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Abstract

A key concern when training a multi-layer perceptron (ML&j}hat the final net-
work should generalise well out-of-sample. A considerdibdeature has emerged
which examines various aspects of this issue. In this stuglgraw inspiration from
theories of memory consolidation in order to develop a newthoaology for training
MLPs in order to promote their generalisation capabilitiese synaptic homeostasis
hypothesis[32, 33] proposes that a key role of sleep is to downscalemimstrength
to a baseline level that is energetically sustainable. Asrsequence, the hypothesis
suggests that sleep acts not to actively strengthen sélewenories but rather to re-
move irrelevant memories. In turn, this lessens spuricaimiag, improves the signal
to noise ratio in maintained memories, and therefore presletter generalisation
capabilities. In this paper we describe the synaptic hotassshypothesis and draw
inspiration from it in order to design a ‘wake-sleep’ traigiapproach for MLPs. The
approach is tested on a number of datasets.

1. Introduction

A key concern when applying powerful machine learning méshsuch as MLPs to
induce a model from a training dataset, is that the resutiingel should generalise
well out of sample. There are several issues that will impadhe generalisation ca-
pability of a MLP, including the sufficiency of the traininghset (i.e. does it contain
sufficient explanatory inputs in order to allow constructif a predictive model for
the target output), is the training data sufficiently repreative of all out of sample
data that could be presented to the model, is the targetifumstooth (non-smooth
functions will be more difficult to model), and what choiceesfor criterion will pro-
mote good generalisation?

Another factor which will impact on how well an MLP will geradise is its internal
structure. If too-large a network is employed, it will havamy weights and will be
prone to over training, thereby learning any ‘noise’ in tla¢ed Increasing the number
of weights will also add to the computational complexity bé ttraining process. If
too-small a network is used, it will not have sufficient poueradequately represent
the structure in the data.

Of course, the importance of generalisation extends faomeynachine learning
and statistics, and the ability to generalise from pashiegrto new situations is a key
driver of evolutionary fithness in biological organisms. ldenprocesses of learning,
memory formation, and the integration of new experiences éxisting memories in
animals, are likely to be rich sources of inspiration for tlesign of algorithms with
good generalisation capabilities.

It is widely thought that iterated wake-sleep states plaingrortant role in mem-
ory formation and maintenance in animals. Despite the itehature in neural net-
works concerning generalisation, relatively little atten has been paid to the possi-
bility of drawing inspiration from iterated wake-sleeptstain order to design better
training algorithms for neural networks.

11. Memory

Broadly speaking, learning can be considered as the pred¢esxjuiring new infor-
mation, with memory referring to the persistence of leagrim a state that can be
revealed at a later time [30]. The processes of learning agany formation have
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been widely studied in the literature of both psychology aadrobiology. In the lat-
ter case, the focus of research is on how memories are retandemaintained in the
physical structure of the brain. The basic structural ufiihe brain consist of individ-
ual neurons, a critical aspect of learning and memory istttatonnection structure
between these neurons is plastic and is altered via the gs@fdearning. The con-
cept of plasticity was first suggested over a century ago bijavi James [10], and
the synaptic plasticity hypothesis lies at the centre of most research on memory stor-
age [23]. This hypothesis proposes that the strength ofpgimeonnections between
neurons, which in turn determine the ease with which an agiaential in one cell
excites or inhibits its target cell, are not fixed but are rfiadie or ‘plastic’.

While there are multiple types of neurons, the canonical ehofl information
flow at a neuron (the ‘neuron doctrine’) is that the cell boflg @euron integrates the
electrical signals which enter the cell through nerve filwadked dendrites. If the total
input signal into a neuron in a time period exceeds a threldeotl, the neuron ‘fires’
and sends an output electrical signal along its axon. In theraxon of a neuron is
connected to the dendrites of other neurons. Consequdrljiring of a neuron can
result in a cascade effect.

A neuron typically has a dense web of input dendrites andetbesnect, via a
synapse, to axon terminals of other neurons at small stetknown as dendritic
spines. These spines can grow or shrink and are constantdgdirng out of and re-
tracting back into the dendrite. Hence, the precise netwbrtonnections between
neuronsin a brain is not fixed, but dynamically alters oveeti Indeed, two individual
neurons may have multiple and not just a single connectianleérning takes place,
the network of connections adapts and changes take plagaagit& junctions which
can enhance or reduce the ease with which electrical sigaalsross the synaptic
gap. Memory is stored in a network of linked neurons.

1.1.1. Memory Consolidation

Thememory consolidation hypothesiswas first proposed over a century ago by Muller
and Pilzecker [18] and posits that new memories are injtithgile and are only
gradually consolidated into long term memory. As noted bgj,[While storage of
new events in memory can occur very quickly (within secondgw consolidation
of memories into long term storage (a process which can talgs,dveeks, or even
longer) may be adaptive as it allows for a dynamic interplagngen current experi-
ence and pre-existing memories.

The term memory consolidation is itself variously defined‘asime-dependent,
off-line process that stabilizes memories against interfee and decay, allowing them
to persist over time’ [17], a ‘process that transforms nediaitially labile memories
encoded in the awake state into more stable representdtliahbecome integrated
into the network of pre-existing long-term memories’ [5}, & ‘the processes that
stabilise the learning-induced changes in synaptic mdgglyahat represent the bio-
logical substrate of memory’ [8].

In discussing memory consolidation, a distinction is dréetween:

1. cellular consolidation, and
2. systems consolidation.

Cellular consolidation arises from a series of biochenmgwahts which take place
in individual synapses, typically within a short time frarfreinutes to hours) after
the initial experience. System consolidation refers tonevevhich take place over a
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longer time frame and which are thought to maintain the mgrimdong term memory
storage.

Rudy (2014) [23] provides an excellent review of the cursgate of understanding
of how memories are created and maintained. While therdlis@tsiderable debate
concerning several aspects of this process, the most wadebpted view is that mem-
ory develops over a number of stages namely, generatidilisédion, consolidation
and maintenance.

Initially, there are changes in the synaptic strength ofetfiected neurons, result-
ing from a reorganisation of existing proteins in the retex@endritic spine and axon
terminal. For example, within minutes, the number of gluasareceptors in the spine
is increased thereby facilitating the enhanced transomssi sodium ions (electrical
signal) between the axon terminal and the spine. To coreelithe synaptic change
further, in following hours transcription and translatiprocesses are activated creat-
ing new proteins. These have several effects including nhamcement of the degree
of bonding between the spine and axon, and an alterationeophiysical geometry
of the spine. This further promotes the transmission of ioetsveen the spine and
axon. Typically, this process lasts for up to 24 hours andsehsure that the physical
changes in the synapses endure for several days.

While the above explains how synaptic changes initiallyuncand are subse-
quently stabilised, it does not explain how strengthenedgges that support memory
outlive the molecules from which they are made. This is kn@asrthe ‘molecular
turnover problem’ and is a active area of research inquirgrter to maintain a mem-
ory, a variety of proteins need to be continually manufaadat the synapse, even in
the absence of the original stimulus. Recent work?Byguggests that self-sustaining
(self-copying) populations of proteins may be the key tontaning the long-term
synaptic changes that underlie memory.

Obviously, there is little reason to maintain a memory of nedshe routine events
which occur during a day, and indeed experience suggedtsvthavill forget much
of this detail within several days. It is speculated that rages are most likely to
be maintained for the long term when either the behaviouw@deence is considered
significant, is repeated, or when the memory is recalled48]will be discussed later,
it is thought that sleep plays an important role in long teremmory consolidation.

1.1.2. Memory Systems

When discussing memory, is important to note that the thia lna@s multiple memory
systems, depending on the nature of what is being learnthaPsrthe best known
system is that for declarative memory which includes botlaic memory (memory
for facts and events) and semantic memory (supports memoffadéts and provides
an ability to generalise from multiple experiences). Tlyistem relies on an interplay
between the neocortex, the hippocampus and its relatetaostructures. Sensory
information passes into the neocortex and in turn is pr@ckard passed via a number
of intermediate structures into the hippocampus. By the tine information passes
into the hippocampusit is already highly processed and ah{bghpocampus neurons
do not know whether they are receiving auditory, visual beosensory inputs) [23].
Although it is known that the hippocampus plays a vital rol@pisodic memory,
there is debate as to how exactly it does this. One theoreisiidexing theory of
episodic memory’ [35]. According to this theory, the cortehepisodic memories
are stored in the neocortex and the hippocampus createeidi these memaories by
binding the inputs it receives from the different regionshef neocortex into a neural
ensemble that represents the conjunction of their co-acmer[23]. The hippocampus
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projects back to the neocortex when the index is activated.

In essence, the theory assumes that events create a meawapyractivating pat-
terns of neocortical activity, which then project to thegopampus, with the relevant
synapses in the hippocampus responding to the neoconijmats being strengthened
via long term potentiation (LTP). Therefore, the hippocaspcts as an index to a
‘memory’ filing cabinet which enables the recall of memoyi@gen when only a sub-
set of the original neocortical pattern is received by thgpbcampus. Although this
may appear to be an unneccessarily complex process, it iegdbat it may have
arisen due to structural limitations of the neocortex agpidl associative connectiv-
ity across neocortical regions is low [23]. It is also spatedl that memories in the
neocortex may potentially have more than one index assatigith them, if the event
is repeated or if the memory is reactivated (recalled). ldetiee more often an item is
experienced or recalled, the more ‘paths’ to it may be geadria the hippocampus.
This is known as thenultiple trace theory [19].

1.2. Seep and Memory Consolidation

At first glance being asleep would appear to be a potentialygdrous and costly
activity as sleeping animals cannot forage for resoure&s, ¢are of young, procreate,
and are exposed to predation risk [7, 14]. Despite theselseks, sleep behaviours
are widespread in the animal kingdom and it is evident thatyremimals spend a
significant portion of their day in sleep or in sleep-liketsta Evolution has even
devised some extraordinary adaptations to accommodaie [34]. Perhaps the most
unusual of these adaptations is exhibited by cetacearading whales, dolphins and
porpoises) who can engage in unihemispherical (or ‘hafry sleep, wherein one
eye is kept open during sleep, with the contralateral sidh@brain also remaining
awake [21]. Other examples of unihemispheric sleep inckatae species of birds
[22] which can keep one eye open during sleep, particulérlys predation risk is
high.

Given the widespread nature of sleep behaviour, and théhetgwhich evolution
has gone in order to conserve sleep in some animals, one wellldsk what benefit
does sleep provide that makes it crucial to living creattires

Amongst the multiple potential functions of sleep, one & thost heavily re-
searched is whether sleep plays a role memory formation aidtemance. In many
species, the same regions of the brain that process semsorsnation are also im-
portant for memory formation. This poses a dilemma, as if¢heegions are busy
processing sensory information during waking, then itkellj to be more difficult for
processes such as memory consolidation to take place amewltisly, in turn leading
to a suggestion that sleep may allow these conflicting dietiv/to co-exist, leading to
a claim that memory consolidation occurs predominatelyndusleep [1]. .

In this study we draw inspiration from the synaptic homesistaypothesis which
is drawn from the literature on memory consolidation in erttedesign a training
approach for an MLP which is capable of generalising fromsyaiata. Therefore,
we simulate a wake-sleep cycle during which the MLP is preskwith new sensory
inputs (data) during the wake phase, leading to synaptierpiation, with synaptic
downscaling taking place during a simulated ‘sleep’ ph&ically and in contrast
to prior literature on weight-decay processes for traimhiglLPs, the training process
takes place over a sequence of simulated wake-sleep phases.
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1.3. Structure of Paper

The remainder of this paper is organised as follows. Se@iprovides some back-
ground on two theories of memory consolidation during sl&gztion 3 describes the
model developed in this paper and outlines the experimerderntaken. The results
of these are presented and analysed in section 4, with cgiankiand suggestions for
future work being presented in section 5.

2. Background

In this section we provide some background on memory costestidin during sleep,
and in particular, we describe the synaptic homeostasisthggis. We also overview
some previous literature which has applied ideas from tbegss of memory consol-
idation for neural network training.

2.1. Sleep States

A common way to characterise sleep state is to examine tlotrield activity of the
brain recorded using an electroencephalogram (EEG). Inmeleand birds sleep can
be divided into two main phases namely, REM (rapid eye movenamd NREM (non
rapid eye movement) sleep. REM sleep is characterised tyfreguency, low am-
plitude, electrical activity in the brain, and this bearsgosimilarity to the electrical
activity of the brain during wakefulness. In contrast, NREMep is characterised by
the propagation of low frequency (slow), high amplitudegcéiical waves in the brain.

In humans, NREM sleep is divided into three successive sti#, and the sleep
cycle follows a typical ordering of stage 1 NREM, stage 2 NREthge 3 NREM,
and finally REM sleep. The entire cycle lasts some 90-100 tafand repeats itself
several times during the night. As the sleep cycles progtiesgortion of time spent
in NREM sleep reduces and the portion of time in each cycletspeREM sleep
increases. Sleep during stage 3 of NREM sleep is termed skove sieep (SWS),
and is characterised by delta wave activity brain activitigich produces the lowest
frequency and highest amplitude patterns of electricaiact

2.2. Active System Consolidation Hypothesis

There are currently two hypotheses concerning the meahaniaderlying the consol-
idation of memory during sleep. The active system constitiddnypothesis (ASCH)
proposes that an active consolidation process resultstiteme-activation of selected
memories during sleep [5], and the synaptic homeostasisthgpis (SHH) assumes
that consolidation may also occur during waking and thatdoteof sleep is to restore
the encoding capabilities of synaptic connections (glsabptic downscaling) [1].
The ASCH arose from the standard model of systems consolidfdr declara-
tive memory [16]. Different regions of brain are responsifr different memories,
with declarative memory (these memaories are accessible to conscious recollectibn a
include memories for facts and events) relying on the hippguus and neocortical
regions of the brain, angrocedural memory (memories for skills that result from
repeated practice e.g. riding a bike or playing a piano)imglyn the striatum and
cerebellum [5]. The standard two-stage theory for dedlarahemory consolidation
proposes that there are two separate memory stores. One ddlarning at a fast rate
and serves as an intermediate buffer to hold informatiorptearily. The other store
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learns at a slower rate and serves as long-term memory. Etardéve memory, sen-
sory information in the waking brain flows into the cortex atrid proposed that events
are initially encoded in parallel in neocortical network&lalso in transient neuronal
assemblies in the hippocampus.

Although the theory did not initially outline a role for exgit recall in the consoli-
dation of the long term memory, it has been suggested thatgisieep, a two-way di-
alogue between the hippocampus and neocortex takes placgdnto effect memory
consolidation [5]. The hippocampus can be considered apidlyaencoded, sparse,
memory system which allows for the formation of event meemrivhereas the neo-
cortex is a slowly-consolidating, dense, memory storageesy. During NREM sleep,
slow (electrical wave) oscillations, spindles, and riggieordinate the reactivation and
redistribution of hippocampus-dependent memories to ortical sites. The newly-
acquired memory traces are reactivated and it is claimadrif@mation flows from
the hippocampus to the cortex, such that connections in ¢boeartex are strength-
ened, forming more persistent memory representationsEM Rleep, it is proposed
that the information flow reverses (from the neocortex badké hippocampus). This
two-way process iterates during the period of sleep [3&fehy modifying the repre-
sentations in both stores, and integrating the new memamypire-existing memories.
This enables the extraction of invariant features, ineigdhe forming of new associ-
ations, and eventually insights into hidden rules and pagtgb]. Hence, through the
repeated re-activation of the new memaories during sleefatst learning store acts as
an internal trainer of the slow learning store to graduatlig@ the new memories to
the pre-existing network of long term memories [5].

There is some evidence to supportthe ASCH, as we know froim ionaging stud-
ies that the spatio-temporal patterns of neuronal firingydlcaur in the hippocampus,
during the exploration of a novel environment or during diergpatial tasks, are reac-
tivated in the same order during subsequent sleep. Howseatp not have a detailed
understanding as to how these reactivations could stientiat strengthening of links
between neocortical storage sites, and specifically, hadurémg synaptic changes
could result in the neocortex [5]. In the standard two-sthgery, the consolidation
process that takes place off-line relies on the re-actinati the neuronal circuits that
were implicated in the initial encoding of the memory, aneréfore consolidation in-
volves thereinforcement of memory representations at the synaptic level. Long-term
potentiation (LTP) (Hebbian learning - the assumption ihiatrmation is stored in the
brain as changes in synaptic efficiency which occur whenareiire synchronously
together) is considered a key mechanism of synaptic catet@hn. It is not certain
whether memory re-activation during sleep promotes thestritolition of memories
by inducing new LTP (at long-term storage sites) or whetkeaativation merely en-
hances the maintenance of LTP that was induced during emgodin assumption of
the traditional two stage model is that LTP takes place indahg term memory store
as a result of selective reactivation of memories duringesysonsolidation.

Although we await further investigation of sleep dependeatning, recent work
by [39] has indicated that sleep (specifically, NREM sleep)ntice after a motor
learning task promoted new spine formation in the motorecoof those mice.

It has been speculated that spindle oscillations which aneentrated in stage
2 NREM, open molecular gates to plasticity by evoking caitientry in neocorti-
cal pyramidal neurons, priming the neurons for biocheméeehts that could lead to
permanent changes in the network. Consolidation could fineceed by iteratively
recalling and storing information in primed neural assee®]25]. One interesting
feature of reactivations during SWS is that they appear todiser, less accurate, and
often happen at a faster firing rate than the related actiltityng the initial encod-
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ing phases. Plausibly this ‘noisy’ teaching could resultniare robust memory in an
analogue to using ‘jitter’ in training MLPs.

2.3. Synaptic Homeostasis Hypothesis

An alternative perspective which has gained a significalidvfing in recent years is
the synaptic homeostasis hypothesis (SHH) [32, 33, 34]. This hypothesis suggests that
the primary memory function of sleep is to produce a globalagyic downscaling,
and that memory consolidation is continuous (i.e. can odcuing waking) and not
limited to sleeping states.

The proponents of the SHH do not disagree that memories fernearons that
get activated together strengthen their links through giioaotentiation, nor that
brains replay newly-learnt material at night, or that paiseof neural activity during
sleep sometimes resemble those recorded while a subjeatalsea However they
question conventional wisdom that brain activity duringef reinforces the synapses
involved in storing newly-formed memories, noting thatréhés no strong evidence
that synapses in replayed circuits get strengthened dste®p [34]. Instead they
claim that a critical driver of sleep is a need to restore ttarbto a baseline state,
by weakening the links between neurons during sleep, in order to predaesbrain’s
ability to learn and form new memories while it is awake. Theakening process is
termedsynaptic downscaling.

Brain tissue is metabolically expensive. In humans, thénbndnile accounting
for only about 2% of total body mass, consumes some 20% ofygnmeqguirements
during quiet waking [27]. Approximately 2/3 of this energgnsumption goes to
supporting and maintaining synaptic activity. Strong $8& consume more energy
than weak ones and the energy budget available to brairtisswt unlimited. During
the day, the potentiation of synaptic circuits from sensopyts results in an increase
in the number and size of synapses, leading to a higher léwergy requirement
[34]. Advocates of the SHH claim that a generalised depoessf synapses during
sleep would benefit the brain as it would decrease the enesiy€ synaptic activity,
eliminate weak and ineffective synapses, and reduce aeltless [4].

An important part of effective learning is a correspondifaggetting’ of irrelevant
memories. Under the SHH, synaptic potentiation stemmiomfdaytime learning is
down regulated brain-wide during slow wave sleep. Crugidtlis assumed that this
rescaling process preserves relative synaptic weighgrdifices, and therefore may
lead to forgetting because the downscaling may effectigsiénce, or even remove,
spines with synapses that are only weakly potentiated. Dsmlection under the hy-
pothesis promotes survival of only the fittest neural cigeither because they were
activated strongly and consistently during wakefulnesbgaause they were better in-
tegrated with pre-existing memories (for example, a newdwom known language).
Synapses that were only mildly enhanced during wakefujrasshich fit less well
with existing memories would be depressed, and leave nimdpsaice in our neural
circuitry.

While there is experimental evidence for several aspecsymdiptic downscaling
[22], including evidence from animal studies that the nundred size of spines and
related synapses reduces during sleep [34], there is a® yhtatt evidence for a spe-
cific mechanism which selectively weakens activated syempsiring sleep [34]. It
is speculated that the slow waves of mammalian NREM slegpplale. We know
that at sleep onset, levels of SWA are elevated as a resuitnafptic strength ac-
crued during learning while awake. This increase in effectionnectivity causes the
slow-oscillations of neurons to be more synchronous, aeckthy levels of SWA to be
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high [22]. The large-scale slow oscillations of neuronalmeks may produce synap-
tic downscaling, a global decrease in synaptic strengtth,aanincrease the signal to
noise ratios for important memories by eliminating synapgselow a certain thresh-
old. This may explain why performance on certain cognitasks increases following
sleep [22]. Interestingly, synaptic downscaling is a $elfting process because as
synapses weaken, neurons oscillate less synchronouslyoamseéquently induce less
downscaling [22](p. 265). It is also known that the cheryisif the brain changes

during sleep and Tononi and Cirelli [34] have speculated tihia could bias neural

circuitry so that synapses becomes weakened rather trergttened when signals
flow across them.

The SHH, with its emphasis on an ‘active decay’ (forgettiofirrelevant mem-
ories during sleep, provides an interesting alternativiéotraditional idea of sleep-
mediated synaptic strengthening of important memoriesstv@emories formed dur-
ing the day are irrelevant and a decay process which ensbha¢dimwanted and un-
needed memories are removed could result in a lesseninguobsp learning and
better generalisation capabilities [8].

In this study, we do not claim that the SHH provides a moreestrdescription
of memory consolidation during sleep than the ASCH as cteepirical evidence
does not conclusively support the SHH. Indeed, it has be¢adnmy Axmacher et
al. [1] and by Diekelmann and Born (2010) [5] that the ASCH #mel SHH are not
necessarily mutually exclusive, as a sequential procadsl exist with active system
consolidation integrating newly encoded memories withgxisting long term mem-
ories thereby inducing conformational changes in the neexdollowed by global
synaptic downscaling in order to avoid the saturation obg¥it networks. Rather, we
draw inspiration from the SHH in order to design a traininggass for MLPs.

2.4. Synaptic Downscaling and Regularisation

The synaptic downscaling concept bears interesting casgrawith some classical
approaches to regularisation in the neural network liteeatBroadly speaking, regu-
larisation is any modification to a learning algorithm whaims to reduce the chance
of overfit. Typically, the object is to smooth the responseheffinal model. Common
methods for regularisation include early stopping, wheteiining is stopped when
the error measure on a hold-out validation sample beginsct@ase, or the inclusion
of a penalty term in the error function for model complexityapplications of the lat-
ter in MLPs, the error metric is usually defined as MSE plusdditenal (weighted)
term which consists of the sum of the squares of the weighités dlteration to the
error function will tend to reduce weight sizes in the finalwark and therefore make
the network’s response smoother. In turn this will tend tuee overfit as over-fitted
mappings require high curvature and hence large weighte gémeral form of the
regularised cost function in this case is given by:

E7'eg = Emse + aw (1)

whereq is the regularisation parameter which controls the traibetween reducing
the error and increasing the smoothing. The teriis a penalty function which cap-
tures the complexity of the underlying network. If the péy& defined as the sum of
the squares of the weights in the MLP, the approach beartasityito ridge regres-
sion in linear models, and it effectively implements a foritweight decay’ as in each
epoch individual weights decay in proportion to their poais size, i.e. exponentially,
unless the weight is changed in the learning process [20]id& wumber of variants
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on this basic approach have been examined including,‘welghination’ [37], where
the decay process is tuned in order to shrink small weigtfficants more heavily.

Although even basic weight decay approaches can notablyowemeneralisation
capabilities [12], we cannot assume that is is optimal tdyaghye same decay constant
to all weights in the network, and in particular, we could poge that different decay
constants should be applied to connections between inpluhiaiden, hidden to hid-
den, and hidden to output nodes. Nor can we assume that itimalgo apply the
same decay constant(s) for the entire training procesg3fdlustrate an approach
where the decay constant is iteratively updated duringitrgi

Apart from reducing the values for weight parameters in avogk, another way to
attempt to improve generalisation is to directly restricteek to reduce the structural
complexity of the network. This can be done by restrictirgrtiamber of hidden layer
nodes, or by ‘pruning’ individual node connections in a ratew One approach is
to set connections with small weights to zero, thereby figroff’ or ‘pruning’ that
connection. After the relevant weights are deleted, thduged) network is retrained.
A significant number of studies applying network pruningénessulted over the past
25 years following early work by [28, 29].

As noted by [13], there is a close link between weight decay @mining, as an
iterated pruning process effectively reduces to contisumeight-decay during train-
ing. A downside of these approaches is that the learningegssocan be slow due to
the need for repeated re-training and there is an implicitiaption that deletion of
connections with small weight values will not have much etffan model fit. A better,
if often computationally prohibitive, approach would bealtedete weights, whose dele-
tion will have least effect on training error (or to train thetwork using all possible
subsets of weights [11]). Of course, to determine which Wweig delete, the MLP
would need to be iteratively retrained with each weight gegmoved in turn.

A more computationally feasible approach to pruning wasemed by Lecun
et al. (1989) [13], namely the optimal brain damage (OBD)rapph. In OBD the
second derivatives of each weight parameter with respeleterror function are used
in order to determine which weights to remove. As for othemig methods, OBD
proceeds in an iterative manner. Initially the full netwaskirained on the data, a
pruning process is then applied, and the new network is tbteained.

From the above discussion, we can see that weight decay anéhgr both fea-
tures of the SHH, are well-developed techniques in the heetavork literature. It is
interesting to note that the development of these techsigigenmed from a statistical
rather than a biological perspective. An important aspetttememory consolidation
process that has not yet been embedded in the regularisisgi@ture is the iterative
nature of memory consolidation, with new memories only beilowly integrated into
existing knowledge, with both memories being altered is firbcess.

2.5. Neural Network Derived from a Sleep M etaphor

As noted in section one, relatively little attention hasrbpaid to the use of ‘sleep’
metaphors for design of neural network algorithms. Pertifapdest known of these
algorithms is the ‘wake-sleep’ algorithm of Hinton et al] {8r unsupervised learning
which draws on the standard model of systems consolidatiodéclarative memory.
In Hinton's study, a multilayer network of simulated stostia neurons is described,
with bottom up recognition connections during the wake phsesing used to produce
a representation of inputs in one or more hidden layers. én'wake’' phase, neu-
rons are driven by recognition connections, and generativmections are adapted
to increase the probability that they would reconstructabeect activity vector in
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the layer below. In the ‘sleep’ phase, neurons are drivendnerative connections,
and recognition connections are adapted to increase tHealpitity that they would
produce the correct activity vector in the layer above. Bgrakting activity in two
directions, the hidden layer representations are modifigitithey produce an optimal
representation of the original signal.

3. Moded and Experiments

The general model we adopt for our experiments is a feed foimailti-layer percep-
tron (MLP). We create training data from four test functiceusd for each input vector
in the training set, we inject differing amounts of noisepithe associated function
output, thereby producing ‘learning’ problems of varyinfficulty.

The MLP is exposed to a succession of non-overlapping ‘wirgdof training data
during its wake cycles. During exposure to each trainingore@ learning process
takes place in which synaptic potentiation via the back agapion training algorithm
is simulated. At the end of each data window, a sleep cyclienalated during which
synaptic downscaling takes place, and this in turn is folldwy another wake cycle
in which a new window of training data is presented to the Mlgdwork. During
downscaling each weight is decreased by a certain peraentag

Once the MLP has been trained, its out of sample performamcéean test data,
generated using the relevant function, is assessed. Thbigsalis to determine how
well the MLP has performed in uncovering the correct undegyunction, in spite of
being presented with noisy data during training.

The results from the MLP developed using a simulated syoagtivnscaling pro-
cess are benchmarked against those produced by a feed ddvilé which has been
trained in one pass over the training data.

3.1. Datasets

We selected a suite of four synthetic regression problentisagave can reliably gen-
erate data with specific amounts of noise. Figures 6, 7, 8 eaphiral represen-
tations of the bivariate problem& m F3, and F, respectively. In every synthetic
dataset, we randomly sample 100 training examples of thma for, y), where the
input vectorz € R?, and the response variabjec R. The goal is to learn a tar-
get functionf that maps x to y. The response variable of each example isted
by random noise drawn according to a Gaussian probabilityibution with certain
p ando. Thus each training set of examples takes the fétmy, 2;)}1%°, where
z1 = f(z;) + ei. f(x;) is the noise-free value of the target function ands a
random variable representing the noise. We experimentasit ofs values defined
as{0.01,0.1,1.0,10.0, 30.0,50.0}, andy set t00.0. The details of the sampling pro-
cedure used for generation of training and test data foewifft problems are given in
Table 1. Note that noise is only added to the training datareds the data used to
assess model generalisation is not contaminated.

Furthermore, the response value in each input-output paiormalised within
the [0.0, 1.0] interval prior to training. Normalisation afnoise-corrupted value is
performed usinda —min)/(max —min), wheremin andmax are the minimum and
maximum values out of 100 training response values res@dytiFigure 5(a) shows
the histograms of the normalised response values for diftaregression problems.
The same normalisation applies to testing data, howewgtithe each response value
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Table 1. Regression problems with the respective data sagmainges for training and test
datasets. Notation x=rand(a,b) means that the x variaknmpled uniform randomly from
the interval [a, b].

Problem Training data Test data

e—(z1—1)7

B f(x,z2) = o7 (3s=25)2 100 points 10,000 points
x1,z2=rand(-3.0, 3.0) 1, z2=rand(-3.0, 3.0)

Fy  f(z1,72,23,74,25) = m 100 points 10,000 points
T1, %2, T3, T4, T5 T1,T2,T3,T4,T5
=rand(-3.0, 3.0) =rand(-3.0, 3.0)

F3  f(z1,22) =21 * 22 + sin((x1 — 1) * (z2 — 1)) 100 points 10,000 points
x1,x2=rand(-3.0, 3.0) z1,z2=rand(-3.0, 3.0)

Fy  f(z1,20) = 2129 (:;g)fim@? 3) 100 points 10,000 points

x1,x2=rand(-3.0, 3.0) x1,z2=rand(-3.0, 3.0)

is noise-free. Figure 5(b) shows the histogram of the ndemdlresponse values for
different problems.

3.2. MLP design

The regression problents, Fy, F3, Fy are of two, five, two and two input variables
respectively. The architecture of a MLP consists of an ifgygr with the same num-
ber of input nodes as the dimensionality of the input of a @l a hidden layer of
10 nodes withtanh activation functions, and an output layer of a single nodé \&i
tanh activation function. Training is performed using standaagk-propagation with
a learning rate set t6.005, iterated for2, 000 epochs. We are experimenting with
the effect of the number of wake-sleep cycles during trginand tried the proposed
method with 5, 10, 15, and 20 cycles. This effectively me&ias ¢ach set of training
examples is divided into the respective number of non-apgihg subsets.

4. Resultsand Analysis

In the figures discussed in this section, we plot the averagg\bquared Error (MSE)
that accrues from 50 runs of an MLP using different randonghinitialisations as
a function of the weight downscaling percentage that talesepduring a sleep phase.
For comparison purposes we also plot the average MSE thatamed from the base-
line MLP algorithm that uses no weight downscaling. Depegdin the level of noise
that is injected into each response variable, we categtivésarning problems into
easy (Gaussian noigeof 0.01 or 0.1), moderate (of 1.0 or 10.0), and hardr(of 30.0
or 50.0). In addition, Tables 2, 3, 4, 5 present the standaodsfor the out-of-sample
MSE estimates.

Figure 1 presents the results for problédin An observation that is consistent
across all different setups for the number of wake/sleefesyis that for the easy and
moderate problem formulations the proposed method owpedd standard MLP.
In addition, results suggest no clear trend in the evolutibthe MSE curve as a
function of the downscaling percentage, however for thellemkevels of noise (i.e.
0.01, 0.1) increasing the percentage of downscaling seemarsen the generalisation
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performance.

The results for problen¥, are presented in Figure 2. Here the number of
wake/sleep cycles exert an effect in the out-of-sampleoperdnce with their num-
ber set to 15 attaining the best generalisation improvemesrtstandard MLP for all
problem formulations but the one where noisés set to 1.0. Results also suggest
that in the easiest case (i.e. nois®f 0.01), the method of downscaling is difficult
to improve performance over standard MLP and in most cases I performance
deterioration.

Figure 3 presents the results for probléf In this case, contrary to the results
observed in other problems, weight downscaling improve®p®ance over standard
MLP in the least noisy problems, whereas the performancerideates over that of
standard MLP for the noisiest problem formulation. Thisr@ase in performance in
the case of noise levels of 0.01 and 0.1 can be attribute@tdisicrepancy between the
distributions of the response values between training astihg as can been seen in
Figure 5(a) for Function 3 under noise level 0.01 and Fig(ip¢ for the same function.
This was due to random sampling for the valugsand xz, that created relatively
disjoint sets of examples to train and test a model. The meaxfithe response values is
approx. 0.03 for training, and 0.57 for testing. Out-of-gdeperformance is therefore
improved by relaxing the fit to the training examples. Thigdental result should be
regarded as a valid scenario of training and testing datdldiion mismatch that can
occur when dealing with real-world data. It reinforces tiewthat in case of overfit
models, weight downscaling can improve out-of-sampleqrer&nce.

Finally, Figure 4 presents the results for probléin We observe that the use
of downscaling substantially improves the out-of-sam@dgmance for the noisiest
problem formulations. This is evident in the case were thenlmer of wake/sleep
cycles was the greatest, i.e., 15 and 20. For the easy andratedmses, figures
suggest that downscaling has the tendency to worsen peafaan This particular
problem also exhibits an interesting trend in the evolutibthe the MSE curve as
a function of the downscaling percentage. More specifictily out-of-sample error
decreases as the downscaling percentage increases faisieshproblems, whereas
it decreases as a function of increasing percentage of th# and moderate levels of
noise in the target.

4.1. Summary of observations

The observations from the experiment can be summarisedlaw$o

1. The downscaling mechanism increases the generaligatidormance for most
cases of moderate and high levels of noise.

2. No advantage is accruing from the proposed method whehwigiesmall levels
of noise in the target function. In most cases, performaetertrates.

3. The optimal number of wake/sleep cycles and the level a§edownscal-
ing appears to be problem dependent. A principled approach as cross-
validation should be applied to chose these effectively.

4. Overall, when training and testing over similar inputpu distributions, weight
downscaling exerts a negative effect by disrupting the fia @hodel. On the
other hand, in the case where there is discrepancy betwaiemg and testing
input-output distributions, the downscaling mechanisrprioves generalisation.
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Table 2. Out of sample MSE: mean values and standard erronstibn 1.

Down

Noise 0.01

Noise 0.1

Noise 1.0

Noise 10.0

Noise 30.0

Noise 50.0

n/a

1%
15%
30%

1%
15%
30%

1%
15%
30%

1%
15%
30%

0.060 (0.0005)

0.063 (0.0007)
0.062 (0.0005)
0.067 (0.0003)

0.061 (0.0027)
0.084 (0.0038)
0.105 (0.0015)

0.056 (0.0021)
0.078 (0.0032)
0.099 (0.0004)

0.052 (0.0015)
0.074 (0.0004)
0.086 (0.0004)

0.077 (0.0011)

0.068 (0.0016)
0.069 (0.0008)
0.074 (0.0009)

0.077 (0.0018)
0.061 (0.0003)
0.069 (0.0003)

0.064 (0.0014)
0.066 (0.0009)
0.077 (0.0008)

0.078 (0.0008)
0.077 (0.0008)
0.101 (0.0005)

Standard MLP
0.151 (0.0005)

0.166 (0.0011)
0.162 (0.0013)
0.159 (0.0016)

0.123 (0.0029)
0.127 (0.0023)
0.134 (0.0018)

0.159 (0.0035)
0.139 (0.0005)
0.141 (0.0004)

0.074 (0.0017)
0.072 (0.0004)
0.081 (0.0002)

0.199(@P

5 wake/sleep cycles

0.194 @BPO
0.159(®BP
0.150@p

10 wake/sleep cycles

0.128 @O
0.12D0BD
0.13D(@P

15 wake/sleep cycles

0.121 @2PO
0.11002p

0.1110@1p

20 wake/sleep cycles

0.182 (@1PO
0.199(EP
0.18DED

0.164 (0.0013)

0.245 (0.0023)
0.252 (0.0022)
0.239 (0.0030)

0.218 (0.0036)
0.201 (0.0020)
0.214 (0.0019)

0.228 (0.0019)
0.232 (0.0019)
0.206 (0.0009)

0.239 (0.0077)
0.243 (0.0027)
0.234 (0.0009)

0.172 (0.0009)

0.169 (0.0036)
0.173 (0.0018)
0.160 (0.0010)

0.160 (0.0049)
0.186 (0.0030)
0.181 (0.0017)

0.154 (0.0045)
0.215 (0.0004)
0.198 (0.0003)

0.167 (0.0022)
0.212 (0.0005)
0.206 (0.0002)

Table 3. Out of sample MSE: mean values and standard errongtibn 2.

Down

Noise 0.01

Noise 0.1

Noise 1.0

Noise 10.0

Noise 30.0

Noise 50.0

n/a

1%
15%
30%

1%
15%
30%

1%
15%
30%

1%
15%
30%

0.034 (0.0007)

0.188 (0.0053)
0.087 (0.0040)
0.031 (0.0009)

0.124 (0.0086)
0.025 (0.0008)
0.035 (0.0007)

0.048 (0.0033)
0.038 (0.0012)
0.043 (0.0007)

0.037 (0.0009)
0.042 (0.0004)
0.054 (0.0002)

0.107 (0.0019)

0.141 (0.0041)
0.074 (0.0013)
0.064 (0.0022)

0.103 (0.0043)
0.077 (0.0017)
0.083 (0.0005)

0.107 (0.0053)
0.075 (0.0007)
0.087 (0.0006)

0.083 (0.0026)
0.102 (0.0007)
0.117 (0.0009)

Standard MLP
0.167 (0.0027)

0.203 (0.0127)
0.186 (0.0072)
0.197 (0.0040)

0.263 (0.0090)
0.234 (0.0030)
0.255 (0.0016)

0.296 (0.0050)
0.269 (0.0004)
0.266 (0.0005)

0.124 (0.0054)
0.150 (0.0007)
0.187 (0.0001)

0.1708YD

5 wake/sleep cycles

0.202 @p1
0.16 D@
0.149EEP

10 wake/sleep cycles

0.375 @p1
0.2308TP
0.16D@LD

15 wake/sleep cycles

0.175 GYPO
0.068(@P
0.08@(ED

20 wake/sleep cycles

0.149 @2PO
0.10D0ED
0.12D(BP

0.204 (0.0073)

0.156 (0.0042)
0.149 (0.0026)
0.147 (0.0019)

0.082 (0.0047)
0.068 (0.0027)
0.065 (0.0015)

0.084 (0.0021)
0.067 (0.0026)
0.061 (0.0028)

0.307 (0.0107)
0.236 (0.0024)
0.178 (0.0009)

0.234 (0.0041)

0.212 (0.0126)
0.225 (0.0077)
0.226 (0.0058)

0.289 (0.0115)
0.206 (0.0060)
0.223 (0.0017)

0.202 (0.0095)
0.172 (0.0031)
0.218 (0.0008)

0.286 (0.0064)
0.249 (0.0006)
0.229 (0.0005)
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Table 4. Out of sample MSE: mean values and standard erronstibn 3.

Down  Noise0.01 Noise 0.1 Noise 1.0 Noise 10.0 Noise 30.0 Noise 50.0
Standard MLP
n/a 0.203 (0.0002)  0.095 (0.0003)  0.030 (0.0001) 0.03D@P 0.050 (0.0007) 0.036 (0.0001)

1%
15%
30%

1%
15%
30%

1%
15%
30%

1%
15%
30%

0.203 (0.0010)
0.182 (0.0026)
0.175 (0.0034)

0.197 (0.0013)
0.183 (0.0019)
0.176 (0.0025)

0.197 (0.0021)
0.188 (0.0032)
0.164 (0.0028)

0.219 (0.0035)
0.228 (0.0006)
0.208 (0.0004)

0.113 (0.0037)
0.091 (0.0027)
0.083 (0.0015)

0.042 (0.0009)
0.034 (0.0004)
0.034 (0.0007)

0.064 (0.0015)
0.053 (0.0012)
0.045 (0.0003)

0.051 (0.0013)
0.043 (0.0002)
0.034 (0.0000)

0.043 (0.0007)
0.031 (0.0004)
0.027 (0.0002)

0.054 (0.0023)
0.057 (0.0018)
0.045 (0.0010)

0.066 (0.0023)
0.049 (0.0011)
0.052 (0.0016)

0.152 (0.0034)
0.075 (0.0004)
0.063 (0.0003)

5 wake/sleep cycles

0.043 (BP0
0.039(2P
0.03B(RP

10 wake/sleep cycles

0.034 (BPO
0.03@@LP
0.03@@2P

15 wake/sleep cycles

0.038 (BP0
0.03D(1Lp
0.03D@LP

20 wake/sleep cycles

0.063 @2PO
0.0310(p
0.03@@MY

0.077 (0.0019)
0.065 (0.0022)
0.051 (0.0020)

0.078 (0.0030)
0.047 (0.0025)
0.032 (0.0001)

0.040 (0.0018)
0.035 (0.0004)
0.034 (0.0001)

0.073 (0.0055)
0.029 (0.0001)
0.029 (0.0001)

0.053 (0.0010)
0.044 (0.0004)
0.041 (0.0005)

0.075 (0.0026)
0.056 (0.0008)
0.040 (0.0004)

0.060 (0.0019)
0.046 (0.0002)
0.051 (0.0004)

0.063 (0.0029)
0.042 (0.0003)
0.039 (0.0002)

Table 5. Out of sample MSE: mean values and standard errongtibn 4.

Down  Noise0.01 Noise 0.1 Noise 1.0 Noise 10.0 Noise 30.0 Noise 50.0
Standard MLP
n/a 0.002 (0.0000) 0.002 (0.0001) 0.002(0.0001) 0.0200LP 0.066 (0.0003) 0.133(0.0002)

1%
15%
30%

1%
15%
30%

1%
15%
30%

1%
15%
30%

0.005 (0.0001)
0.013 (0.0001)
0.028 (0.0005)

0.007 (0.0005)
0.014 (0.0004)
0.024 (0.0003)

0.012 (0.0008)
0.015 (0.0003)
0.021 (0.0001)

0.008 (0.0003)
0.015 (0.0003)
0.022 (0.0001)

0.004 (0.0001)
0.011 (0.0003)
0.027 (0.0006)

0.004 (0.0002)
0.012 (0.0002)
0.026 (0.0003)

0.006 (0.0008)
0.013 (0.0009)
0.024 (0.0002)

0.008 (0.0004)
0.019 (0.0007)
0.030 (0.0001)

0.003 (0.0001)
0.014 (0.0002)
0.041 (0.0007)

0.010 (0.0011)
0.010 (0.0003)
0.032 (0.0007)

0.014 (0.0021)
0.010 (0.0002)
0.030 (0.0004)

0.032 (0.0023)
0.018 (0.0002)
0.034 (0.0001)

5 wake/sleep cycles

0.037 (AP0
0.040(®p
0.06D(BP

10 wake/sleep cycles

0.065 @BPO
0.06@(®BP
0.09D(®BP

15 wake/sleep cycles

0.070 @BPO
0.10D(®p
0.12D(@p

20 wake/sleep cycles

0.061 @¥PO
0.08D(BD
0.09D@BD

0.093 (0.0006)
0.087 (0.0010)
0.087 (0.0017)

0.184 (0.0040)
0.108 (0.0033)
0.085 (0.0020)

0.147 (0.0041)
0.073 (0.0026)
0.062 (0.0008)

0.054 (0.0034)
0.036 (0.0003)
0.036 (0.0001)

0.152 (0.0027)
0.141 (0.0021)
0.124 (0.0025)

0.156 (0.0038)
0.093 (0.0016)
0.083 (0.0028)

0.144 (0.0057)
0.113 (0.0044)
0.090 (0.0015)

0.166 (0.0065)
0.121 (0.0012)
0.115 (0.0010)
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Figure 1. Out-of-sample results for probldr with six different noise levels.
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Figure 2. Out-of-sample results for probldr with six different noise levels.
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Figure 3. Out-of-sample results for probldri with six different noise levels.
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Figure 4. Out-of-sample results for probldm with six different noise levels.
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5. Conclusion

In prediction problems, fitting the training data too clgsehn be counterproduc-
tive. Reducing the expected loss on the training data begonte point causes the
population-expected loss to stop decreasing, and oftehtstancrease. Regularisa-
tion methods in MLPs, like weight decay, prevent such ower§itby constraining
the magnitude of the adaptive weights during the learniregsph In the chapter we
showed that simulating a simple weight downscaling medmawiuring a sleep phase
can similarly to weight decay exert a positive effect on gah®ation in the case of
noisy datasets.

Controlling the parameters defined as tloenscaling percentage and thenumber
of wake/d eep cyclesregulate the degree to which the expected loss on the trpifsta
is minimised. Each of the two parameters controls the degfditand thus affects the
best value for the other one. Decreasing the value of dovinggsercentage, increases
the best value for the wake/sleep cycles. Ideally, one shestimate optimal values
for both by minimising a model selection criterion jointlyttvrespect to the values of
the two parameters. There are also computational consiolesaincreasing the value
of sleep/wake cycles produces a proportionate increaseeindmputation. Its value
should be made as large as is computationally feasible. &hee\of downscaling
percentage should then be adjusted using cross-validation

A final observation concerns the nature of the learning p®cga a number of
sleep/wake cycles. Unlike fitting the weights of the netwawking a number of epochs
with a fixed learning rate, the sleep/wake approach inskesrths more slowly. In
general, it has been repeatedly advocated in the stalistimehine learning literature
that learning methods that learn slowly tend to generalisie w
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Figure 6. Plot of regression problem 1 of Table 1.
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Figure 7. Plot of regression problem 3 of Table 1.
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Figure 8. Plot of regression problem 4 of Table 1.



