
Structural and Nodal Mutation in Grammatical Evolution

Jonathan Byrne, Michael O’Neill, James McDermott, Anthony Brabazon
Natural Computing Research & Applications Group

University College Dublin, Ireland
jonathanbyrn@gmail.com, m.oneill@ucd.ie, anthony.brabazon@ucd.ie

ABSTRACT
This study focuses on mutation in Grammatical Evolution
and divides mutation events into those that are structural
in nature and those that are nodal. A structural event be-
ing one that alters the length of the phenotype. A nodal
event simply alters the value at any node of a derivation
tree. We analyse and compare the effect of integer, nodal
and structural mutations on fitness for randomly generated
individuals before continuing this analysis to their relative
problem-solving performance over full runs. The study high-
lights the importance of understanding how the search oper-
ators of an evolutionary algorithm behave. The result in this
case being a form of mutation for Grammatical Evolution,
node mutation, with a better property of locality than stan-
dard integer-based mutation, which does not discriminate
between structural and nodal contexts.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]; I.2.2 [Automatic Program-
ming]; F.4.2 [Grammars and Other Rewriting Sys-
tems (D.3.1)]

General Terms
Algorithms, Experimentation

Keywords
grammatical genetic programming, grammatical evolution,
mutation, locality

1. INTRODUCTION
Much attention has been directed towards the behaviour

of crossover in Grammatical Evolution (GE) due to the tra-
ditional importance placed on this search operator in Ge-
netic Programming [1] in general (e.g., [2, 3, 4]). However,
aside from simple studies which examined mutation rates,
there has been little analysis of the behaviour of mutation
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on search in GE with the notable exception of Rothlauf and
Oetzel’s locality study on binary mutation [5] and a study
comparing performance of binary and integer forms of mu-
tation [6].

Search operators are a key component of any genetic and
evolutionary computation representation, and as such it is
critical that we understand their behaviour. This in turn
helps us to design more efficient search operators. This study
closes this important research gap by conducting an analy-
sis of the behaviour of GE’s mutation operator focusing on
the types of changes that occur when it is applied, and it’s
impact on evolutionary performance.

The remainder of the paper is structured as follows. First
some background on the locality of binary mutation is pro-
vided in Section 2 before an analysis of the behaviour of
mutation in GE is undertaken in Section 3. Section 4 and
Section 5 describes the experimental setup, experiments un-
dertaken and results obtained. In light of the results further
analysis is described in Section 7, before finishing the paper
in Section 8 with Conclusions and Future Work.

2. RELATED RESEARCH
In a recent study examining the locality of the mutation

operator in Grammatical Evolution it was found that in
some cases (less than ten percent of the time) mutation
events can result in small changes to the genotype result-
ing in not so small changes to the structures generated [5].
More specifically, given a single unit of change at the geno-
type level (i.e., a bit flip), changes of greater than one unit of
change at the phenotypic tree level occured approximately
ten percent of the time. 14% of these had a distance of
greater than 5 unit at the tree level. A unit of change at
the phenotypic tree level corresponded to tree edit distance
calculations which included deletion (delete a node from the
tree), insertion (insert a node into the tree) and replacement
(change a node label) change types. It is worth stating that
the other 90% of the time mutation has no effect due to
the many-to-one mapping adopted in GE which allows mul-
tiple codon values to correspond to the same production
rule choice. The genotype change therefore being neutral
upon phenotype structure and fitness in these cases. It is
not clear how invalid phenotypes (i.e., phenotypes that are
incompletely mapped containing at least one non-terminal
symbol) were handled in Rothlauf and Oetzel’s study []. It
is possible that any remaining non-terminal symbols were
treated as different node content values in the tree distance
calculations, but this is not exposed in their study.

In this paper we turn our attention to what is occuring



that critical 10% of the time when a unit of change arising
from mutation at the genotype level is not perfectly corre-
lated with a unit of change at the phenotype level. We wish
to establish if it is possible to design a mutation-based search
operator that exhibits better properties of locality than the
one currently adopted.

3. AN ANALYSIS OF MUTATION IN GE
To expose the impact of mutation on derivation tree struc-

ture we design a simple grammar, which adopts binary rule
choices. This allows us to condense codons to single bits,
which simplifies our analysis without loss of generality to
more complex grammars with greater than two productions
for each non-terminal.
Below is a simple binary grammar which might be used

in the case of application to a Symbolic Regression type
problem with two variables (x and y).

<e> ::= <o><e><e> (0)

| <v> (1)

<o> ::= + (0)

| * (1)

<v> ::= x (0)

| y (1)

We can then construct genomes with binary valued codons
to construct sentences in the language described by the above
example grammar. Consider all genomes of length two codons
(22 of them) and draw an edge between genomes that are
a hamming distance of one apart. If we then present the
corresponding partial derivation trees resulting from those
genomes we see an arrangement outlined in Fig. 1. In this
particular example we see that a mutation event at the first
codon corresponds in a new derivation tree structure. Here
we define a new derivation tree structure as being one that
has changed in length, that is, it contains more non-terminal
symbols than its neighbour. Mutations from 00 to 10 (and
vice versa) and from 01 to 11 (and vice versa) results in
these structural changes. Whereas the remaining mutation
events result in node relabelling.
Extending the genomes by an additional codon we can vi-

sualise the hamming neighbourhood between the 23 genomes
both in terms of genomes codon values and partial pheno-
type structures. These are illustrated in Fig. 2. Again, we
see a clear distinction between mutation events that result
in structural and non-structural modifications.
Mapping these codons back to the grammar we see that

structural mutations occur in the context of a single non-
terminal symbol, <e>. We can see from this grammar that
this non-terminal alone is responsible for structural changes,
as it alone can increase the size of the developing struc-
ture. The rules for the <o> and <v> non-terminals are non-
structural as they simply replace an existing symbol without
changing structural length.
Effectively we can now categorise mutation events as be-

ing either structural or nodal, and by logical extension we
could define two new types of mutation operator, structural
mutation and nodal mutation. Perhaps the locality of mu-

tation could be improved by simply reducing the number of

occurances of the structural form of mutation, or even re-

moving this form of mutation completely?

If mutation was the sole search operator employed in a
GE search, its elimination would have the consequence of
removing structural change and structural search. This of
course should have determinental consequences for search as
in Genetic Programming we must explore both structures
and their contents. Part of the strength of GP approaches
as problem solvers is their ability to search variable-length
structures, so the removal of this ability would be undesir-
able. Perhaps then crossover combined with a nodal form of

mutation might produce more efficient search? The follow-
ing analysis and experiments seek to determine the relative
importance of these forms of mutation and begin to answer
these kinds of questions.

Figure 1: The 2D neighbourhood for the example
grammar (i.e., using the first two codons).

Figure 2: The 3D neighbourhood for the example
grammar (i.e., using the first three codons).

4. EXPERIMENTAL PROCEDURE



This experiment was implemented using GEVA[7, 8], this
is an open source framework for Grammatical Evolution in
Java designed by the NCRA group in UCD. A number of
properties were kept constant over the Experiment execu-
tion, these are as follows: Population size = 500, replication
rate= 0.1, maximum generations =50, the Mersenne Twister
as the random number generator and fitness proportionate
selection using the tournament selection operator with the
tournament size set to 3. Single point crossover was used
for all crossover operations. Wrapping was turned off as it
could lead to conditions where a codon was both structural
and nodal. Generational replacement with an elite size of 1
was used as our replacement operator.
The fitness for Symbolic Regression was calculated using

50 randomly selected points between the range -1 and 1. The
target function for Symbolic Regression is the polynomial
x+ x

2 + x
3 + x

4 + x
5. The fitness for the Santa-Fe ant trail

is the amount of food collected by the time the energy is
exhausted, and the fitness for the Word Match is the amount
of characters correctly placed in the target word. The word
used was ”experimental”. In the Even Five Parity problem
the fitness was the hamming distance between the result and
the correct value of the boolean function. In our experiment
the GE version of ramped half-and-half initialisation was
used, A Ramped full grow initialiser with the tree depth set
to 10.

5. EXPERIMENT DESCRIPTION

5.1 Analysis of Mutations Effect on Chromo-
somal Fitness

This experiment conducted an analysis of the operator’s
impact on individual codon changes. The experiment was
run against the four problems described above with the same
settings. The fitness was recorded by generating a random
individual and then traversing each codon with a 10% prob-
ability of mutation, when a mutation occurred the change
in fitness was recorded and then the codon was returned to
its original value. This meant that each mutation could be
considered independent of those preceding it. If a mutation
created an invalid individual then this was recorded but no
penalty was added to the fitness. This was continued un-
til a sample size of 10,000 mutations was gathered for each
operator. This experiment does not accurately reflect how
these search operators work in practice. For example the
quantity of bad fitness generated by an operator is generally
irrelevant as it is bred out of the population and, conversely,
a good mutation is always of benefit to a population regard-
less of its size. Instead these metrics attempt to show some
of the mechanics at play during mutation.

5.2 Analysis of Mutations Effect on Search
This experiment attempted to investigate whether these

different mutation operators could have a beneficial impact
on traversing the search space. Our experiment was car-
ried out on four problems described above. Every problem
was tested without crossover and with crossover set to a
probability of 0.9. For each test problem a combination
of mutation operators were used, Nodal mutation, Struc-
tural mutation, Intflip mutation and a varying composite
of Nodal and Structural Mutation. Each of these operators
were tested using two different probabilities of mutation 0.01

and 0.1. In the case of variable mutation the mutation rate
was moved proportionately from Structural to Nodal dur-
ing the course of the run. At any point in the experiment
the sum of the Structural and Nodal mutation probabilities
equalled the overall probability. It must also be highlighted
that the number of mutation events for Intflip ended up be-
ing higher as the mutation probability was applied to every

codon, whereas the other operators were only applied to a
subset of these codons.

6. EXPERIMENTAL RESULTS

6.1 Chromosomal Fitness Results
This experiment attempted to highlight the effect of selec-

tively altering codons that correlated with either a terminal
or non-terminal phenotype. The results from this experi-
ment are shown in the barcharts below, see Figures 3, 4 and
5. It shows that on average Nodal mutation produced more
good results of higher fitness. In the cases where IntFlip
performed better there was also a disproportionate amount
of bad mutations. The only exception to this was the fit-
ness results for Symbolic Regression. The most likely cause
of this is the difference in invalids being produced by the
operators, a possibility also supported by the fact that over-
all it produced a greater number of good mutations. Nodal
mutation, by its definition, cannot produce an invalid, only
substitute one terminal for another. whereas the other op-
erators produced more invalids on this problem than any
other. The greater quantity of valid but bad mutations also
worked against Nodal mutation because a sum of squared er-
rors formula was used to calculate the fitness, this magnified
any bad result.

These results shows that Nodal mutation was able to ex-
ploit an existing solution to maximise the fitness from it.
Structural mutation performed worst overall with both the
poorest fitness gain and the greatest number of invalids.
While the creation of invalids is generally regarded as detri-
mental to the search process. It does at least show that
Structural mutation is attempting to fully explore the search
space, regardless of whether the result is beneficial to the
population or not.

6.2 Search Results
The results from this experiment show that selectively

altering subsets of codons from the chromosome can have
a dramatic effect on how GE navigates the search space.
The results are shown in the graphs below, see Figures 6-23.
Structural mutation by itself performs worst. As shown in
the graphs it initially makes some improvement to the over-
all fitness but then it soon plateaus as shown in figs 14 and
22. This operator could also be affected by the initialisation
depth which might have generated many of the solutions
that it would have explored. Nodal mutation matched the
performance of IntFlip on the Word Match and Even Five
Parity problem and surpasses it at higher mutation rate.
Nodal mutation has an advantage on these types of prob-
lems as much of the changes for improved fitness would be
on the letters the nodes represent.

The Variable mutation operator matches the the best re-
sults of both the structural and nodal mutation operators
for each experiment and for higher mutation rates it sur-
passes the Intflip operator on several of the experiments.
In some cases it even surpasses nodal results which would
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Figure 3: Comparison of the number of good versus bad mutations (far left) and fitness gain (middle left) for
Santa Fe Ant trail, and the number of good versus bad mutations (middle right) and fitness gains (far right)
for Even Five Parity. Good mutations have a positive fitness impact and are represented in green with bad
mutations having negative impact and are shown in red. The order of the bars in each chart are as follows:
integer (good), structural (good), nodal (good), integer (bad), strucutral (bad), nodal (bad).
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Figure 4: Comparison of the number of good versus bad mutations (far left) and fitness gain (middle left)
for Symbolic Regression, and the number of good versus bad mutations (middle right) and fitness gains (far
right) for Word Match.
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Figure 5: Number of invalids produced for each experiment



suggest that the combination of the two operators is of ben-
efit. A pairwise T-Test was performed on the results and it
showed that the Variable mutation operator offered a signif-
icant improvement over Intflip on both the Even Five Parity
and Word Match problems. It should also be noted that in-
creasing the mutation rate significantly improved the perfor-
mance of the Nodal and Variable mutation operators. This
result would either indicate that the smaller codon sets that
these operators work on is distorting the results from Int-
Flip or that these operators might be less destructive than
IntFlip.

7. DISCUSSION
It is thought that the main use of mutation is to fine-tune

an existing solution. This may be the case in GAs as mu-
tation may not greatly affect the solutions, but in GP small
changes caused by mutation at root nodes can have a dra-
matic impact on the solution. This influence can be felt just
as dramatically in GE, where the outcome of a particular
rule choice is dependent on all the rules that preceded it.
Nodal mutation was more akin to the standard GP muta-
tion as phenotypic changes consisted of replacing one ter-
minal for another. The analysis of chromosomal mutation
showed that nodal mutation had a far greater number of fit-
ness changes and would therefore be beneficial in fine tuning
a solution.
On the other hand, Structural mutation did not act as a

operation for exploiting a solution but instead as a technique
for a more global exploration of the search space. While the
benefits of structural mutation were not seen in the chro-
mosomal experiments, it would be wrong to think that just
because the changes it made didn’t have an immediate ef-
fect that it had no effect at all. Preliminary results showed
that a combination of Structural and Nodal mutations, used
at different points of the search produced solutions at least
as good as either of the operators individually and in some
cases produced the best solutions of any operator.
This presents the intriguing idea that the lack of locality

in the standard GE mutation could in fact help it to explore
the search space more thoroughly and then as the general
outline of a good solution has been selected, the direction
of GE’s mutation could be focused on the details of that
solution to hone it down further

8. CONCLUSION & FUTURE WORK
This study analysed the behavior of mutation in GE. Three

different types of mutation operator were investigated, Nodal,
Structural and Integer mutation. We initially investigated
the effects of these mutation operators at the chromosomal
level to judge the impact of individual codon changes. An
analysis was then conducted to find out how well each op-
erator performed in practice on a set of problems. A new
composite mutation operator consisting of Nodal and Struc-
tural mutation was also tested against these problems. The
results indicated that the mutation operator had a distinct
impact on evolutionary performance and in many cases im-
proved performance over standard Integer mutation.
Future work will involve analysing the impact each of the

mutation operators has on fitness at different stages of a run.
In the first set of experiments presented in this paper we ef-
fectively analysed the relative impact of each of the types of
mutation on the randomly created individuals of generation

zero. It is natural to expect that the importance of different
types of operators will vary over the course of a run. For
example, early on in the run a more global search driven by
coarser-grained operators might be acceptable. However, as
the population converges upon the more productive areas of
the search space it becomes more appropriate to adopt finer-
grained search operators (i.e., operators which make smaller
step sizes allowing the population to perform a local search
in the region of interest). In this respect we hypothesise that
we would observe a greater difference in performance be-
tween the different forms of mutation during the end-phase
of a run versus the mid and early-phases. Indeed, expecting
to see any difference in performance for randomly generated
individuals might be too much to expect and would go some
way to explain the observations made in the experiments
reported here. In the later phase of a run we would hypoth-
esise that nodal mutation might have a more positive impact
than during the early phase, and we would hypothesise the
opposite behaviour for structural mutation.
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Figure 6: Results for Even Five
Parity without crossover and mu-
tation rate 0.01
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Figure 7: Results for Even Five
Parity with crossover and muta-
tion rate 0.01
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Figure 8: Results for Even Five
Parity without crossover and mu-
tation rate 0.1
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Figure 9: Results for Even Five
Parity with crossover and muta-
tion rate 0.1
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Figure 10: Results for Santa Fe
without crossover and mutation
rate 0.01

0 10 20 30 40 50

0
20

40
60

80

sf XO 0.9 Mut 0.01

generation

fit
ne

ss

intflip
node
struct
varmut

Figure 11: Results for Santa Fe
with crossover and mutation rate
0.01
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Figure 12: Results for Santa Fe
without crossover and mutation
rate 0.1
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Figure 13: Results for Santa Fe
with crossover and mutation rate
0.1
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Figure 14: Results for Symbolic
Regression without crossover and
mutation rate 0.01
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Figure 15: Results for Symbolic
Regression with crossover and mu-
tation rate 0.01
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Figure 16: Results for Symbolic
Regression without crossover and
mutation rate 0.1
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Figure 17: Results for Symbolic
Regression with crossover and mu-
tation rate 0.1
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Figure 18: Results for Word
Match without crossover and mu-
tation rate 0.01
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Figure 19: Results for Word
Match with crossover and muta-
tion rate 0.01
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Figure 20: Results for Word
Match without crossover and mu-
tation rate 0.1
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Figure 21: Results for Word
Match with crossover and muta-
tion rate 0.1
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Figure 22: Results for Word
Match without crossover and mu-
tation rate 0.1
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Figure 23: Results for Word
Match with crossover and muta-
tion rate 0.1


