. Koza. Genetic Programming: On the Programming of Computers by Natural

Selection. MIT Press, MA, 1992.

36. J. R. Koza. Genetic Programming: On the Programming of Computers by Means

of Natural Selection. The MIT Press, Cambridge, Massachusetts, 1992.

37. K. Krawiec and P. Lichocki. Approximating geometric crossover in semantic

space. In F. Rothlauf, editor, Genetic and Evolutionary Computation Conference,

GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, pages 987–

994. ACM, 2009.

38. K. Krawiec and B. Wieloch. Functional modularity for genetic programming. In

GECCO ’09: Proceedings of the 11th Annual conference on Genetic and evolution-

ary computation, pages 995–1002, Montreal, July 2009. ACM.

39. W. B. Langdon. Size fair and homologous tree genetic programming crossovers.

In Proceedings of the Genetic and Evolutionary Computation Conference, pages

1092–1097. Morgan Kaufmann, July 1999.

40. W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer,

Berlin, 2002.

41. H. Majeed and C. Ryan. A less destructive, context-aware crossover operator for

gp. In Proceedings of the 9th European Conference on Genetic Programming, pages

36–48. Lecture Notes in Computer Science, Springer, April 2006.

27

42. H. Majeed and C. Ryan. On the constructiveness of context-aware crossover. In

Proceedings of the 9th annual conference on Genetic and evolutionary computation

(GECCO), pages 1659–1666. ACM Press, July 2007.

43. N. McPhee, B. Ohs, and T. Hutchison. Semantic building blocks in genetic pro-

gramming. In Proceedings of 11th European Conference on Genetic Programming,

pages 134–145. Springer, 2008.

44. N. Mori, B. McKay, N. X. Hoai, D. Essam, and S. Takeuchi. A new method for

simplifying algebraic expressions in genetic programming called equivalent decision

simplification. Journal of Advanced Computational Intelligence and Intelligent In-

formatics, 13(3):237–244, 2009.

45. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,

2005.

46. H. R. Nielson and F. Nielson. Semantics with Applications: An Appetizer. Springer,

Springer-Verlag, London, UK, 2007.

47. U. M. O’Reilly and F. Oppacher. Program search with a hierarchical variable

length representation: Genetic programming, simulated annealing and hill climb-

ing. Lecture Notes in Computer Science, 866(1):397406, 1994.

48. R. Poli and W. B. Langdon. Genetic programming with one-point crossover. In

Proceedings of Soft Computing in Engineering Design and Manufacturing Confer-

ence, pages 180–189. Springer-Verlag, June 1997.

49. R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to Ge-

netic Programming. Published via http://lulu.com and freely available at

http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).

50. B. J. Ross. Logic-based genetic programming with definite clause translation gram-

mars. New Gen. Comput., 19(4):313–337, 2001.

51. F. Rothlauf. Representations for Genetic and Evolutionary Algorithms. Springer,

2nd edition edition, 2006.

52. F. Rothlauf and D. Goldberg. Redundant Representations in Evolutionary Algo-

rithms. Evolutionary Computation, 11(4):381–415, 2003.

53. F. Rothlauf and M. Oetzel. On the locality of grammatical evolution. In Proceedings

of the 9th European Conference on Genetic Programming, pages 320–330. Lecture

Notes in Computer Science, Springer, April 2006.

54. R. P. Salustowicz and J. Schmidhuber. Probabilistic incremental program evolu-

tion. Evolutionary Computation, 5(2):123–141, 1997.

55. W. A. Tackett. Selection, and the Genetic Construction of Computer Programs.

PhD thesis, University of Southern California, USA, 1994.

56. W. A. Tackett and A. Carmi. The unique implications of brood selection for genetic

programming. In Proceedings of the 1994 IEEE World Congress on Computational

Intelligence, Orlando, Florida, USA, 27-29 June 1994. IEEE Press.

57. N. Q. Uy, N. X. Hoai, and M. O’Neill. Semantic aware crossover for genetic

programming: the case for real-valued function regression. In Proceedings of Eu-

roGP09, pages 292–302. Springer, April 2009.

58. M. L. Wong and K. S. Leung. An induction system that learns programs in dif-

ferent programming languages using genetic programming and logic grammars.

In Proceedings of the 7th IEEE International Conference on Tools with Artificial

Intelligence, 1995.

59. M. L. Wong and K. S. Leung. Learning programs in different paradigms using

genetic programming. In Proceedings of the Fourth Congress of the Italian Asso-

ciation for Artificial Intelligence. Springer-Verlag, 1995.

28

60. P. Wong and M. Zhang. SCHEME: Caching subtrees in genetic programming. In

J. Wang, editor, 2008 IEEE World Congress on Computational Intelligence, Hong

Kong, 1-6 June 2008. IEEE Computational Intelligence Society, IEEE Press.

