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Abstract. This paper examines the impact of semantic control on théyabf
Genetic Programming (GP) to generalise via a semantic lmaesdover operator
(Semantic Similarity based Crossover - SSC). The use odlatiin sets is also
investigated for both standard crossover and SSC. All GEesysare tested on
a number of real-valued symbolic regression problems. Xperénental results
show that while using validation sets barely improve gelisaton ability of GP,
by using semantics, the performance of Genetic Programisiaghanced both
on training and testing data. Further recorded statistioss that the size of the
evolved solutions by using SSC are often smaller than ontsingn from GP
systems that do not use semantics. This can be seen as omereations for the
success of SSC in improving the generalisation ability of GP
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1 Introduction

Genetic Programming (GP) [23, 17] researchers are in rdeas paying increasing
attention to semantic information, with a dramatic inceessthe number of publica-
tions (e.g., [11-13,15, 14, 2,21, 24, 25, 3]). Previouglgearch has focused on syntac-
tic aspects of GP representation. From a programmer’s petigp, however, maintain-
ing syntactic correctness is only one part of program canstn: not only must pro-
grams be syntactically correct but also semantically @briiéhus incorporating seman-
tic awareness in the GP evolutionary process could imptsygeirformance, extending
the applicability of GP to problems that are difficult withrply syntactic GP.

In the field of Machine Learning (ML), generalisation hasibeeen as one of the
most desirable properties for learning machines [22]. AscGH#d be seen as a (evo-
lutionary) machine learning methodology, it is very im@rt to guarantee that the
solutions GP finds, not only work well on training data bubat® the unseen data [5].
Surprisingly, a lot of GP researchers only report resultsraiming data. While over-
fitting the training data to get the exact solutions is sué@ai some cases, for most of
learning problems in reality it would be not enough withoomsidering their generali-
sation over unseen data. Some recent works (e.qg. [5, 26a9§) showed that the ability
of GP to generalise could be poor. The awareness of theyabfliGP to generalise
is also important in the context of performance comparisetwben different GP sys-
tems. It has been recently shown in [5] that an enhanced G@&msyserformance might
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be remarkably better than standard GP on training data,dildignificantly better on
unseen data.

The previous research on improving the ability of GP to galiee is mostly focused
on reducing the solution size [26, 9, 20]. The motivationdioch an approach is that GP
usually bloats, with solution complexity (size) increasiapidly during the evolution-
ary process. The high complexity solutions are often potreir ability to generalise as
they contradict Ockham'’s razor principles in Machine Léagri22] (simple solutions
are prefered). To the best of our knowledge, there has naot &g work on the effect
of semantic control on the ability of GP to generalise. I1s th@per, we demonstrate a
new and semantic based approach to improve GP in findingi@otuthat have better
properties of generalisation. In particular, we test ifeergly proposed semantics based
crossover, namely Semantic Similarity based CrossoveZ)$55], could improve the
ability of GP to generalise. The experimental results sHeeffectiveness of the SSC
approach in comparison with both standard GP and the validaet based method.
The remainder of the paper is organised as follows. In thé sextion we review the
literature on GP with semantics and GP generalisation. €heastics based crossover
(SSC) is described in Section 3 followed by the experimesgttiings. The experimental
results are shown and discussed in Section 5. The last sextiwcludes the paper and
highlights some future work.

2 Redated Work

Although generalisation of learned solutions is the primaterest of any learning ma-
chine [22], it was not seriously considered in the field of GPd long time. Before
Kushchu published his work on the generalisation abilitg>8f [19], there were rather
few research dealing with the GP generalisation aspeatcBre et al. [8] proposed a
new GP system called Compiling GP (CGP) and the authors cadjts generalisa-
tion ability with that of other ML techniques. The resultoshthat the ability of CGP
to generalise compares favourably with a number of morétioadl ML methods. Fur-
thermore, the influence of using extensive mutation on thieyadf CGP to generalise
was investigated and the experimental results show pesfiects [1].

Recently, the issue of generalisation in GP is deservedliviang increased atten-
tion. Mahler et al. [20] experimented with Tarpeian Contrnlsome symbolic regres-
sion problems and tested the side effects of this methodegeheralisation ability of
GP. The results were inconsistent and problem dependentitican either increase or
reduce the generalisation power of solutions found by Ggnéat al. [9] investigated
two methods to improve generalisation in GP-based leartimegselection of the best
of run individuals using a three datasets method (trainiafiglation, and test sets), and
the application of parsimony pressure in order to reducedhgplexity of the solutions.
Their experimental results indicate that using a validasiet could slightly improve the
stability of the best of run solutions on the test sets. Cestd. [4] proposed a new GP
system called relaxed Genetic Programming (RGP) with gdisation ability better
than standard GP.

More recently, Costelloe and Ryan [5] showed the importala of generalisation
on GP. They experimentally showed that a technique likeariiszaling [16] may only
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be significantly better than standard GP on training databtguperior on testing data.
They proposed an approach to improve GP generalisationbicing Linear Scaling
and the No Same Mate strategy [10]. Vanneschi and Gusta®&mnfiproved GP gen-
eralisation using a crossover based similarity measureir inethod is to keep a list of
over-fitting individuals and to prevent any individual enrig the next generation if it
is similar (based on structural distance or a subtree cves$@sed similarity measure)
to one individual in the list. The method was then tested oeadlife drug discovery
regression problem and the experimental results showegbiraments on the ability to
generalise. Most research on improving the ability of GPeinagalise has been purely
focused on reducing the complexity of the solution and seimaantrol has never been
considered as an approach to enhance ability of GP to géseeral

The use of semantics in GP has recently attracted increagmgion by researchers
in the field. There are three main approaches to represeefitigcting, and using se-
mantics to guide the evolutionary process: (a) using grartrased approaches [27, 3,
6], (b) using formal methods [11, 13, 15], and (c) based on-BBesrepresentations [2,
21, 24]. In [25], a more detailed review of semantics usagkcamtrol in GP is given.

Most of previous research on semantics in GP were focusedmbioatorial and
boolean problems such as the Knapsack problem [3], Booleatnigms [2,21], and
Mutual Exclusion problems [15]. Recently, researchershavestigated the effect of
semantic control in GP for problems in real-valued domad4s 25, 18]. Krawiec [18]
proposed a way to measure the semantics of an individuaktbased on fithess cases.
This semantics is then used to guide crossoepfoximating Geometric Crossover
AGC). The experiments conducted on both real-valued andeboaegression prob-
lems show that AGC is not better than standard subtree ares$¢8C) on the tested
real-valued problems and only slightly better than SC obti@ean ones. Uy et al. [24]
proposed a new crossover operator, namely Semantics Awass@er (SAC), based
on checking the semantic equivalence of subtrees. SAC wtegiten a family of real-
valued symbolic regression problems, and was empiricalbyvs to improve GP per-
formance. SAC was then extended to Semantic Similarityd&sessover (SSC) [25].
The experimental results show that the performance of SS@srior than both of SC
and SAC on the tested problems. However, the performancsureaas more focused
on finding exact solutions (overfitting). It is interestirg 4ee if this semantic based
operator could also help to improve the ability of GP to gatise.

3 Semantic Similarity based Crossover

Semantic Similarity based Crossover (SSC) [25] is inspined extended from earlier
research on Semantics Aware Crossover (SAC) [24]. SSCibdedcin this paper is
almost identical to that described by Uy et al. [25] with astly modified semantic
distance measure. Since SSC operates on the semanticstifesulfirst a defintion
of subtree semantics is needed. Formally, $aenpling Semantiasf any (sub)tree is
defined as follows:

Let F be a function expressed by a (sub)tfe®n a domairD. Let P be a set of
points sampled from domaid, P = {p1, p2, ..., pn}. Then theSampling Semantiasf
T onP on domairD is the seS= {s,%,...,sn} wheres = F(p;),i=1,2,...,N.
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The value ofN depends on the problems. If it is too small, the approximate s
mantics might be too coarse-grained and not sufficientlyiate. IfN is too big, the
approximate semantics might be more accurate, but morectimguming to measure.
The choice oP is also important. If the members Bfare too closely related to the GP
function set (for exampletfor trigonometric functions, o for logarithmic functions),
then the semantics might be misleading. For this reasomsihg them randomly may
be the best solution. In this paper, the number of pointsvaluatingSampling Seman-
ticsis set as the number of fithess cases of problems (30 pointg fBB andFs, 60
points forF,,F4 andFg, see Section 4), and we choose the set of pdtnisiformly
randomly from the problem domain.

Based orSampling Semantid§S), we define &ampling Semantics Distanbe-
tween two subtrees. In the previous work [28ampling Semantics Distan¢8SD)
was defined as the sum of absolute difference of all valueSof\#hile the experiments
show that this kind of SSD is acceptable, it has undoubtedkmess that the value of
SSD strongly depends of the number of SS points (N) [25]. Tieedhis drawback, in
this paper we use the mean of absolute distance as the SSPdresubtrees. In other
words, letU = {us,uUp,...,uny} andV = {vi,vo,...,vn} be the SS oBubtree(St) and
Subtree(St) on the same set of evaluating values, then the SSD bet&gandSt is
defined as follows:

|U1—V1| + |U2—V2| +....+ |UN—VN|
2 (1)

Thanksto SSD, arelationship knownSesmantic Similaritis defined. The intuition
behind semantic similarity is that exchange of subtreesistiikely to be beneficial if
the two subtrees are not semantically identical, but aleg #re not too semantically
dissimilar. Two subtrees are semantically similar on a darfidzheir SSD on the same
set of points in that domain lies within a positive intervethe formal definition of se-
mantic similarity (SSi) between subtrest andSt is as follows:

SSOISt, Sb) =

SS(St,Sb) = if a < SSD(Sk, Sb) < B
then true
elsefalse

herea andf3 are two predefined constants, known asl¢iveer andupper boundsor se-
mantic sensitivity, respectively. Conceivably, the bedtes folower andupper bound
semantic sensitivitynight be problem dependent. However we strongly suspett tha
for almost any symbolic regression problem, there is a rarigalues that is appro-
priate [25]. The investigation of the effect of differenis@ntic sensitivities on SSC
performance is beyond the scope of this paper. In this papeseta = 104 and
B = 0.4 which are good values found in the literature [25].

Inspired from the difficulty in designing an operator witle fhroperty of high local-
ity in GP, SSC was proposed with the main objective being tprove the locality of
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Algorithm 1: Semantic Similarity based Crossover

select Parent P;;

select Parent P»;

Count=0;

while CounkMax Trial do

choose a random crossover pdiubtree in Py;

choose a random crossover pdiubtreg in P;

generate a number of random poirf ¢n the problem domain;
calculate the SSD betwe&ubtreg andSubtree on P

if Subtree is similar to Subtregthen
execute crossover;

add the children to the new population;

return true;
else
| Count=Count+1;

if Count=MaxTrial then

choose a random crossover pdiubtree in Py;
choose a random crossover pdiubtree in P;
execute crossover;

return true;

crossover. SSC is in fact an extension of SAC in two waystligirghen two subtrees
are selected for crossover, their semantic similaritheathan semantic equivalence
as in SAC, is checked. Secondly, semantic similarity is nubffecult to satisfy than
semantic equivalence, so repeated failures may occur. 38@suses multiple trials to
find a semantically similar pair, only reverting to randoriestion after passing a bound
on the number of trials. Algorithm 1 shows how SSC operateteiail. In our experi-
ments, the value of MaXrial was set to 12, with this value having been calibrated by
earlier experimental results.

4 Experimental Setup

To investigate the impact of SSC on the ability of GP to gelimrawe used six real-
valued symbolic regression problems. The tested probleaising and testing data are
shown in Table 1. These functions were taken from some otloek wn GP learning
generalisation [5, 7, 16]. It is noted that the testing sedsodten much larger than the
training sets and in some cases they contain values thabane the training intervals
(Fs,Fe). This makes the experimental setting more general.

The GP parameters used for our experiments are shown in Zaldespite this
being an experiment purely concerned with generalisatidityaof crossover, we have
retained mutation with a small rate in the system becausaith®f the experiment is
to study crossover in the context of a normal GP run. Our éxpearts were conducted
on four configurations as follows:
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Table 1. Symbolic Regression Functions.

Functions

Training Data

Testing Data

Fr=x*+x3+x2+x
Fo=xd—x2—x—1

30 random points [-1,1]
60 random points [-1,1]

100C[-1:0.02:1]
100C[-1:0.02:1]

Fs = arcsin(x) 30 random points [-1,1] 200CJ[-1:0.01:1]
Fq= /X 60 random points [0,4] 200CJ[0:0.02:4]
Fs = 0.3sin(21x) 30 random points [-1,1] 100C[-0.5:0.02:1.5]
Fe = coq3x) 60 random points [-1,1] 200CJ0:0.01:2]

Table 2. Run and Evolutionary Parameter Values.

Parameter Value
Population size 500
Generations 50
Selection Tournament
Tournament size 3
Crossover probability 0.9
Mutation probability 0.05

Initial Max depth 6

Max depth 15

Max depth of mutation tree 5
Non-terminals +, -, *, | (protected version),

sin, cos, exp, log (protected version)

X, 1
mean absolute error on all fitness cases
100 independent runs for each value

Terminals
Raw fitness
Trials per treatment

1. Standard Crossover (SC): The fitness is measured as tirerae on the whole

training set. The best-of-run individual is the individweéth the lowest error rate
on the training set in entire evolutionary time. This indival was then tested on
the testing data set to give the result for solution gensatitin capacity of the run.

. Standard Crossover with Validation (SCV): The trainietis randomly divided

into 2 (for each run): 67% is used for training (training setyl the remaining 33%
is used for validating (validation set). At each generatlnfitness of individuals
is measured on the training set and this fitness is used fandoent selection. At
the same time, a two-objective trial (fithess and size of dividual) is conducted
in order to extract a set of non-dominated individuals (theeB front). The indi-
viduals in the Pareto front are then evaluated on the vadidatet, with the best
of run individual selected as the one of these with the srstaéleror rate on the
validation set. This configuration is similar to the validatconfiguration in [9].

. Semantic Similarity based Crossover (SSC): This condigpm is similar to Con-

figuration 1 with only one difference is that SSC is used stde8iC.
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Table 3. Number of solutions of four schemas.

Fd  Ms Training Validating Testing
GS MS BS U$ GS MS BS U$ GS MS BS US
SsC| 22 76 2 0] - - - - 16 72 11 1
F1 SSC| 49 50 1 0 - - - -1 3 59 3 1
SCv| 28 71 1 0/ 29 65 6 0 14 71 14 1
SSCM 52 48 0 0] 56 44 0 0] 32 58 9 1
SC 4 81 15 0 - - - - 5 69 26 O
2 SsC| 15 8 0 0| - - - -| 12 86 2 O
scv| 7 8 11 o0 6 76 18 o0 3 66 31 O
sscv 18 79 3 0 18 79 3 0] 13 74 13 O
SC| 62 38 0 0 - - - -| 37 62 1 O
F3 SSC| 88 12 0 0| - - - -l 72 29 0 O
SCV| 65 35 0 0 68 32 0 0 24 74 20 O
SSsCM 90 10 O O] 90 10 O O 54 46 0 O
sCcC| 22 77 1 0] - - - - 4 88 7 1
F4 SSC| 34 64 0 0O - - - - 9 91 1 O
SCv| 21 78 1 0] 24 74 2 0 2 94 4 O
SsCM 29 70 1 0 38 60 2 0O 2 95 3 O©
SC 0O 99 1 0| - - - - 0 4 94 2
5 SSC| 5 9 0 0| - - - - 1 5 91 3
SCv|i 1 99 0 0 O 94 6 0] O 2 92 6
SSC 4 9% 0 Ol 5 91 4 o0 O 2 93 5
SC| 49 45 6 0] - - - -| 40 8 41 11
6 SSC| 61 38 1 0O - - - -| 54 7 34 5
SCV| 47 46 7 0] 48 45 7 0 38 7 45 10
SsCV 59 38 3 0] 58 37 5 0 51 4 40 5

4. Semantic Similarity based Crossover with Validation@8&% This configuration
is similar to Configuration 2 but with SSC rather than SC.

5 Resultsand Discussion

To examine and compare the generalisation performanceeeétmethods, we use a
new performance metric to measure the quality of solutioa nin. For each run, we
select the best individual (based on its fithess on the trgidata sets or the validating
sets) as the final solution of the run. This solution is thetete on the testing sets. We
definee = 5.10°2 as a constant to determine the quality of a solution. For atisol
with fithessft on the training sets (or validating sets or testing setsecspely), we
classify it into four categories

1. A good solution (GS) ifft < €
2. A moderate solution (MS) # < ft <10
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Table 4. Mean and Standard Deviation of the average of best fithedsrea tlata sets.
Note that the values are scaled by10

.| Training Validating Testing
Functions  Methods) . sty Mean sStd Mean  Std
SC 154 1.23 - - 6.13 34.1
F1 SSC 0.75 0.99 - - 217 9.10
SCcVv 130 1.09 157 179 386 10.2
SSCV 067 07§ 080 101 319 961
SC 3.07 181 - - 3.88 242
2 SSC 138 0.84 - - 182 1.27
SCV 292 183 3.16 227 4.14 258
SSCV 162 132 164 142 253 245
SC 0.61  0.7( - - 1.00 1.10
F3 SSC 025 0.23 - - 049 0.44
SCV 055 054 054 079 1.06 1.01
SSCV 023 0.2 0.28 0.60 062 0.55
SC 1.29 0.99 - - 184 1.50
F4 SSC 085 0.7§ - - 137 111
SCcVv 119 094 129 112 186 152
SSCV 099 107 117 176 15 1.29
SC 240 0.87 - - 16.2 127
F5 SSC 198 0.83 - - 141 126
SCcV 235 078 3.01 119 184 196
SSCV 179 084 257 137 16.1 136
SC 1.37 177 - - 20.0 285
6 SSC 066 0.98 - - 162 222
SCcv 146 183 148 209 233 400
SSCV 084 137 119 232 178 256

3. A bad solution (BS) if 16 < ft <10C
4. An Unacceptable solution (US) if 186 ft

The number of each category of solutions found on three dataage shown in
Table 3. It can be seen from this table that SSC is consigteetter than SC on the
training sets. These results are consistent with thoseShwWkere SSC was shown to
be significantly better than both SC and SAC. The results sieov that SSC found
good solutions more often than SC on all problems. The numberoderate and bad
solutions of SSC are also significantly less than ones of §iS.roted that none of
the methods scored unacceptable solutions on the traieisgBhis means that on the
tested problems, it is rather easy for all GP systems to oubditraining data. The
table also shows that by using validation sets, the solstsmlected at the end of the
runs have validation errors almost similar to training esrand the solution quality of
SSCV is also consistently better than one of SCV.
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The results on test sets show some deterioration in thetgothe solutions for all
methods. The table, however, also shows that the perfora@r8SC on the test sets is
still better than SC. SSC generate more good solutions asdoiad and unacceptable
solution on the test sets regardless of how the test setseaignad. It confirms that
the generalisation power of GP is increased when equipdd S&C. In other words,
by adding semantic control via SSC, the performance of GRjmaved not only on
training data but also on unseen data. On the testing sétsiosoquality of SCV and
SSCV are slightly worse than SC and SSC respectively. It selkat the generalisation
ability of both SC and SSC are not enhanced when the valilatts are used. It is not
entirely surprising as it was also shown that the use of alatibn set only improves
the stability of the best-of-run solutions on the test sets the improvement was not
significant [9].

Table 5. The average size of population and the good solutions omitigaaind testing
sets

Fs ASP ASGSTr ASGSTs
SC SSC SCV SSCV SC SSC SCv SSCV SC SsC SCv  sscv
F1 52.9 43.2 50.1 43.464.6 59.8 62.1 60.2 30.8 304 20.7 23.1
F2 58.0 55.6 57.6 554831 431 59.2 77.8 385 29.6 38.0 58.0
F3 43.2 403 418 422 58.7 635 642 62%615 556 481 53.0
F4 515 48.0 51.7 48.9 653 52.3 54.7 49.2 73.8 80.7 53.2 57.0
3
D

F5 655 63.7 657 63.8 NA 504 875 512 NA 90 NA NA
F6 55.6 42.0 55.8 42.0 646 515 63.3 418 259 233 31.2 233

The second performance metric used here is the mean andsiateViation of the
best fithess on three data sets. These results are preseiitdide 4 (after the values are
scaled by 18). A Ranked Wilcoxon Test was also conducted to analyse itieof
SSC results in significantly better solution quality over. S@e confidence interval is
95% and the results are printed bold face if they are steaibfisignificant. The results
in this table are consistent with those in Table 3, i.e., Significantly better than SC
on all tested functions both on the training and test setik&lsome other techniques
for improving GP generalisation [5], at least on similatitgg problems, SSC does not
only improve the solution performance on the traning setgffiiting) but also on the
test sets (generalisation). The table also shows that wsili@ation sets does not help
to increase the power of SC or SSC. The superiority of SSCV $@s mostly related
to its semantic control mechanism (with an exception ontiond=s).

Since there is a strong correlation between the compleXigotutions and their
ability to generalise (Ockham’s razor or Minimum DescgptiLength - MDL princi-
ple [22], statistics on solution size were also recordedamalysed. This includes the
average size of a solution in the population (ASP), the ayesize of the good solu-
tions on the training sets (ASGSTr) and the average sizeeofjtitod solutions on the
test sets (ASGSTSs). These results are depicted in Tabletbisltable, when a method
could not find any good solution, NA is printed instead. It b&nseen that the average
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size of a solution in the population for SSC is constantly lfenghan SC. It means

that SSC not only helps to improve GP solution quality bub atsreduce code bloat.
This is important as the primary motivation of SSC is to desigcrossover operator
based on semantic control but not to reduce size or code (dleathe control exerted

on the semantic level seems to have a positive consequenibefeyntactic aspects of
the evolving programs). While the reason for reducing cddattof SSC is not inves-

tigated in this paper, it seems that the better individualS$C tend to be smaller than
ones of SC. The results of the average size of the good sotutio the training sets
give more evidence for this conclusion. These results sthawthe ASGSTr of SSC

is often smaller than one of SC (with one exception on fumdg). These results can
be considered as one of the underlining reasons for the weprent in generalisation

power that SSC brings to a GP system.

The results in Table 5, contrary to those in Tables 3 and 4, sllew the remarkable
effect of the use of validation sets. It shows that the goddti®ems found by using
validation sets (either with SC or SSC), are often smallsiza than without validation.
It is understandable as the methods with validation setbtieselect smaller solutions
to measure error on the test sets. The results are consistei@agne [9], where it was
also shown that the use of a validation set helps to reduca@zb®f the best individuals
of runs.

6 Conclusionsand Future Work

In this paper, we investigated the impact of semantic cbmincthe ability of GP to
generalise by using a recently proposed semantic basesbegrsSemantic Similarity
based CrossovefSSC). The traditional approach for improving generailigain the
field of GP in particular and Machine Learning in general bingwvalidation sets was
also examined. Four GP systems were tested on a number afaleald symbolic re-
gression problems. The empirical results shows a signiffpasitive impact of semantic
control in GP on its generalisation ability, and limitedesffs of using validation sets
were observed (except in terms of the average size of goati@us). Further analysis
on the average size of individuals in the population and theti®sns shows that using
semantics (via SSC) also helps to reduce GP code bloat. 8duis lto both significant
GP performance improvement and its ability to find simpldéutons.

Although the experiments provide strong evidence for theartant role of seman-
tic control in reducing GP code bloat which leads to the improent of GP general-
isation, it offers no explanation. We are aiming to investiggsuch causal relationship
in the future. It might be very important as it creates a beithgtween semantic and
syntactic aspects of the GP evolutionary process. Furthierrand perhap equally im-
portant, we are planning to find the answer for the limitedactpf validation sets in
the GP learning process as found on the problems examinedLltest but not least, we
are also intending to do a more comprehensive comparisavebatSSC generalisa-
tion ability with some other generalisation methods in tHe lEerature (e.g. Tarpeian
Control, Relaxed GP, Linear Scaling and No same mate etc).
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