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Abstract— We present a novel self-organizing Particle Swarm alternative version of the algorithm, a local neighborhood
algorithm, SOSwarm, that adopts unsupervised learning. Iput  around each particlel,{;). In the local version of the
vectors are projected onto a lower dimensional map space giqqrithm, each particle is considered to be linked to asubs

producing a visual representation of the input data in a manrer f th |ati f ticl d this link truct
similar to the Self-Organizing Map (SOM) artificial neural n et- o € population ol particles, an IS linkage structure

work. Particles in the map react to the input data by modifying IS fixed at the beginning of the optimization process and
their velocities using a standard Particle Swarm Optimizaton ~ remains unchanged during it (see Fig.1). Whether the lacal o

update function, and therefore organize themselves spali§  global communication version is implemented, at each step
within fixed neighborhoods in response to the input training of the algorithm, particles are displaced from their cutren

vectors. SOSwarm is successfully applied to four benchmark ition b Vi locit dient tor 1o th
classification problems from the UCI Machine Learning repos position by applying a velocity (or gradient) vector to them

itory with the novel SOSwarm algorithm outperforming or The velocity size / direction is influenced by the velocity
equaling the best reported results on all four of the problens  in the previous iteration of the algorithm (simulates ‘mame
analyzed. tum’), and the location of a particle relative to jbg..; and

grest (OF lpest). Therefore, at each step, the size and direction
of each particle’s move is a function of its own history
In this proof of concept study we introduce the novelexperience), and the social influence of its peer group.
Self-Organizing Swarm (SOSwarm) algorithm, which adopts A number of variants of the particle swarm algorithm
unsupervised learning with a Particle Swarm Algorithm. IfpsA) exist. The following paragraphs provide a descriptio

this paper we firstly introduce the Particle Swarm Optiof a canonical continuous version of the algorithm.
mization algorithm (Section II) upon which SOSwarm is

based. We then introduce the fundamental concepts of thei. Initialize each particle in the population by randomly

I. INTRODUCTION

Self-Organizing Map (SOM), which bears similarities to selecting values for its location and velocity vectors.
SOSwarm in Section Ill. Following a detailed exposition ii. Calculate the fitness value of each particle. If the
of SOSwarm in Section IV we apply the algorithm to current fitness value for a particle is greater than the
four benchmark problems from the UCI Machine Learning best fitness value found for the particle so far, then
repository (Section V) before drawing conclusions and out- reviseppes:-
lining some possible directions for future investigatiovith iii. Determine the location of the particle with the highest
SOSwarm in Section VI. fithess and revisg,.s; if necessary.
iv. For each particle, calculate its velocity according to
Il. PARTICLE SWARM OPTIMIZATION equation 1.

The PSO algorithm was introduced by Kennedy and V. Update the location of each particle according to
Eberhart [6] and is described in detail in [5]. In the context equation 3.
of PSO a swarm can be defined as ‘... a population ofVvi. Repeat steps ii - v until stopping criteria are met.
interacting elements that is able to optimize some global
objective through collaborative search of a space.’ [5] (p.
xxvii). The nature of the interacting elements (particles)
dept_ands on the problem domain, in this study they_represent vi(t+1) = wvi(t) + (c1 * Ry * (Dpest — 1))
the input parameter values of the problem domain. These
particles move (fly) in an n-dimensional search space, in an
attempt to uncover ever-better solutions to the problem afhere,
interest.

Each of the particles has two associated properties, a %
current position and a velocity. Each particle also has g equation 1p;..; is the location of the best solution found
memory of the best location in the search space that it h@g.date by particlei, g,..; is the location of the global-
found so far fres:), and knows the best location found topest solution found by all particles to date, and ¢, are
date by all the particles in the populatiog{s¢) or in an the weights associated with the.,; and thegy..; terms
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The update algorithm for particles velocity vectory; is:

+ (02 * RQ * (gbest - I’L)) (1)

= wmaz — ((wmax — wmin) /itermazx) * iter  (2)



particle searches independently of all other particleghéf
neighborhood: N (the number of particles in the swarm),
/ \ all particles can communicate with each other, and we have

the gyes; version of the PSO algorithm.

Particle Swarm algorithms have been successfully applied
to a diverse range of problems including Financial Modeling

& [2], the automatic generation of programs ([10], [11]) @sin
a grammatical representation borrowed from Grammatical
Evolution [12], [13], [14], [15], [16], and the constructio
of Artificial Neural Networks [17].

I1l. SELF-ORGANIZING MAP
Fig. 1. Ring topology wheré,.; is defined using a 3 node neighborhood ..
(itself and two other nodes) Self-organizing maps (SOM) [7], [8], [9] are a form of

artificial neural network (NN) which can cluster data using
unsupervised learning. Unsupervised learning is used when
. : . . . the outputs (clusters) are not known a priori.
is reduced according to equation 2 as the algorithm iterates The gOM( acts to)project (compressF; input data vectors
In equation 2,itermax and iter are the total number of "2 0w dimensional space, typically a two-dimensional
iterations the _algorlthm will run for, and the current ittioa grid structure, thereby producing a visual representation
;/alue Lesp%ctl\_/ely, ar:gmaxl andfut;;]mn set th? upperf?n_d the input data. The unsupervised learning process is based o
_lc_)r\:ver Iour_lt a”e;‘ c;n eva u((aj.o € momen urr: coe (;C'tennlneasures of similarity amongst the input data vectors.rduri

€ velocity update on any dimension IS constrained 1o g o training process, the network undergoes self-orgtaiza

ma>t<_|r:1u.n_1 \(/jalije O.fwga_a;' an? the Veljoi'tﬁ updatﬁ for3 as like input data patterns are grouped or clustered to-
particies 1S determined, 1S position 1S update (equation )gether on the grid structure. SOMs have been utilized for
and pyes; is updated if necessary (equations 4 & 5).

a variety of clustering and classification problems inahgdi
speech recognition and medical diagnosis [3]. The SOM

it +1) = 2(t) +vi(t + 1) (3)  bears similarities with the traditional statistical teithre of
Principal Component Analysis (PCA). However, unlike PCA
yilt +1) = yi() if, flai(t) < Fyit)) (4) the prqjection of the input data is not necessarily resdct
to be linear.
The SOM consists of two layers, the input layer (a holding
yi(t+ 1) =z (¢) if, fz:i(t)) > flyi(t)) (5) point for the input data), and theappinglayer (see Fig.

) _ 2). The input layer has as many nodes as there are input
After the location of all particles have been updated, a khegariaples. The two layers are fully connected to each other
is made to determine whetheg.; needs to be updated 5 each of the nodes in the hidden layer has an associated
(equation 6). weight vector, with one weight for each connection with the
input layer.

. o The aim of the SOM is to group like input data-vectors

§ € Gose syl /() = MaXf (o) Flyn)) - (6) together on the mapping layer, therefore the method is
In each iteration of the algorithm, a particle is stochadiyc topology preserving as items which are close in the input
accelerated towards its previous best position and towardpace are also close in the mapping space. During training
a global (or neighborhood) best position, thereby forcinghe data vectors are presented to the SOM through the input
particles to continually search in the most-promisingaegi layer one at a time. The nodes in the mapping la@npete
found so far in the solution space. The weight coefficientfor the input data vector. The winner is the mapping node
c1 andcy control the relative impact of thgs,.s: and gres:  Whose vector of incoming connection weights most closely
locations on the velocity of a particle. Low values forresembles the components of the input data vector. The
c1 and cy allow each particle to explore far away fromwinner has the values of its weight vector adjusted to move
already uncovered good points (there is less emphasis tirem towards the values of the input data vector, and the
past learning), high values of the parameters encourage monapping layer nodes in the neighborhood of the winning
intensive search of regions close to these points. The randmode also have their weight vectors altered to become more
coefficientsr; andr, ensure that the algorithm is stochasticlike the input data vector (a form of co-operation between th
A practical effect ofr; andr,, is that neither the individual neighboring nodes). As more input data vectors are passed
nor the social learning terms are always dominant. through the network, the weight vectors of the mapping

The neighborhood structure plays a critical role in detetayer nodes self-organize. By the end of the training preces

mining the nature of the communication between particledifferent parts of the mapping layer respond strongly to
during the search process. If the neighborhood is set gpecific regions of input space. Once training of the network
1 (each particle only communicates with itself), then eacls complete, the clusters obtained can be examined in order



study, class labels are only assigned to mapping nodes once
the unsupervised training process is complete. An outline o

> the SOSwarm algorithm is presented below for classification
problem instances.

initialize particles in mapping |layer randony

for( max nunber of iterations )
for( each input training vector in turn)

set | best to the value of the input vector

set pbest of each particle to be its

QL) O

» current position
' find particle with closest match to | best
) denote this particle as the firing particle
Input Layer weights Mapping Layer
P y on all apping Lay update firing particle's velocity
arcs and position vectors
update velocity and | ocation vectors
of nei ghbors of firing particle
Fig. 2. A SOM with a 2-d mapping layer. On grounds of visualritja endf or

only the connections between the input layer and two of thpping layer  endf or
nodes are shown.
assign class to each particle using training data

cal cul ate classification accuracy using test data

to gain better insight into the underlying dataset. Questio
which can be addresses include: what input items have beenTo determine the firing particle (particle that is the clases
grouped together, and what are the typical values for eadmatch to an input vector) a simple error distance calculatio

input in a specific cluster? is adopted.

There are several ways that a PSO-SOM hybrid could be )
constructed. In [17] and [18] a PSO algorithm was used to Firing particle = 9" |v - | @)
refine the weight vectors for a SOM obtained after an initial t

application of a standard SOM training methodology. In thigyhere v corresponds to the input vectop; is the it
approach each particle consisted of a complete set of veeigifarticle’s position vector, and is the number of particles
for the SOM, and the object was to improve the initial the swarm.

clustering result by applying PSO to the population of weigh A number of alternative error functions could be adopted
vectors. The approach in our study differs fundamentallyych as Euclidean distance outlined in equation 8 (where
from the above and is outlined in the next section. corresponds to the dimension of the vector or particle).

IV. SELF-ORGANIZING SWARM

The Self-Organizing Swarm (SOSwarm) bears some sim- . argmin d )
ilarity to an SOM with the adoption of a visual (2D) Fliring particle = : > (Va— Pua) (8)
mapping layer. However, the components of the mapping 1
layer represent particles which move according to an adapte
version of the Particle Swarm algorithm. TABLE |
Instead of adjusting vector values in the map space with DATASET TRAINING AND TEST SET PARTITION SIZES

respect to the training input vectors alone, as is the Case <ot

. .. . . . Trainin Test Total # variables # classes
in SOM training, the particles (vectors) in the mapping 9

layer adjust their location using a PSO update function. As Wisconsin 559 140 699 9 2
such, a social form of learning is adopted that takes intoPima 614 154 768 8 2

. . . New thyroid 172 43 215 4 3
consideration both personal and global or local neighbmiho 55 171 43 214 13 6

information to adjust a velocity vector associated withheac
particle. The velocity vector encodes a form of momentum A visual representation of SOSwarm is presented in Fig.
into the search process, which is adjusted automatically ov3 with the adoption of a 2D mapping layer. The particles
the course of training. During the training of the map imare arranged a priori into a fixed neighborhood topology
each iteration of the particle swarm algorithm, the swarm i&@ simple grid in this example). The firing particle, that is,
perturbed using the current input vectorigs,. Just as for the particle whose position vector is closest to the current
the SOM, the training process is unsupervised. Although waput vector (designated dg.s;) updates its position vector
apply the developed maps for classification purposes in thégcording to the velocity update equations 1-5. In addjtion



particles lying within the fixed neighborhood of the firing Each dataset was recut 10 times between train and test
particle also adjust their position vectors using the sanata, and thirty independent runs of the SOSwarm algorithm
equations. The size of the neighborhood of particles that awere conducted on each recut. The classification results
updated in each iteration could be reduced over the coursedldftained for the unseen test data are presented in Table II.
the algorithm. For the experiments conducted in this studyhe results reported consist of the mean average accuracy,
the neighborhoods are fixed on grounds of simplicity. and the mean best accuracy obtained across the thirty runs
on each separate data recut. For comparison purposes, the
QQQQQ @ f(;ogs:;patch results for the training dataset are also presented (Table
[ll). The results are encouraging with SOSwarm producing

QQQQQ ‘ a performance surpassing or equaling the best classificatio
neighbourhoor . .
— “‘QQ accuracies reported in all four problems analyzed.

Comparing the in sample and out sample results, it is

‘@’QQ notable that the mean best out sample results are similar
“‘QQ in quality to the mean best in sample results, indicating tha

the SoSwarm methodology has generated classifiers, the best
gbest of which are generalising well out of sample. In the case of

(Input Layer) three of the datasets examined, the mean average accuracy

Fig. 3. A Self-Organizing Swarm (SOSwarm) with a 2D mappiaget. has also held up well out of sample.

TABLE I

Once the map has been trained each node in the mapmeOMPARBON OF THE RESULTS OBTAINED ON THE UNSEEN TEST DATA
layer is assigned a class label using a simple majority FOR THESELF-ORGANIZING SWARM ALGORITHM ACROSS THE
Voting SCheme. In Calculating the in Samp|e and out SampFéNCHMARK PROBLEMS ANALYZED AVERAGED ACROSS THELO RECUTS
classification accuracy, the distance between each ingat da OF THE DATASET IN EACH CASE

vector and each mapping node is calculated, with the input Problem mean best accuracy best UCI reported
data vector being assigned the class label of the mapping (std.dev.) accuracy  best accuracy
node it is closest to. Wisconsin

breast cancer 0.95 (0.02) 1 0.96

V. EXPERIMENTAL SETUP & RESULTS o
Pima indians

In order to assess the utility of the SOSwarm algorithm, diabetes 0.7 (0.03) 0.81 0.76
four classification problems from the UCI Machine Learning
Repository [4] are examined. The datasets consist of vgryin
numbers of inputs and known output classes (see Table 1).Glass 0.54 (0.06) 0.77 0.71
Initially, the SOSwarm clustering algorithm is applieddan

then the nodes on the resulting map are labeled. The labeled

New thyroid 0.87 (0.04) 1 0.97

nodes are then used to classify both the in sample (training) TABLE 1ll

data and the out sample (test) data. We then report thé\ COMPARISON OF THE RESULTS OBTAINED ON THE TRAINING DATA

classification accuracies on each dataset. FOR THE SELF-ORGANIZING SWARM ALGORITHM ACROSS THE
The following parameters were used for the SoSwarrBENCHMARK PROBLEMS ANALYZED AVERAGED ACROSS THELORECUTS

algorithm,c; = 1.0, ¢co = 2.0, wmaz = 0.9, wmin = 0.4, OF THE DATASET IN EACH CASE

cmin = 0, cmax = 1 (emaz = 10 for Wisconsin dataset), Problem mean avg mean best

and vmaxr = cmax. The population of particles was set accuracy accuracy

at 100 (a10 = 10 grid structure). The algorithm was run _ _ (mean std.dev.)

for a total of 10,000 iterations. The parameter values were ‘é‘:f;’;”;”ncer 0.977 (0.004) 0.085

set after a number of initial trial and error experiments. As ' ' '

the mapping process utilizes a distance metric, the input Pima indians

variables in each dataset were normalized independently in diabetes 0.765 (0.012) 0.789

each dimension into the ranfe— 1](the Wisconsin dataset New thyroid 0.957 (0.013) 0.981

was already normalized to the ranife— 10]). The datasets

were partitioned in training and test sets of the following Class 0.730 (0.037) 0.799

sizes as illustrated in Table I.

The distance metric in eq. 7 is used to determine the par-
ticle that is the closest match, and a fixed grid neighborhood
topology is adopted, with the range of the neighborhood aghis paper presented a novel Self-Organizing Swarm
illustrated in Fig. 3. That is, for particles not on the edge§SOSwarm) algorithm, and illustrated the utility of the al-
of the grid a particle will have at most 8 neighbors, whiclgorithm by applying it to four benchmark problems from the
will be subjected to updates if that particle fires. UCI Machine Learning repository. Classification accuracie

VI. CONCLUSIONS& FUTURE WORK



o

Fig. 4. Example map configurations taken from a random ruer afaining for each of the four problem domains. From leftight they correspond to
the Wisonsin breast cancer, New thyroid, Pima Indians désheand Glass problem instances (classes are distinguigitie different colour pixels).

reveal that SOSwarm produces competitive results, outper-[10] O'Neill, M., Brabazon, A. (2004). Grammatical Swarm, iNCS

forming or equaling the best reported results on all four
problems analyzed.

Given this initial promising study into SOSwarm there are
several interesting avenues of future research. A variéty o

[11]

distance metrics could be used in calculating the distance 1]

between input vectors and each member of the swarm. In
this study, we utilized a simple distance metric, but sdvera
other distance metrics could be applied. Another intangsti
avenue is to investigate the affect of differing neighbarho
topologies between the particles in the swarm. It would also

[13]

[14]

be interesting to examine in what circumstances a reducing [15

size of neighborhood over the course of the algorithm would
be beneficial. Other possible extensions of the study imclud
the investigation of different swarm sizes, and different
velocity update formulations. In addition, although we éav
applied SOSwarm for classification purposes in this study,
it could clearly also be applied for clustering purposes,
opening up such potential applications as gene clusteaimnd,
customer database segmentation. It would also be integesti
to explore the utility of the SOSwarm algorithm for such
applications.
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