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Abstract

A key concern when training a multi-layer perceptron (MLP) is that the final net-
work should generalise well out-of-sample. A considerableliterature has emerged
which examines various aspects of this issue. In this study we draw inspiration from
theories of memory consolidation in order to develop a new methodology for training
MLPs in order to promote their generalisation capabilities. Thesynaptic homeostasis
hypothesis [32, 33] proposes that a key role of sleep is to downscale synaptic strength
to a baseline level that is energetically sustainable. As a consequence, the hypothesis
suggests that sleep acts not to actively strengthen selected memories but rather to re-
move irrelevant memories. In turn, this lessens spurious learning, improves the signal
to noise ratio in maintained memories, and therefore produces better generalisation
capabilities. In this paper we describe the synaptic homeostasis hypothesis and draw
inspiration from it in order to design a ‘wake-sleep’ training approach for MLPs. The
approach is tested on a number of datasets.

1. Introduction

A key concern when applying powerful machine learning methods such as MLPs to
induce a model from a training dataset, is that the resultingmodel should generalise
well out of sample. There are several issues that will impacton the generalisation ca-
pability of a MLP, including the sufficiency of the training dataset (i.e. does it contain
sufficient explanatory inputs in order to allow construction of a predictive model for
the target output), is the training data sufficiently representative of all out of sample
data that could be presented to the model, is the target function smooth (non-smooth
functions will be more difficult to model), and what choice oferror criterion will pro-
mote good generalisation?

Another factor which will impact on how well an MLP will generalise is its internal
structure. If too-large a network is employed, it will have many weights and will be
prone to over training, thereby learning any ‘noise’ in the data. Increasing the number
of weights will also add to the computational complexity of the training process. If
too-small a network is used, it will not have sufficient powerto adequately represent
the structure in the data.

Of course, the importance of generalisation extends far beyond machine learning
and statistics, and the ability to generalise from past learning to new situations is a key
driver of evolutionary fitness in biological organisms. Hence, processes of learning,
memory formation, and the integration of new experiences into existing memories in
animals, are likely to be rich sources of inspiration for thedesign of algorithms with
good generalisation capabilities.

It is widely thought that iterated wake-sleep states play animportant role in mem-
ory formation and maintenance in animals. Despite the rich literature in neural net-
works concerning generalisation, relatively little attention has been paid to the possi-
bility of drawing inspiration from iterated wake-sleep states in order to design better
training algorithms for neural networks.

1.1. Memory

Broadly speaking, learning can be considered as the processof acquiring new infor-
mation, with memory referring to the persistence of learning in a state that can be
revealed at a later time [30]. The processes of learning and memory formation have
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been widely studied in the literature of both psychology andneurobiology. In the lat-
ter case, the focus of research is on how memories are recorded and maintained in the
physical structure of the brain. The basic structural unit of the brain consist of individ-
ual neurons, a critical aspect of learning and memory is thatthe connection structure
between these neurons is plastic and is altered via the process of learning. The con-
cept of plasticity was first suggested over a century ago by William James [10], and
the synaptic plasticity hypothesis lies at the centre of most research on memory stor-
age [23]. This hypothesis proposes that the strength of synaptic connections between
neurons, which in turn determine the ease with which an action potential in one cell
excites or inhibits its target cell, are not fixed but are modifiable or ‘plastic’.

While there are multiple types of neurons, the canonical model of information
flow at a neuron (the ‘neuron doctrine’) is that the cell body of a neuron integrates the
electrical signals which enter the cell through nerve fibrescalled dendrites. If the total
input signal into a neuron in a time period exceeds a threshold level, the neuron ‘fires’
and sends an output electrical signal along its axon. In turn, the axon of a neuron is
connected to the dendrites of other neurons. Consequently,the firing of a neuron can
result in a cascade effect.

A neuron typically has a dense web of input dendrites and these connect, via a
synapse, to axon terminals of other neurons at small structures known as dendritic
spines. These spines can grow or shrink and are constantly extending out of and re-
tracting back into the dendrite. Hence, the precise networkof connections between
neurons in a brain is not fixed, but dynamically alters over time. Indeed, two individual
neurons may have multiple and not just a single connection. As learning takes place,
the network of connections adapts and changes take place at synaptic junctions which
can enhance or reduce the ease with which electrical signalscan cross the synaptic
gap. Memory is stored in a network of linked neurons.

1.1.1. Memory Consolidation

Thememory consolidation hypothesis was first proposed over a century ago by Müller
and Pilzecker [18] and posits that new memories are initially fragile and are only
gradually consolidated into long term memory. As noted by [17], while storage of
new events in memory can occur very quickly (within seconds), slow consolidation
of memories into long term storage (a process which can take days, weeks, or even
longer) may be adaptive as it allows for a dynamic interplay between current experi-
ence and pre-existing memories.

The term memory consolidation is itself variously defined as, ‘a time-dependent,
off-line process that stabilizes memories against interference and decay, allowing them
to persist over time’ [17], a ‘process that transforms new and initially labile memories
encoded in the awake state into more stable representationsthat become integrated
into the network of pre-existing long-term memories’ [5], or as ‘the processes that
stabilise the learning-induced changes in synaptic morphology that represent the bio-
logical substrate of memory’ [8].

In discussing memory consolidation, a distinction is drawnbetween:

1. cellular consolidation, and

2. systems consolidation.

Cellular consolidation arises from a series of biochemicalevents which take place
in individual synapses, typically within a short time frame(minutes to hours) after
the initial experience. System consolidation refers to events which take place over a
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longer time frame and which are thought to maintain the memory in long term memory
storage.

Rudy (2014) [23] provides an excellent review of the currentstate of understanding
of how memories are created and maintained. While there is still considerable debate
concerning several aspects of this process, the most widelyaccepted view is that mem-
ory develops over a number of stages namely, generation, stabilisation, consolidation
and maintenance.

Initially, there are changes in the synaptic strength of theeffected neurons, result-
ing from a reorganisation of existing proteins in the relevant dendritic spine and axon
terminal. For example, within minutes, the number of glutamate receptors in the spine
is increased thereby facilitating the enhanced transmission of sodium ions (electrical
signal) between the axon terminal and the spine. To consolidate the synaptic change
further, in following hours transcription and translationprocesses are activated creat-
ing new proteins. These have several effects including the enhancement of the degree
of bonding between the spine and axon, and an alteration of the physical geometry
of the spine. This further promotes the transmission of ionsbetween the spine and
axon. Typically, this process lasts for up to 24 hours and helps ensure that the physical
changes in the synapses endure for several days.

While the above explains how synaptic changes initially occur and are subse-
quently stabilised, it does not explain how strengthened synapses that support memory
outlive the molecules from which they are made. This is knownas the ‘molecular
turnover problem’ and is a active area of research inquiry. In order to maintain a mem-
ory, a variety of proteins need to be continually manufactured at the synapse, even in
the absence of the original stimulus. Recent work by?? suggests that self-sustaining
(self-copying) populations of proteins may be the key to maintaining the long-term
synaptic changes that underlie memory.

Obviously, there is little reason to maintain a memory of most of the routine events
which occur during a day, and indeed experience suggests that we will forget much
of this detail within several days. It is speculated that memories are most likely to
be maintained for the long term when either the behavioural experience is considered
significant, is repeated, or when the memory is recalled [8].As will be discussed later,
it is thought that sleep plays an important role in long term memory consolidation.

1.1.2. Memory Systems

When discussing memory, is important to note that the the brain has multiple memory
systems, depending on the nature of what is being learnt. Perhaps the best known
system is that for declarative memory which includes both episodic memory (memory
for facts and events) and semantic memory (supports memory for facts and provides
an ability to generalise from multiple experiences). This system relies on an interplay
between the neocortex, the hippocampus and its related cortical structures. Sensory
information passes into the neocortex and in turn is processed and passed via a number
of intermediate structures into the hippocampus. By the time the information passes
into the hippocampus it is already highly processed and amodal (hippocampus neurons
do not know whether they are receiving auditory, visual or other sensory inputs) [23].

Although it is known that the hippocampus plays a vital role in episodic memory,
there is debate as to how exactly it does this. One theory is the ‘indexing theory of
episodic memory’ [35]. According to this theory, the content of episodic memories
are stored in the neocortex and the hippocampus creates indices to these memories by
binding the inputs it receives from the different regions ofthe neocortex into a neural
ensemble that represents the conjunction of their co-occurance [23]. The hippocampus
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projects back to the neocortex when the index is activated.

In essence, the theory assumes that events create a memory trace by activating pat-
terns of neocortical activity, which then project to the hippocampus, with the relevant
synapses in the hippocampus responding to the neocortical inputs being strengthened
via long term potentiation (LTP). Therefore, the hippocampus acts as an index to a
‘memory’ filing cabinet which enables the recall of memories, even when only a sub-
set of the original neocortical pattern is received by the hippocampus. Although this
may appear to be an unneccessarily complex process, it is posited that it may have
arisen due to structural limitations of the neocortex as potential associative connectiv-
ity across neocortical regions is low [23]. It is also speculated that memories in the
neocortex may potentially have more than one index associated with them, if the event
is repeated or if the memory is reactivated (recalled). Hence, the more often an item is
experienced or recalled, the more ‘paths’ to it may be generated in the hippocampus.
This is known as themultiple trace theory [19].

1.2. Sleep and Memory Consolidation

At first glance being asleep would appear to be a potentially dangerous and costly
activity as sleeping animals cannot forage for resources, take care of young, procreate,
and are exposed to predation risk [7, 14]. Despite these drawbacks, sleep behaviours
are widespread in the animal kingdom and it is evident that many animals spend a
significant portion of their day in sleep or in sleep-like states. Evolution has even
devised some extraordinary adaptations to accommodate sleep [34]. Perhaps the most
unusual of these adaptations is exhibited by cetaceans (including whales, dolphins and
porpoises) who can engage in unihemispherical (or ‘half-brain’) sleep, wherein one
eye is kept open during sleep, with the contralateral side ofthe brain also remaining
awake [21]. Other examples of unihemispheric sleep includesome species of birds
[22] which can keep one eye open during sleep, particularly if the predation risk is
high.

Given the widespread nature of sleep behaviour, and the lengths to which evolution
has gone in order to conserve sleep in some animals, one couldwell ask what benefit
does sleep provide that makes it crucial to living creatures?

Amongst the multiple potential functions of sleep, one of the most heavily re-
searched is whether sleep plays a role memory formation and maintenance. In many
species, the same regions of the brain that process sensory information are also im-
portant for memory formation. This poses a dilemma, as if these regions are busy
processing sensory information during waking, then it is likely to be more difficult for
processes such as memory consolidation to take place simultaneously, in turn leading
to a suggestion that sleep may allow these conflicting activities to co-exist, leading to
a claim that memory consolidation occurs predominately during sleep [1]. .

In this study we draw inspiration from the synaptic homeostasis hypothesis which
is drawn from the literature on memory consolidation in order to design a training
approach for an MLP which is capable of generalising from noisy data. Therefore,
we simulate a wake-sleep cycle during which the MLP is presented with new sensory
inputs (data) during the wake phase, leading to synaptic potentiation, with synaptic
downscaling taking place during a simulated ‘sleep’ phase.Critically and in contrast
to prior literature on weight-decay processes for trainingof MLPs, the training process
takes place over a sequence of simulated wake-sleep phases.
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1.3. Structure of Paper

The remainder of this paper is organised as follows. Section2 provides some back-
ground on two theories of memory consolidation during sleep. Section 3 describes the
model developed in this paper and outlines the experiments undertaken. The results
of these are presented and analysed in section 4, with conclusions and suggestions for
future work being presented in section 5.

2. Background

In this section we provide some background on memory consolidation during sleep,
and in particular, we describe the synaptic homeostasis hypothesis. We also overview
some previous literature which has applied ideas from the process of memory consol-
idation for neural network training.

2.1. Sleep States

A common way to characterise sleep state is to examine the electrical activity of the
brain recorded using an electroencephalogram (EEG). In mammals and birds sleep can
be divided into two main phases namely, REM (rapid eye movement) and NREM (non
rapid eye movement) sleep. REM sleep is characterised by high frequency, low am-
plitude, electrical activity in the brain, and this bears some similarity to the electrical
activity of the brain during wakefulness. In contrast, NREMsleep is characterised by
the propagation of low frequency (slow), high amplitude, electrical waves in the brain.

In humans, NREM sleep is divided into three successive stages [24], and the sleep
cycle follows a typical ordering of stage 1 NREM, stage 2 NREM, stage 3 NREM,
and finally REM sleep. The entire cycle lasts some 90-100 minutes and repeats itself
several times during the night. As the sleep cycles progress, the portion of time spent
in NREM sleep reduces and the portion of time in each cycle spent in REM sleep
increases. Sleep during stage 3 of NREM sleep is termed slow wave sleep (SWS),
and is characterised by delta wave activity brain activity,which produces the lowest
frequency and highest amplitude patterns of electrical activity.

2.2. Active System Consolidation Hypothesis

There are currently two hypotheses concerning the mechanisms underlying the consol-
idation of memory during sleep. The active system consolidation hypothesis (ASCH)
proposes that an active consolidation process results fromthe re-activation of selected
memories during sleep [5], and the synaptic homeostasis hypothesis (SHH) assumes
that consolidation may also occur during waking and that therole of sleep is to restore
the encoding capabilities of synaptic connections (globalsynaptic downscaling) [1].

The ASCH arose from the standard model of systems consolidation for declara-
tive memory [16]. Different regions of brain are responsible for different memories,
with declarative memory (these memories are accessible to conscious recollection and
include memories for facts and events) relying on the hippocampus and neocortical
regions of the brain, andprocedural memory (memories for skills that result from
repeated practice e.g. riding a bike or playing a piano) relying on the striatum and
cerebellum [5]. The standard two-stage theory for declarative memory consolidation
proposes that there are two separate memory stores. One allows learning at a fast rate
and serves as an intermediate buffer to hold information temporarily. The other store
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learns at a slower rate and serves as long-term memory. For declarative memory, sen-
sory information in the waking brain flows into the cortex andit is proposed that events
are initially encoded in parallel in neocortical networks and also in transient neuronal
assemblies in the hippocampus.

Although the theory did not initially outline a role for explicit recall in the consoli-
dation of the long term memory, it has been suggested that during sleep, a two-way di-
alogue between the hippocampus and neocortex takes place inorder to effect memory
consolidation [5]. The hippocampus can be considered as a rapidly-encoded, sparse,
memory system which allows for the formation of event memories, whereas the neo-
cortex is a slowly-consolidating, dense, memory storage system. During NREM sleep,
slow (electrical wave) oscillations, spindles, and ripples coordinate the reactivation and
redistribution of hippocampus-dependent memories to neocortical sites. The newly-
acquired memory traces are reactivated and it is claimed that information flows from
the hippocampus to the cortex, such that connections in the neocortex are strength-
ened, forming more persistent memory representations. In REM sleep, it is proposed
that the information flow reverses (from the neocortex back to the hippocampus). This
two-way process iterates during the period of sleep [31], thereby modifying the repre-
sentations in both stores, and integrating the new memory into pre-existing memories.
This enables the extraction of invariant features, including the forming of new associ-
ations, and eventually insights into hidden rules and patterns [5]. Hence, through the
repeated re-activation of the new memories during sleep, the fast learning store acts as
an internal trainer of the slow learning store to gradually adapt the new memories to
the pre-existing network of long term memories [5].

There is some evidence to support the ASCH, as we know from brain imaging stud-
ies that the spatio-temporal patterns of neuronal firing that occur in the hippocampus,
during the exploration of a novel environment or during simple spatial tasks, are reac-
tivated in the same order during subsequent sleep. However,we do not have a detailed
understanding as to how these reactivations could stimulate the strengthening of links
between neocortical storage sites, and specifically, how enduring synaptic changes
could result in the neocortex [5]. In the standard two-stagetheory, the consolidation
process that takes place off-line relies on the re-activation of the neuronal circuits that
were implicated in the initial encoding of the memory, and therefore consolidation in-
volves thereinforcement of memory representations at the synaptic level. Long-term
potentiation (LTP) (Hebbian learning - the assumption thatinformation is stored in the
brain as changes in synaptic efficiency which occur when neurons fire synchronously
together) is considered a key mechanism of synaptic consolidation. It is not certain
whether memory re-activation during sleep promotes the redistribution of memories
by inducing new LTP (at long-term storage sites) or whether re-activation merely en-
hances the maintenance of LTP that was induced during encoding. An assumption of
the traditional two stage model is that LTP takes place in thelong term memory store
as a result of selective reactivation of memories during system consolidation.

Although we await further investigation of sleep dependentlearning, recent work
by [39] has indicated that sleep (specifically, NREM sleep) by mice after a motor
learning task promoted new spine formation in the motor cortex of those mice.

It has been speculated that spindle oscillations which are concentrated in stage
2 NREM, open molecular gates to plasticity by evoking calcium entry in neocorti-
cal pyramidal neurons, priming the neurons for biochemicalevents that could lead to
permanent changes in the network. Consolidation could thenproceed by iteratively
recalling and storing information in primed neural assemblies [25]. One interesting
feature of reactivations during SWS is that they appear to benoisier, less accurate, and
often happen at a faster firing rate than the related activityduring the initial encod-
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ing phases. Plausibly this ‘noisy’ teaching could result inmore robust memory in an
analogue to using ‘jitter’ in training MLPs.

2.3. Synaptic Homeostasis Hypothesis

An alternative perspective which has gained a significant following in recent years is
thesynaptic homeostasis hypothesis (SHH) [32, 33, 34]. This hypothesis suggests that
the primary memory function of sleep is to produce a global synaptic downscaling,
and that memory consolidation is continuous (i.e. can occurduring waking) and not
limited to sleeping states.

The proponents of the SHH do not disagree that memories form as neurons that
get activated together strengthen their links through synaptic potentiation, nor that
brains replay newly-learnt material at night, or that patterns of neural activity during
sleep sometimes resemble those recorded while a subject is awake. However they
question conventional wisdom that brain activity during sleep reinforces the synapses
involved in storing newly-formed memories, noting that there is no strong evidence
that synapses in replayed circuits get strengthened duringsleep [34]. Instead they
claim that a critical driver of sleep is a need to restore the brain to a baseline state,
by weakening the links between neurons during sleep, in order to preservethe brain’s
ability to learn and form new memories while it is awake. The weakening process is
termedsynaptic downscaling.

Brain tissue is metabolically expensive. In humans, the brain while accounting
for only about 2% of total body mass, consumes some 20% of energy requirements
during quiet waking [27]. Approximately 2/3 of this energy consumption goes to
supporting and maintaining synaptic activity. Strong synapses consume more energy
than weak ones and the energy budget available to brain tissue is not unlimited. During
the day, the potentiation of synaptic circuits from sensoryinputs results in an increase
in the number and size of synapses, leading to a higher level of energy requirement
[34]. Advocates of the SHH claim that a generalised depression of synapses during
sleep would benefit the brain as it would decrease the energy cost of synaptic activity,
eliminate weak and ineffective synapses, and reduce cellular stress [4].

An important part of effective learning is a corresponding ‘forgetting’ of irrelevant
memories. Under the SHH, synaptic potentiation stemming from daytime learning is
down regulated brain-wide during slow wave sleep. Crucially, it is assumed that this
rescaling process preserves relative synaptic weight differences, and therefore may
lead to forgetting because the downscaling may effectivelysilence, or even remove,
spines with synapses that are only weakly potentiated. Downselection under the hy-
pothesis promotes survival of only the fittest neural circuits, either because they were
activated strongly and consistently during wakefulness, or because they were better in-
tegrated with pre-existing memories (for example, a new word in a known language).
Synapses that were only mildly enhanced during wakefulness, or which fit less well
with existing memories would be depressed, and leave no lasting trace in our neural
circuitry.

While there is experimental evidence for several aspects ofsynaptic downscaling
[22], including evidence from animal studies that the number and size of spines and
related synapses reduces during sleep [34], there is as yet no direct evidence for a spe-
cific mechanism which selectively weakens activated synapses during sleep [34]. It
is speculated that the slow waves of mammalian NREM sleep play a role. We know
that at sleep onset, levels of SWA are elevated as a result of synaptic strength ac-
crued during learning while awake. This increase in effective connectivity causes the
slow-oscillations of neurons to be more synchronous, and thereby levels of SWA to be
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high [22]. The large-scale slow oscillations of neuronal networks may produce synap-
tic downscaling, a global decrease in synaptic strength, and an increase the signal to
noise ratios for important memories by eliminating synapses below a certain thresh-
old. This may explain why performance on certain cognitive tasks increases following
sleep [22]. Interestingly, synaptic downscaling is a self-limiting process because as
synapses weaken, neurons oscillate less synchronously andconsequently induce less
downscaling [22](p. 265). It is also known that the chemistry of the brain changes
during sleep and Tononi and Cirelli [34] have speculated that this could bias neural
circuitry so that synapses becomes weakened rather than strengthened when signals
flow across them.

The SHH, with its emphasis on an ‘active decay’ (forgetting)of irrelevant mem-
ories during sleep, provides an interesting alternative tothe traditional idea of sleep-
mediated synaptic strengthening of important memories. Most memories formed dur-
ing the day are irrelevant and a decay process which ensured that unwanted and un-
needed memories are removed could result in a lessening of spurious learning and
better generalisation capabilities [8].

In this study, we do not claim that the SHH provides a more correct description
of memory consolidation during sleep than the ASCH as current empirical evidence
does not conclusively support the SHH. Indeed, it has been noted by Axmacher et
al. [1] and by Diekelmann and Born (2010) [5] that the ASCH andthe SHH are not
necessarily mutually exclusive, as a sequential process could exist with active system
consolidation integrating newly encoded memories with pre-existing long term mem-
ories thereby inducing conformational changes in the neocortex followed by global
synaptic downscaling in order to avoid the saturation of synaptic networks. Rather, we
draw inspiration from the SHH in order to design a training process for MLPs.

2.4. Synaptic Downscaling and Regularisation

The synaptic downscaling concept bears interesting comparison with some classical
approaches to regularisation in the neural network literature. Broadly speaking, regu-
larisation is any modification to a learning algorithm whichaims to reduce the chance
of overfit. Typically, the object is to smooth the response ofthe final model. Common
methods for regularisation include early stopping, wherein training is stopped when
the error measure on a hold-out validation sample begins to increase, or the inclusion
of a penalty term in the error function for model complexity.In applications of the lat-
ter in MLPs, the error metric is usually defined as MSE plus an additional (weighted)
term which consists of the sum of the squares of the weights. This alteration to the
error function will tend to reduce weight sizes in the final network and therefore make
the network’s response smoother. In turn this will tend to reduce overfit as over-fitted
mappings require high curvature and hence large weights. The general form of the
regularised cost function in this case is given by:

Ereg = Emse + αω (1)

whereα is the regularisation parameter which controls the trade-off between reducing
the error and increasing the smoothing. The termω is a penalty function which cap-
tures the complexity of the underlying network. If the penalty is defined as the sum of
the squares of the weights in the MLP, the approach bears similarity to ridge regres-
sion in linear models, and it effectively implements a form of ‘weight decay’ as in each
epoch individual weights decay in proportion to their previous size, i.e. exponentially,
unless the weight is changed in the learning process [20]. A wide number of variants
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on this basic approach have been examined including,‘weight elimination’ [37], where
the decay process is tuned in order to shrink small weight coefficients more heavily.

Although even basic weight decay approaches can notably improve generalisation
capabilities [12], we cannot assume that is is optimal to apply the same decay constant
to all weights in the network, and in particular, we could suppose that different decay
constants should be applied to connections between input and hidden, hidden to hid-
den, and hidden to output nodes. Nor can we assume that it is optimal to apply the
same decay constant(s) for the entire training process, and[37] illustrate an approach
where the decay constant is iteratively updated during training.

Apart from reducing the values for weight parameters in a network, another way to
attempt to improve generalisation is to directly restrict or seek to reduce the structural
complexity of the network. This can be done by restricting the number of hidden layer
nodes, or by ‘pruning’ individual node connections in a network. One approach is
to set connections with small weights to zero, thereby ‘tuning off’ or ‘pruning’ that
connection. After the relevant weights are deleted, the (reduced) network is retrained.
A significant number of studies applying network pruning have resulted over the past
25 years following early work by [28, 29].

As noted by [13], there is a close link between weight decay and pruning, as an
iterated pruning process effectively reduces to continuous weight-decay during train-
ing. A downside of these approaches is that the learning process can be slow due to
the need for repeated re-training and there is an implicit assumption that deletion of
connections with small weight values will not have much effect on model fit. A better,
if often computationally prohibitive, approach would be todelete weights, whose dele-
tion will have least effect on training error (or to train thenetwork using all possible
subsets of weights [11]). Of course, to determine which weight to delete, the MLP
would need to be iteratively retrained with each weight being removed in turn.

A more computationally feasible approach to pruning was developed by Lecun
et al. (1989) [13], namely the optimal brain damage (OBD) approach. In OBD the
second derivatives of each weight parameter with respect tothe error function are used
in order to determine which weights to remove. As for other pruning methods, OBD
proceeds in an iterative manner. Initially the full networkis trained on the data, a
pruning process is then applied, and the new network is then retrained.

From the above discussion, we can see that weight decay and pruning, both fea-
tures of the SHH, are well-developed techniques in the neural network literature. It is
interesting to note that the development of these techniques stemmed from a statistical
rather than a biological perspective. An important aspect of the memory consolidation
process that has not yet been embedded in the regularisationliterature is the iterative
nature of memory consolidation, with new memories only being slowly integrated into
existing knowledge, with both memories being altered in this process.

2.5. Neural Network Derived from a Sleep Metaphor

As noted in section one, relatively little attention has been paid to the use of ‘sleep’
metaphors for design of neural network algorithms. Perhapsthe best known of these
algorithms is the ‘wake-sleep’ algorithm of Hinton et al. [9] for unsupervised learning
which draws on the standard model of systems consolidation for declarative memory.
In Hinton’s study, a multilayer network of simulated stochastic neurons is described,
with bottom up recognition connections during the wake phase being used to produce
a representation of inputs in one or more hidden layers. In the ‘wake’ phase, neu-
rons are driven by recognition connections, and generativeconnections are adapted
to increase the probability that they would reconstruct thecorrect activity vector in
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the layer below. In the ‘sleep’ phase, neurons are driven by generative connections,
and recognition connections are adapted to increase the probability that they would
produce the correct activity vector in the layer above. By alternating activity in two
directions, the hidden layer representations are modified until they produce an optimal
representation of the original signal.

3. Model and Experiments

The general model we adopt for our experiments is a feed forward multi-layer percep-
tron (MLP). We create training data from four test functions, and for each input vector
in the training set, we inject differing amounts of noise into the associated function
output, thereby producing ‘learning’ problems of varying difficulty.

The MLP is exposed to a succession of non-overlapping ‘windows’ of training data
during its wake cycles. During exposure to each training vector, a learning process
takes place in which synaptic potentiation via the back propagation training algorithm
is simulated. At the end of each data window, a sleep cycle is simulated during which
synaptic downscaling takes place, and this in turn is followed by another wake cycle
in which a new window of training data is presented to the MLP network. During
downscaling each weight is decreased by a certain percentage.

Once the MLP has been trained, its out of sample performance on clean test data,
generated using the relevant function, is assessed. This allows us to determine how
well the MLP has performed in uncovering the correct underlying function, in spite of
being presented with noisy data during training.

The results from the MLP developed using a simulated synaptic downscaling pro-
cess are benchmarked against those produced by a feed forward MLP which has been
trained in one pass over the training data.

3.1. Datasets

We selected a suite of four synthetic regression problems sothat we can reliably gen-
erate data with specific amounts of noise. Figures 6, 7, 8 are graphical represen-
tations of the bivariate problemsF1m F3, andF4 respectively. In every synthetic
dataset, we randomly sample 100 training examples of the form (x, y), where the
input vectorx ∈ Rd, and the response variabley ∈ R. The goal is to learn a tar-
get functionf that maps x to y. The response variable of each example is corrupted
by random noise drawn according to a Gaussian probability distribution with certain
µ andσ. Thus each training set of examples takes the form{(xi, zi)}

100

1
, where

z1 = f(xi) + ei. f(xi) is the noise-free value of the target function andei is a
random variable representing the noise. We experiment witha set ofσ values defined
as{0.01, 0.1, 1.0, 10.0, 30.0, 50.0}, andµ set to0.0. The details of the sampling pro-
cedure used for generation of training and test data for different problems are given in
Table 1. Note that noise is only added to the training data, whereas the data used to
assess model generalisation is not contaminated.

Furthermore, the response value in each input-output pair is normalised within
the [0.0, 1.0] interval prior to training. Normalisation ofa noise-corrupted valueα is
performed using(α−min)/(max−min), wheremin andmax are the minimum and
maximum values out of 100 training response values respectively. Figure 5(a) shows
the histograms of the normalised response values for different regression problems.
The same normalisation applies to testing data, however this time each response value
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Table 1. Regression problems with the respective data sampling ranges for training and test
datasets. Notation x=rand(a,b) means that the x variable issampled uniform randomly from
the interval [a, b].

Problem Training data Test data

F1 f(x1, x2) =
e
−(x1−1)2

1.2+(x2−2.5)2
100 points 10,000 points

x1, x2=rand(-3.0, 3.0) x1, x2=rand(-3.0, 3.0)

F2 f(x1, x2, x3, x4, x5) =
10

5+
∑

5
i=1(xi−3)2

100 points 10,000 points

x1, x2, x3, x4, x5 x1, x2, x3, x4, x5

=rand(-3.0, 3.0) =rand(-3.0, 3.0)

F3 f(x1, x2) = x1 ∗ x2 + sin((x1 − 1) ∗ (x2 − 1)) 100 points 10,000 points
x1, x2=rand(-3.0, 3.0) x1, x2=rand(-3.0, 3.0)

F4 f(x1, x2) =
(x1−3)4+(x2−3)3−(x2−3)

(x2−2)4+10
100 points 10,000 points

x1, x2=rand(-3.0, 3.0) x1, x2=rand(-3.0, 3.0)

is noise-free. Figure 5(b) shows the histogram of the normalised response values for
different problems.

3.2. MLP design

The regression problemsF1, F2, F3, F4 are of two, five, two and two input variables
respectively. The architecture of a MLP consists of an inputlayer with the same num-
ber of input nodes as the dimensionality of the input of a problem, a hidden layer of
10 nodes withtanh activation functions, and an output layer of a single node with a
tanh activation function. Training is performed using standardback-propagation with
a learning rate set to0.005, iterated for2, 000 epochs. We are experimenting with
the effect of the number of wake-sleep cycles during training, and tried the proposed
method with 5, 10, 15, and 20 cycles. This effectively means that each set of training
examples is divided into the respective number of non-overlapping subsets.

4. Results and Analysis

In the figures discussed in this section, we plot the average Mean Squared Error (MSE)
that accrues from 50 runs of an MLP using different random weight initialisations as
a function of the weight downscaling percentage that takes place during a sleep phase.
For comparison purposes we also plot the average MSE that is obtained from the base-
line MLP algorithm that uses no weight downscaling. Depending on the level of noise
that is injected into each response variable, we categorisethe learning problems into
easy (Gaussian noiseσ of 0.01 or 0.1), moderate (σ of 1.0 or 10.0), and hard (σ of 30.0
or 50.0). In addition, Tables 2, 3, 4, 5 present the standard errors for the out-of-sample
MSE estimates.

Figure 1 presents the results for problemF1. An observation that is consistent
across all different setups for the number of wake/sleep cycles is that for the easy and
moderate problem formulations the proposed method outperformed standard MLP.
In addition, results suggest no clear trend in the evolutionof the MSE curve as a
function of the downscaling percentage, however for the smaller levels of noise (i.e.
0.01, 0.1) increasing the percentage of downscaling seems to worsen the generalisation
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performance.
The results for problemF2 are presented in Figure 2. Here the number of

wake/sleep cycles exert an effect in the out-of-sample performance with their num-
ber set to 15 attaining the best generalisation improvementover standard MLP for all
problem formulations but the one where noiseσ is set to 1.0. Results also suggest
that in the easiest case (i.e. noiseσ of 0.01), the method of downscaling is difficult
to improve performance over standard MLP and in most cases leads to performance
deterioration.

Figure 3 presents the results for problemF3. In this case, contrary to the results
observed in other problems, weight downscaling improves performance over standard
MLP in the least noisy problems, whereas the performance deteriorates over that of
standard MLP for the noisiest problem formulation. This increase in performance in
the case of noise levels of 0.01 and 0.1 can be attributed to the discrepancy between the
distributions of the response values between training and testing as can been seen in
Figure 5(a) for Function 3 under noise level 0.01 and Figure 5(b) for the same function.
This was due to random sampling for the valuesx1 andx2 that created relatively
disjoint sets of examples to train and test a model. The median of the response values is
approx. 0.03 for training, and 0.57 for testing. Out-of-sample performance is therefore
improved by relaxing the fit to the training examples. This incidental result should be
regarded as a valid scenario of training and testing data distribution mismatch that can
occur when dealing with real-world data. It reinforces the view that in case of overfit
models, weight downscaling can improve out-of-sample performance.

Finally, Figure 4 presents the results for problemF4. We observe that the use
of downscaling substantially improves the out-of-sample performance for the noisiest
problem formulations. This is evident in the case were the number of wake/sleep
cycles was the greatest, i.e., 15 and 20. For the easy and moderate cases, figures
suggest that downscaling has the tendency to worsen performance. This particular
problem also exhibits an interesting trend in the evolutionof the the MSE curve as
a function of the downscaling percentage. More specifically, the out-of-sample error
decreases as the downscaling percentage increases for the noisiest problems, whereas
it decreases as a function of increasing percentage of the small and moderate levels of
noise in the target.

4.1. Summary of observations

The observations from the experiment can be summarised as follows:

1. The downscaling mechanism increases the generalisationperformance for most
cases of moderate and high levels of noise.

2. No advantage is accruing from the proposed method when used with small levels
of noise in the target function. In most cases, performance deteriorates.

3. The optimal number of wake/sleep cycles and the level of weight downscal-
ing appears to be problem dependent. A principled approach such as cross-
validation should be applied to chose these effectively.

4. Overall, when training and testing over similar input-output distributions, weight
downscaling exerts a negative effect by disrupting the fit ofa model. On the
other hand, in the case where there is discrepancy between training and testing
input-output distributions, the downscaling mechanism improves generalisation.
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Table 2. Out of sample MSE: mean values and standard errors. Function 1.
Down Noise 0.01 Noise 0.1 Noise 1.0 Noise 10.0 Noise 30.0 Noise 50.0

Standard MLP
n/a 0.060 (0.0005) 0.077 (0.0011) 0.151 (0.0005) 0.195 (0.0012) 0.164 (0.0013) 0.172 (0.0009)

5 wake/sleep cycles
1% 0.063 (0.0007) 0.068 (0.0016) 0.166 (0.0011) 0.194 (0.0028) 0.245 (0.0023) 0.169 (0.0036)
15% 0.062 (0.0005) 0.069 (0.0008) 0.162 (0.0013) 0.158 (0.0018) 0.252 (0.0022) 0.173 (0.0018)
30% 0.067 (0.0003) 0.074 (0.0009) 0.159 (0.0016) 0.158 (0.0009) 0.239 (0.0030) 0.160 (0.0010)

10 wake/sleep cycles
1% 0.061 (0.0027) 0.077 (0.0018) 0.123 (0.0029) 0.128 (0.0029) 0.218 (0.0036) 0.160 (0.0049)
15% 0.084 (0.0038) 0.061 (0.0003) 0.127 (0.0023) 0.122 (0.0008) 0.201 (0.0020) 0.186 (0.0030)
30% 0.105 (0.0015) 0.069 (0.0003) 0.134 (0.0018) 0.135 (0.0012) 0.214 (0.0019) 0.181 (0.0017)

15 wake/sleep cycles
1% 0.056 (0.0021) 0.064 (0.0014) 0.159 (0.0035) 0.121 (0.0032) 0.228 (0.0019) 0.154 (0.0045)
15% 0.078 (0.0032) 0.066 (0.0009) 0.139 (0.0005) 0.111 (0.0009) 0.232 (0.0019) 0.215 (0.0004)
30% 0.099 (0.0004) 0.077 (0.0008) 0.141 (0.0004) 0.111 (0.0004) 0.206 (0.0009) 0.198 (0.0003)

20 wake/sleep cycles
1% 0.052 (0.0015) 0.078 (0.0008) 0.074 (0.0017) 0.182 (0.0044) 0.239 (0.0077) 0.167 (0.0022)
15% 0.074 (0.0004) 0.077 (0.0008) 0.072 (0.0004) 0.195 (0.0016) 0.243 (0.0027) 0.212 (0.0005)
30% 0.086 (0.0004) 0.101 (0.0005) 0.081 (0.0002) 0.188 (0.0005) 0.234 (0.0009) 0.206 (0.0002)

Table 3. Out of sample MSE: mean values and standard errors. Function 2.
Down Noise 0.01 Noise 0.1 Noise 1.0 Noise 10.0 Noise 30.0 Noise 50.0

Standard MLP
n/a 0.034 (0.0007) 0.107 (0.0019) 0.167 (0.0027) 0.174 (0.0057) 0.204 (0.0073) 0.234 (0.0041)

5 wake/sleep cycles
1% 0.188 (0.0053) 0.141 (0.0041) 0.203 (0.0127) 0.202 (0.0117) 0.156 (0.0042) 0.212 (0.0126)
15% 0.087 (0.0040) 0.074 (0.0013) 0.186 (0.0072) 0.169 (0.0074) 0.149 (0.0026) 0.225 (0.0077)
30% 0.031 (0.0009) 0.064 (0.0022) 0.197 (0.0040) 0.149 (0.0036) 0.147 (0.0019) 0.226 (0.0058)

10 wake/sleep cycles
1% 0.124 (0.0086) 0.103 (0.0043) 0.263 (0.0090) 0.375 (0.0141) 0.082 (0.0047) 0.289 (0.0115)
15% 0.025 (0.0008) 0.077 (0.0017) 0.234 (0.0030) 0.238 (0.0037) 0.068 (0.0027) 0.206 (0.0060)
30% 0.035 (0.0007) 0.083 (0.0005) 0.255 (0.0016) 0.169 (0.0014) 0.065 (0.0015) 0.223 (0.0017)

15 wake/sleep cycles
1% 0.048 (0.0033) 0.107 (0.0053) 0.296 (0.0050) 0.175 (0.0087) 0.084 (0.0021) 0.202 (0.0095)
15% 0.038 (0.0012) 0.075 (0.0007) 0.269 (0.0004) 0.066 (0.0012) 0.067 (0.0026) 0.172 (0.0031)
30% 0.043 (0.0007) 0.087 (0.0006) 0.266 (0.0005) 0.086 (0.0005) 0.061 (0.0028) 0.218 (0.0008)

20 wake/sleep cycles
1% 0.037 (0.0009) 0.083 (0.0026) 0.124 (0.0054) 0.149 (0.0062) 0.307 (0.0107) 0.286 (0.0064)
15% 0.042 (0.0004) 0.102 (0.0007) 0.150 (0.0007) 0.108 (0.0005) 0.236 (0.0024) 0.249 (0.0006)
30% 0.054 (0.0002) 0.117 (0.0009) 0.187 (0.0001) 0.122 (0.0003) 0.178 (0.0009) 0.229 (0.0005)
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Table 4. Out of sample MSE: mean values and standard errors. Function 3.
Down Noise 0.01 Noise 0.1 Noise 1.0 Noise 10.0 Noise 30.0 Noise 50.0

Standard MLP
n/a 0.203 (0.0002) 0.095 (0.0003) 0.030 (0.0001) 0.037 (0.0001) 0.050 (0.0007) 0.036 (0.0001)

5 wake/sleep cycles
1% 0.203 (0.0010) 0.113 (0.0037) 0.043 (0.0007) 0.043 (0.0005) 0.077 (0.0019) 0.053 (0.0010)
15% 0.182 (0.0026) 0.091 (0.0027) 0.031 (0.0004) 0.038 (0.0002) 0.065 (0.0022) 0.044 (0.0004)
30% 0.175 (0.0034) 0.083 (0.0015) 0.027 (0.0002) 0.035 (0.0002) 0.051 (0.0020) 0.041 (0.0005)

10 wake/sleep cycles
1% 0.197 (0.0013) 0.042 (0.0009) 0.054 (0.0023) 0.034 (0.0008) 0.078 (0.0030) 0.075 (0.0026)
15% 0.183 (0.0019) 0.034 (0.0004) 0.057 (0.0018) 0.030 (0.0001) 0.047 (0.0025) 0.056 (0.0008)
30% 0.176 (0.0025) 0.034 (0.0007) 0.045 (0.0010) 0.030 (0.0002) 0.032 (0.0001) 0.040 (0.0004)

15 wake/sleep cycles
1% 0.197 (0.0021) 0.064 (0.0015) 0.066 (0.0023) 0.038 (0.0013) 0.040 (0.0018) 0.060 (0.0019)
15% 0.188 (0.0032) 0.053 (0.0012) 0.049 (0.0011) 0.031 (0.0001) 0.035 (0.0004) 0.046 (0.0002)
30% 0.164 (0.0028) 0.045 (0.0003) 0.052 (0.0016) 0.032 (0.0001) 0.034 (0.0001) 0.051 (0.0004)

20 wake/sleep cycles
1% 0.219 (0.0035) 0.051 (0.0013) 0.152 (0.0034) 0.063 (0.0022) 0.073 (0.0055) 0.063 (0.0029)
15% 0.228 (0.0006) 0.043 (0.0002) 0.075 (0.0004) 0.031 (0.0001) 0.029 (0.0001) 0.042 (0.0003)
30% 0.208 (0.0004) 0.034 (0.0000) 0.063 (0.0003) 0.030 (0.0000) 0.029 (0.0001) 0.039 (0.0002)

Table 5. Out of sample MSE: mean values and standard errors. Function 4.
Down Noise 0.01 Noise 0.1 Noise 1.0 Noise 10.0 Noise 30.0 Noise 50.0

Standard MLP
n/a 0.002 (0.0000) 0.002 (0.0001) 0.002 (0.0001) 0.027 (0.0001) 0.066 (0.0003) 0.133 (0.0002)

5 wake/sleep cycles
1% 0.005 (0.0001) 0.004 (0.0001) 0.003 (0.0001) 0.037 (0.0011) 0.093 (0.0006) 0.152 (0.0027)
15% 0.013 (0.0001) 0.011 (0.0003) 0.014 (0.0002) 0.044 (0.0009) 0.087 (0.0010) 0.141 (0.0021)
30% 0.028 (0.0005) 0.027 (0.0006) 0.041 (0.0007) 0.065 (0.0018) 0.087 (0.0017) 0.124 (0.0025)

10 wake/sleep cycles
1% 0.007 (0.0005) 0.004 (0.0002) 0.010 (0.0011) 0.065 (0.0028) 0.184 (0.0040) 0.156 (0.0038)
15% 0.014 (0.0004) 0.012 (0.0002) 0.010 (0.0003) 0.066 (0.0018) 0.108 (0.0033) 0.093 (0.0016)
30% 0.024 (0.0003) 0.026 (0.0003) 0.032 (0.0007) 0.095 (0.0018) 0.085 (0.0020) 0.083 (0.0028)

15 wake/sleep cycles
1% 0.012 (0.0008) 0.006 (0.0008) 0.014 (0.0021) 0.070 (0.0026) 0.147 (0.0041) 0.144 (0.0057)
15% 0.015 (0.0003) 0.013 (0.0009) 0.010 (0.0002) 0.104 (0.0019) 0.073 (0.0026) 0.113 (0.0044)
30% 0.021 (0.0001) 0.024 (0.0002) 0.030 (0.0004) 0.122 (0.0012) 0.062 (0.0008) 0.090 (0.0015)

20 wake/sleep cycles
1% 0.008 (0.0003) 0.008 (0.0004) 0.032 (0.0023) 0.061 (0.0027) 0.054 (0.0034) 0.166 (0.0065)
15% 0.015 (0.0003) 0.019 (0.0007) 0.018 (0.0002) 0.082 (0.0013) 0.036 (0.0003) 0.121 (0.0012)
30% 0.022 (0.0001) 0.030 (0.0001) 0.034 (0.0001) 0.098 (0.0008) 0.036 (0.0001) 0.115 (0.0010)
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Figure 1. Out-of-sample results for problemF1 with six different noise levels.
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Figure 2. Out-of-sample results for problemF2 with six different noise levels.
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Figure 3. Out-of-sample results for problemF3 with six different noise levels.
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Figure 4. Out-of-sample results for problemF4 with six different noise levels.
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5. Conclusion

In prediction problems, fitting the training data too closely can be counterproduc-
tive. Reducing the expected loss on the training data beyondsome point causes the
population-expected loss to stop decreasing, and often start to increase. Regularisa-
tion methods in MLPs, like weight decay, prevent such overfitting by constraining
the magnitude of the adaptive weights during the learning phase. In the chapter we
showed that simulating a simple weight downscaling mechanism during a sleep phase
can similarly to weight decay exert a positive effect on generalisation in the case of
noisy datasets.

Controlling the parameters defined as thedownscaling percentage and thenumber
of wake/sleep cycles regulate the degree to which the expected loss on the training data
is minimised. Each of the two parameters controls the degree-of-fit and thus affects the
best value for the other one. Decreasing the value of downscaling percentage, increases
the best value for the wake/sleep cycles. Ideally, one should estimate optimal values
for both by minimising a model selection criterion jointly with respect to the values of
the two parameters. There are also computational considerations; increasing the value
of sleep/wake cycles produces a proportionate increase in the computation. Its value
should be made as large as is computationally feasible. The value of downscaling
percentage should then be adjusted using cross-validation.

A final observation concerns the nature of the learning process via a number of
sleep/wake cycles. Unlike fitting the weights of the networkduring a number of epochs
with a fixed learning rate, the sleep/wake approach insteadlearns more slowly. In
general, it has been repeatedly advocated in the statistical machine learning literature
that learning methods that learn slowly tend to generalise well.
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Figure 5. (a) Histogram of in-sample normalised values of the response variable for differ-
ent regression problems of Table 1. (b) Histogram of out-of-sample normalised values of
the response variable for different regression problems ofTable 1.
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Figure 6. Plot of regression problem 1 of Table 1.
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Figure 7. Plot of regression problem 3 of Table 1.
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Figure 8. Plot of regression problem 4 of Table 1.


