
Self-Organizing Swarm (SOSwarm): A Particle
Swarm Algorithm for Unsupervised Learning

Michael O’Neill and Anthony Brabazon

Abstract— We present a novel self-organizing Particle Swarm
algorithm, SOSwarm, that adopts unsupervised learning. Input
vectors are projected onto a lower dimensional map space
producing a visual representation of the input data in a manner
similar to the Self-Organizing Map (SOM) artificial neural n et-
work. Particles in the map react to the input data by modifying
their velocities using a standard Particle Swarm Optimization
update function, and therefore organize themselves spatially
within fixed neighborhoods in response to the input training
vectors. SOSwarm is successfully applied to four benchmark
classification problems from the UCI Machine Learning repos-
itory with the novel SOSwarm algorithm outperforming or
equaling the best reported results on all four of the problems
analyzed.

I. I NTRODUCTION

In this proof of concept study we introduce the novel
Self-Organizing Swarm (SOSwarm) algorithm, which adopts
unsupervised learning with a Particle Swarm Algorithm. In
this paper we firstly introduce the Particle Swarm Opti-
mization algorithm (Section II) upon which SOSwarm is
based. We then introduce the fundamental concepts of the
Self-Organizing Map (SOM), which bears similarities to
SOSwarm in Section III. Following a detailed exposition
of SOSwarm in Section IV we apply the algorithm to
four benchmark problems from the UCI Machine Learning
repository (Section V) before drawing conclusions and out-
lining some possible directions for future investigationswith
SOSwarm in Section VI.

II. PARTICLE SWARM OPTIMIZATION

The PSO algorithm was introduced by Kennedy and
Eberhart [6] and is described in detail in [5]. In the context
of PSO a swarm can be defined as ‘... a population of
interacting elements that is able to optimize some global
objective through collaborative search of a space.’ [5] (p.
xxvii). The nature of the interacting elements (particles)
depends on the problem domain, in this study they represent
the input parameter values of the problem domain. These
particles move (fly) in an n-dimensional search space, in an
attempt to uncover ever-better solutions to the problem of
interest.

Each of the particles has two associated properties, a
current position and a velocity. Each particle also has a
memory of the best location in the search space that it has
found so far (pbest), and knows the best location found to
date by all the particles in the population (gbest) or in an

Michael O’Neill and Anthony Brabazon are with the Natural Computing
Research & Applications Group, University College Dublin,Belfield, Dublin
4, Ireland (email: m.oneill@ucd.ie and anthony.brabazon@ucd.ie).

alternative version of the algorithm, a local neighborhood
around each particle (lbest). In the local version of the
algorithm, each particle is considered to be linked to a subset
of the population of particles, and this linkage structure
is fixed at the beginning of the optimization process and
remains unchanged during it (see Fig.1). Whether the local or
global communication version is implemented, at each step
of the algorithm, particles are displaced from their current
position by applying a velocity (or gradient) vector to them.

The velocity size / direction is influenced by the velocity
in the previous iteration of the algorithm (simulates ‘momen-
tum’), and the location of a particle relative to itspbest and
gbest (or lbest). Therefore, at each step, the size and direction
of each particle’s move is a function of its own history
(experience), and the social influence of its peer group.

A number of variants of the particle swarm algorithm
(PSA) exist. The following paragraphs provide a description
of a canonical continuous version of the algorithm.

i. Initialize each particle in the population by randomly
selecting values for its location and velocity vectors.

ii. Calculate the fitness value of each particle. If the
current fitness value for a particle is greater than the
best fitness value found for the particle so far, then
revisepbest.

iii. Determine the location of the particle with the highest
fitness and revisegbest if necessary.

iv. For each particle, calculate its velocity according to
equation 1.

v. Update the location of each particle according to
equation 3.

vi. Repeat steps ii - v until stopping criteria are met.

The update algorithm for particlei’s velocity vectorvi is:

vi(t + 1) = w ∗ vi(t) + (c1 ∗ R1 ∗ (pbest − xi))

+ (c2 ∗ R2 ∗ (gbest − xi))
(1)

where,

w = wmax − ((wmax − wmin)/itermax) ∗ iter (2)

In equation 1,pbest is the location of the best solution found
to-date by particlei, gbest is the location of the global-
best solution found by all particles to date,c1 and c2 are
the weights associated with thepbest and thegbest terms
in the velocity update equation,xi is particle i’s current
location, andR1 and R2 are randomly drawn from U(0,1).
The parameterw represents a momentum coefficient which

P1

P5

P2 P3

P4

Fig. 1. Ring topology wherelbest is defined using a 3 node neighborhood
(itself and two other nodes)

is reduced according to equation 2 as the algorithm iterates.
In equation 2,itermax and iter are the total number of
iterations the algorithm will run for, and the current iteration
value respectively, andwmax andwmin set the upper and
lower boundaries on the value of the momentum coefficient.
The velocity update on any dimension is constrained to a
maximum value ofvmax. Once the velocity update for
particlei is determined, its position is updated (equation 3),
andpbest is updated if necessary (equations 4 & 5).

xi(t + 1) = xi(t) + vi(t + 1) (3)

yi(t + 1) = yi(t) if, f(xi(t)) ≤ f(yi(t)) (4)

yi(t + 1) = xi(t) if, f(xi(t)) > f(yi(t)) (5)

After the location of all particles have been updated, a check
is made to determine whethergbest needs to be updated
(equation 6).

ŷ ∈ (y0, . . . , yn)|f(ŷ) = max(f(y0), . . . , f(yn)) (6)

In each iteration of the algorithm, a particle is stochastically
accelerated towards its previous best position and towards
a global (or neighborhood) best position, thereby forcing
particles to continually search in the most-promising regions
found so far in the solution space. The weight coefficients
c1 and c2 control the relative impact of thepbest and gbest

locations on the velocity of a particle. Low values for
c1 and c2 allow each particle to explore far away from
already uncovered good points (there is less emphasis on
past learning), high values of the parameters encourage more
intensive search of regions close to these points. The random
coefficientsr1 andr2 ensure that the algorithm is stochastic.
A practical effect ofr1 andr2, is that neither the individual
nor the social learning terms are always dominant.

The neighborhood structure plays a critical role in deter-
mining the nature of the communication between particles
during the search process. If the neighborhood is set at
1 (each particle only communicates with itself), then each

particle searches independently of all other particles. Ifthe
neighborhood= N (the number of particles in the swarm),
all particles can communicate with each other, and we have
the gbest version of the PSO algorithm.

Particle Swarm algorithms have been successfully applied
to a diverse range of problems including Financial Modeling
[2], the automatic generation of programs ([10], [11]) using
a grammatical representation borrowed from Grammatical
Evolution [12], [13], [14], [15], [16], and the construction
of Artificial Neural Networks [17].

III. SELF-ORGANIZING MAP

Self-organizing maps (SOM) [7], [8], [9] are a form of
artificial neural network (NN) which can cluster data using
unsupervised learning. Unsupervised learning is used when
the outputs (clusters) are not known a priori.

The SOM acts to project (compress) input data vectors
onto a low-dimensional space, typically a two-dimensional
grid structure, thereby producing a visual representationof
the input data. The unsupervised learning process is based on
measures of similarity amongst the input data vectors. During
the training process, the network undergoes self-organization
as like input data patterns are grouped or clustered to-
gether on the grid structure. SOMs have been utilized for
a variety of clustering and classification problems including
speech recognition and medical diagnosis [3]. The SOM
bears similarities with the traditional statistical technique of
Principal Component Analysis (PCA). However, unlike PCA
the projection of the input data is not necessarily restricted
to be linear.

The SOM consists of two layers, the input layer (a holding
point for the input data), and themapping layer (see Fig.
2). The input layer has as many nodes as there are input
variables. The two layers are fully connected to each other
and each of the nodes in the hidden layer has an associated
weight vector, with one weight for each connection with the
input layer.

The aim of the SOM is to group like input data-vectors
together on the mapping layer, therefore the method is
topology preserving as items which are close in the input
space are also close in the mapping space. During training
the data vectors are presented to the SOM through the input
layer one at a time. The nodes in the mapping layercompete
for the input data vector. The winner is the mapping node
whose vector of incoming connection weights most closely
resembles the components of the input data vector. The
winner has the values of its weight vector adjusted to move
them towards the values of the input data vector, and the
mapping layer nodes in the neighborhood of the winning
node also have their weight vectors altered to become more
like the input data vector (a form of co-operation between the
neighboring nodes). As more input data vectors are passed
through the network, the weight vectors of the mapping
layer nodes self-organize. By the end of the training process,
different parts of the mapping layer respond strongly to
specific regions of input space. Once training of the network
is complete, the clusters obtained can be examined in order

Input Layer Mapping Layer
weights
on all
arcs

Fig. 2. A SOM with a 2-d mapping layer. On grounds of visual clarity,
only the connections between the input layer and two of the mapping layer
nodes are shown.

to gain better insight into the underlying dataset. Questions
which can be addresses include: what input items have been
grouped together, and what are the typical values for each
input in a specific cluster?

There are several ways that a PSO-SOM hybrid could be
constructed. In [17] and [18] a PSO algorithm was used to
refine the weight vectors for a SOM obtained after an initial
application of a standard SOM training methodology. In this
approach each particle consisted of a complete set of weights
for the SOM, and the object was to improve the initial
clustering result by applying PSO to the population of weight
vectors. The approach in our study differs fundamentally
from the above and is outlined in the next section.

IV. SELF-ORGANIZING SWARM

The Self-Organizing Swarm (SOSwarm) bears some sim-
ilarity to an SOM with the adoption of a visual (2D)
mapping layer. However, the components of the mapping
layer represent particles which move according to an adapted
version of the Particle Swarm algorithm.

Instead of adjusting vector values in the map space with
respect to the training input vectors alone, as is the case
in SOM training, the particles (vectors) in the mapping
layer adjust their location using a PSO update function. As
such, a social form of learning is adopted that takes into
consideration both personal and global or local neighborhood
information to adjust a velocity vector associated with each
particle. The velocity vector encodes a form of momentum
into the search process, which is adjusted automatically over
the course of training. During the training of the map in
each iteration of the particle swarm algorithm, the swarm is
perturbed using the current input vector aslbest. Just as for
the SOM, the training process is unsupervised. Although we
apply the developed maps for classification purposes in this

study, class labels are only assigned to mapping nodes once
the unsupervised training process is complete. An outline of
the SOSwarm algorithm is presented below for classification
problem instances.

initialize particles in mapping layer randomly

for(max number of iterations)
for(each input training vector in turn)

set lbest to the value of the input vector

set pbest of each particle to be its
current position

find particle with closest match to lbest

denote this particle as the firing particle

update firing particle’s velocity
and position vectors

update velocity and location vectors
of neighbors of firing particle

endfor
endfor

assign class to each particle using training data

calculate classification accuracy using test data

To determine the firing particle (particle that is the closest
match to an input vector) a simple error distance calculation
is adopted.

Firing particle =
argmin

i

∥

∥V − Pi

∥

∥ (7)

where V corresponds to the input vector,Pi is the ith

particle’s position vector, andi is the number of particles
in the swarm.

A number of alternative error functions could be adopted
such as Euclidean distance outlined in equation 8 (whered
corresponds to the dimension of the vector or particle).

Firing particle =
argmin

i

∥

∥

∥

∥

∥

√

√

√

√

d
∑

1

(Vd − Pid)
2

∥

∥

∥

∥

∥

(8)

TABLE I

DATASET TRAINING AND TEST SET PARTITION SIZES.

Dataset Training Test Total # variables # classes

Wisconsin 559 140 699 9 2
Pima 614 154 768 8 2
New thyroid 172 43 215 4 3
Glass 171 43 214 13 6

A visual representation of SOSwarm is presented in Fig.
3 with the adoption of a 2D mapping layer. The particles
are arranged a priori into a fixed neighborhood topology
(a simple grid in this example). The firing particle, that is,
the particle whose position vector is closest to the current
input vector (designated aslbest) updates its position vector
according to the velocity update equations 1-5. In addition,

particles lying within the fixed neighborhood of the firing
particle also adjust their position vectors using the same
equations. The size of the neighborhood of particles that are
updated in each iteration could be reduced over the course of
the algorithm. For the experiments conducted in this study,
the neighborhoods are fixed on grounds of simplicity.

(Input Layer)

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

gbest

to gbest
closest match

neighbourhood

Fig. 3. A Self-Organizing Swarm (SOSwarm) with a 2D mapping layer.

Once the map has been trained, each node in the mapping
layer is assigned a class label using a simple majority
voting scheme. In calculating the in sample and out sample
classification accuracy, the distance between each input data
vector and each mapping node is calculated, with the input
data vector being assigned the class label of the mapping
node it is closest to.

V. EXPERIMENTAL SETUP & RESULTS

In order to assess the utility of the SOSwarm algorithm,
four classification problems from the UCI Machine Learning
Repository [4] are examined. The datasets consist of varying
numbers of inputs and known output classes (see Table I).
Initially, the SOSwarm clustering algorithm is applied, and
then the nodes on the resulting map are labeled. The labeled
nodes are then used to classify both the in sample (training)
data and the out sample (test) data. We then report the
classification accuracies on each dataset.

The following parameters were used for the SoSwarm
algorithm,c1 = 1.0, c2 = 2.0, wmax = 0.9, wmin = 0.4,
cmin = 0, cmax = 1 (cmax = 10 for Wisconsin dataset),
and vmax = cmax. The population of particles was set
at 100 (a10 ∗ 10 grid structure). The algorithm was run
for a total of 10,000 iterations. The parameter values were
set after a number of initial trial and error experiments. As
the mapping process utilizes a distance metric, the input
variables in each dataset were normalized independently in
each dimension into the range[0 → 1](the Wisconsin dataset
was already normalized to the range[0 → 10]). The datasets
were partitioned in training and test sets of the following
sizes as illustrated in Table I.

The distance metric in eq. 7 is used to determine the par-
ticle that is the closest match, and a fixed grid neighborhood
topology is adopted, with the range of the neighborhood as
illustrated in Fig. 3. That is, for particles not on the edges
of the grid a particle will have at most 8 neighbors, which
will be subjected to updates if that particle fires.

Each dataset was recut 10 times between train and test
data, and thirty independent runs of the SOSwarm algorithm
were conducted on each recut. The classification results
obtained for the unseen test data are presented in Table II.
The results reported consist of the mean average accuracy,
and the mean best accuracy obtained across the thirty runs
on each separate data recut. For comparison purposes, the
results for the training dataset are also presented (Table
III). The results are encouraging with SOSwarm producing
a performance surpassing or equaling the best classification
accuracies reported in all four problems analyzed.

Comparing the in sample and out sample results, it is
notable that the mean best out sample results are similar
in quality to the mean best in sample results, indicating that
the SoSwarm methodology has generated classifiers, the best
of which are generalising well out of sample. In the case of
three of the datasets examined, the mean average accuracy
has also held up well out of sample.

TABLE II

A COMPARISON OF THE RESULTS OBTAINED ON THE UNSEEN TEST DATA

FOR THESELF-ORGANIZING SWARM ALGORITHM ACROSS THE

BENCHMARK PROBLEMS ANALYZED AVERAGED ACROSS THE10 RECUTS

OF THE DATASET IN EACH CASE.

Problem mean best accuracy best UCI reported
(std.dev.) accuracy best accuracy

Wisconsin
breast cancer 0.95 (0.02) 1 0.96

Pima indians
diabetes 0.7 (0.03) 0.81 0.76

New thyroid 0.87 (0.04) 1 0.97

Glass 0.54 (0.06) 0.77 0.71

TABLE III

A COMPARISON OF THE RESULTS OBTAINED ON THE TRAINING DATA

FOR THESELF-ORGANIZING SWARM ALGORITHM ACROSS THE

BENCHMARK PROBLEMS ANALYZED AVERAGED ACROSS THE10 RECUTS

OF THE DATASET IN EACH CASE.

Problem mean avg mean best
accuracy accuracy

(mean std.dev.)
Wisconsin
breast cancer 0.977 (0.004) 0.985

Pima indians
diabetes 0.765 (0.012) 0.789

New thyroid 0.957 (0.013) 0.981

Glass 0.730 (0.037) 0.799

VI. CONCLUSIONS& FUTURE WORK

This paper presented a novel Self-Organizing Swarm
(SOSwarm) algorithm, and illustrated the utility of the al-
gorithm by applying it to four benchmark problems from the
UCI Machine Learning repository. Classification accuracies

Fig. 4. Example map configurations taken from a random run after training for each of the four problem domains. From left toright they correspond to
the Wisonsin breast cancer, New thyroid, Pima Indians diabetes, and Glass problem instances (classes are distinguished with different colour pixels).

reveal that SOSwarm produces competitive results, outper-
forming or equaling the best reported results on all four
problems analyzed.

Given this initial promising study into SOSwarm there are
several interesting avenues of future research. A variety of
distance metrics could be used in calculating the distance
between input vectors and each member of the swarm. In
this study, we utilized a simple distance metric, but several
other distance metrics could be applied. Another interesting
avenue is to investigate the affect of differing neighborhood
topologies between the particles in the swarm. It would also
be interesting to examine in what circumstances a reducing
size of neighborhood over the course of the algorithm would
be beneficial. Other possible extensions of the study include
the investigation of different swarm sizes, and different
velocity update formulations. In addition, although we have
applied SOSwarm for classification purposes in this study,
it could clearly also be applied for clustering purposes,
opening up such potential applications as gene clustering,and
customer database segmentation. It would also be interesting
to explore the utility of the SOSwarm algorithm for such
applications.

REFERENCES

[1] Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999).Swarm
Intelligence: From natural to artificial systems, Oxford: Oxford
University Press.

[2] Brabazon, A. and O’Neill, M. (2006).Biologically Inspired Algo-
rithms for Financial Modelling, Berlin: Springer.

[3] Gurney, K. (1997).An introduction to neural networks, London:
University College London Press.

[4] Hettich, S. & Blake, C.L. & Merz, C.J. (1998). UCI Repository
of machine learning databaseshttp://www.ics.uci.edu/
∼mlearn/MLRepository.html, Irvine, CA: University of
California, Department of Information and Computer Science.

[5] Kennedy, J., Eberhart, R. and Shi, Y. (2001).Swarm Intelligence,
San Mateo, California: Morgan Kauffman.

[6] Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization,
Proceedings of the IEEE International Conference on Neural
Networks, December 1995, pp. 1942-1948, IEEE Press.

[7] Kohonen, T. (1982). Self-organized formation of topologically
correct feature maps,Biological Cybernetics, 43:59-69.

[8] Kohonen, T. (1990). The Self-Organizing Map,Proceedings of the
IEEE, 78(9):1464-1480.

[9] Kohonen, T. (1998). The SOM Methodology,in Visual Explo-
rations in Finance with self-organizing maps, edited by Deboeck,
G. and Kohonen, T., p. 159-167, Berlin: Springer-Verlag.

[10] O’Neill, M., Brabazon, A. (2004). Grammatical Swarm, in LNCS
3102Proc. of the Genetic and Evolutionary Computation Confer-
ence GECCO 2004, Seattle, WA, USA, pp. 163-174, Springer.

[11] O’Neill, M., Brabazon, A., Adley, C. (2004). The automatic gen-
eration of programs for Classification using Grammatical Swarm,
in Proc. of the Congress on Evolutionary Computation CEC 2004,
Portland, OR, USA, pp. 104-110, IEEE Press.

[12] O’Neill, M., Ryan, C. (2003).Grammatical Evolution: Evolution-
ary Automatic Programming in an Arbitrary Language, Kluwer
Academic Publishers.

[13] O’Neill, M. (2001). Automatic Programming in an Arbitrary Lan-
guage: Evolving Programs in Grammatical Evolution, PhD thesis,
University of Limerick, 2001.

[14] O’Neill, M., Ryan, C. (2001). Grammatical Evolution,IEEE Trans.
Evolutionary Computation, 5(4):349-358.

[15] O’Neill, M., Ryan, C., Keijzer M., Cattolico M. (2003).Crossover
in Grammatical Evolution.Genetic Programming and Evolvable
Machines, 4(1):67-93.

[16] Ryan, C., Collins, J.J., O’Neill, M. (1998). Grammatical Evolution:
Evolving Programs for an Arbitrary Language, inProc. of the First
European Workshop on GP, pp. 83-95, Berlin: Springer-Verlag.

[17] Xiao, X., Dow, E.R., Eberhart, R., Miled, Z.B., Oppelt,R.J. (2004).
A hybrid self-organizing maps and particle swarm optimization ap-
proach.Concurrency and Computation: Practice and Experience,
16(9):895-915.

[18] Xiao, X., Dow, E.R., Eberhart, R., Miled, Z.B., Oppelt,R.J. (2003).
Gene-Clustering Using Self-Organizing Maps and Particle Swarm
Optimization, in Proceedings of the IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 22-26 April 2003,
Nice, France, IEEE Press.

