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Abstract. This paper examines the impact of semantic control on the ability of
Genetic Programming (GP) to generalise via a semantic basedcrossover operator
(Semantic Similarity based Crossover - SSC). The use of validation sets is also
investigated for both standard crossover and SSC. All GP systems are tested on
a number of real-valued symbolic regression problems. The experimental results
show that while using validation sets barely improve generalisation ability of GP,
by using semantics, the performance of Genetic Programmingis enhanced both
on training and testing data. Further recorded statistics shows that the size of the
evolved solutions by using SSC are often smaller than ones obtained from GP
systems that do not use semantics. This can be seen as one of the reasons for the
success of SSC in improving the generalisation ability of GP.

Key words: Genetic Programming, Semantics, Generalisation, Crossover

1 Introduction

Genetic Programming (GP) [23, 17] researchers are in recenttimes paying increasing
attention to semantic information, with a dramatic increase in the number of publica-
tions (e.g., [11–13,15, 14, 2, 21, 24, 25, 3]). Previously, research has focused on syntac-
tic aspects of GP representation. From a programmer’s perspective, however, maintain-
ing syntactic correctness is only one part of program construction: not only must pro-
grams be syntactically correct but also semantically correct. Thus incorporating seman-
tic awareness in the GP evolutionary process could improve its performance, extending
the applicability of GP to problems that are difficult with purely syntactic GP.

In the field of Machine Learning (ML), generalisation has been seen as one of the
most desirable properties for learning machines [22]. As GPcould be seen as a (evo-
lutionary) machine learning methodology, it is very important to guarantee that the
solutions GP finds, not only work well on training data but also on the unseen data [5].
Surprisingly, a lot of GP researchers only report results ontraining data. While over-
fitting the training data to get the exact solutions is suitable in some cases, for most of
learning problems in reality it would be not enough without considering their generali-
sation over unseen data. Some recent works (e.g. [5, 26, 9]) have showed that the ability
of GP to generalise could be poor. The awareness of the ability of GP to generalise
is also important in the context of performance comparison between different GP sys-
tems. It has been recently shown in [5] that an enhanced GP system performance might
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be remarkably better than standard GP on training data, but not significantly better on
unseen data.

The previous research on improving the ability of GP to generalise is mostly focused
on reducing the solution size [26, 9, 20]. The motivation forsuch an approach is that GP
usually bloats, with solution complexity (size) increasing rapidly during the evolution-
ary process. The high complexity solutions are often poor intheir ability to generalise as
they contradict Ockham’s razor principles in Machine Learning [22] (simple solutions
are prefered). To the best of our knowledge, there has not been any work on the effect
of semantic control on the ability of GP to generalise. In this paper, we demonstrate a
new and semantic based approach to improve GP in finding solutions that have better
properties of generalisation. In particular, we test if a recently proposed semantics based
crossover, namely Semantic Similarity based Crossover (SSC) [25], could improve the
ability of GP to generalise. The experimental results show the effectiveness of the SSC
approach in comparison with both standard GP and the validation set based method.
The remainder of the paper is organised as follows. In the next section we review the
literature on GP with semantics and GP generalisation. The semantics based crossover
(SSC) is described in Section 3 followed by the experimentalsettings. The experimental
results are shown and discussed in Section 5. The last section concludes the paper and
highlights some future work.

2 Related Work

Although generalisation of learned solutions is the primary interest of any learning ma-
chine [22], it was not seriously considered in the field of GP for a long time. Before
Kushchu published his work on the generalisation ability ofGP [19], there were rather
few research dealing with the GP generalisation aspect. Francone et al. [8] proposed a
new GP system called Compiling GP (CGP) and the authors compared its generalisa-
tion ability with that of other ML techniques. The results show that the ability of CGP
to generalise compares favourably with a number of more traditional ML methods. Fur-
thermore, the influence of using extensive mutation on the ablity of CGP to generalise
was investigated and the experimental results show positive effects [1].

Recently, the issue of generalisation in GP is deservedly receiving increased atten-
tion. Mahler et al. [20] experimented with Tarpeian Controlon some symbolic regres-
sion problems and tested the side effects of this method on the generalisation ability of
GP. The results were inconsistent and problem dependent, i.e., it can either increase or
reduce the generalisation power of solutions found by GP. Gagne et al. [9] investigated
two methods to improve generalisation in GP-based learning: the selection of the best
of run individuals using a three datasets method (training,validation, and test sets), and
the application of parsimony pressure in order to reduce thecomplexity of the solutions.
Their experimental results indicate that using a validation set could slightly improve the
stability of the best of run solutions on the test sets. Costaet al. [4] proposed a new GP
system called relaxed Genetic Programming (RGP) with generalisation ability better
than standard GP.

More recently, Costelloe and Ryan [5] showed the important role of generalisation
on GP. They experimentally showed that a technique like Linear Scaling [16] may only
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be significantly better than standard GP on training data butnot superior on testing data.
They proposed an approach to improve GP generalisation by combining Linear Scaling
and the No Same Mate strategy [10]. Vanneschi and Gustafson [26] improved GP gen-
eralisation using a crossover based similarity measure. Their method is to keep a list of
over-fitting individuals and to prevent any individual entering the next generation if it
is similar (based on structural distance or a subtree crossover based similarity measure)
to one individual in the list. The method was then tested on a real-life drug discovery
regression problem and the experimental results showed improvements on the ability to
generalise. Most research on improving the ability of GP to generalise has been purely
focused on reducing the complexity of the solution and semantic control has never been
considered as an approach to enhance ability of GP to generalise.

The use of semantics in GP has recently attracted increasingattention by researchers
in the field. There are three main approaches to representing, extracting, and using se-
mantics to guide the evolutionary process: (a) using grammar-based approaches [27, 3,
6], (b) using formal methods [11, 13, 15], and (c) based on GP s-tree representations [2,
21, 24]. In [25], a more detailed review of semantics usage and control in GP is given.

Most of previous research on semantics in GP were focused on combinatorial and
boolean problems such as the Knapsack problem [3], Boolean problems [2, 21], and
Mutual Exclusion problems [15]. Recently, researchers have investigated the effect of
semantic control in GP for problems in real-valued domains [24, 25, 18]. Krawiec [18]
proposed a way to measure the semantics of an individual thatis based on fitness cases.
This semantics is then used to guide crossover (Approximating Geometric Crossover-
AGC). The experiments conducted on both real-valued and boolean regression prob-
lems show that AGC is not better than standard subtree crossover (SC) on the tested
real-valued problems and only slightly better than SC on theboolean ones. Uy et al. [24]
proposed a new crossover operator, namely Semantics Aware Crossover (SAC), based
on checking the semantic equivalence of subtrees. SAC was tested on a family of real-
valued symbolic regression problems, and was empirically shown to improve GP per-
formance. SAC was then extended to Semantic Similarity based Crossover (SSC) [25].
The experimental results show that the performance of SSC issuperior than both of SC
and SAC on the tested problems. However, the performance measure was more focused
on finding exact solutions (overfitting). It is interesting to see if this semantic based
operator could also help to improve the ability of GP to generalise.

3 Semantic Similarity based Crossover

Semantic Similarity based Crossover (SSC) [25] is inspiredand extended from earlier
research on Semantics Aware Crossover (SAC) [24]. SSC described in this paper is
almost identical to that described by Uy et al. [25] with a slightly modified semantic
distance measure. Since SSC operates on the semantics of subtrees, first a defintion
of subtree semantics is needed. Formally, theSampling Semanticsof any (sub)tree is
defined as follows:

Let F be a function expressed by a (sub)treeT on a domainD. Let P be a set of
points sampled from domainD, P = {p1, p2, ..., pN}. Then theSampling Semanticsof
T onP on domainD is the setS= {s1,s2, ...,sN} wheresi = F(pi), i = 1,2, ...,N.
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The value ofN depends on the problems. If it is too small, the approximate se-
mantics might be too coarse-grained and not sufficiently accurate. IfN is too big, the
approximate semantics might be more accurate, but more timeconsuming to measure.
The choice ofP is also important. If the members ofP are too closely related to the GP
function set (for example,π for trigonometric functions, ore for logarithmic functions),
then the semantics might be misleading. For this reason, choosing them randomly may
be the best solution. In this paper, the number of points for evaluatingSampling Seman-
tics is set as the number of fitness cases of problems (30 points forF1,F3 andF5, 60
points forF2,F4 andF6, see Section 4), and we choose the set of pointsP uniformly
randomly from the problem domain.

Based onSampling Semantics(SS), we define aSampling Semantics Distancebe-
tween two subtrees. In the previous work [25],Sampling Semantics Distance(SSD)
was defined as the sum of absolute difference of all values of SS. While the experiments
show that this kind of SSD is acceptable, it has undoubted weakness that the value of
SSD strongly depends of the number of SS points (N) [25]. To soften this drawback, in
this paper we use the mean of absolute distance as the SSD between subtrees. In other
words, letU = {u1,u2, ...,uN} andV = {v1,v2, ...,vN} be the SS ofSubtree1(St1) and
Subtree2(St2) on the same set of evaluating values, then the SSD betweenSt1 andSt2 is
defined as follows:

SSD(St1,St2) =
|u1−v1|+ |u2−v2|+ ....+ |uN−vN|

N
(1)

Thanks to SSD, a relationship known asSemantic Similarityis defined. The intuition
behind semantic similarity is that exchange of subtrees is most likely to be beneficial if
the two subtrees are not semantically identical, but also they are not too semantically
dissimilar. Two subtrees are semantically similar on a domain if their SSD on the same
set of points in that domain lies within a positive interval.The formal definition of se-
mantic similarity (SSi) between subtreesSt1 andSt2 is as follows:

SSi(St1,St2) = if α < SSD(St1,St2) < β
then true

else false

hereα andβ are two predefined constants, known as thelowerandupper boundsfor se-
mantic sensitivity, respectively. Conceivably, the best values forlowerandupper bound
semantic sensitivitymight be problem dependent. However we strongly suspect that
for almost any symbolic regression problem, there is a rangeof values that is appro-
priate [25]. The investigation of the effect of different semantic sensitivities on SSC
performance is beyond the scope of this paper. In this paper,we setα = 10−4 and
β = 0.4 which are good values found in the literature [25].

Inspired from the difficulty in designing an operator with the property of high local-
ity in GP, SSC was proposed with the main objective being to improve the locality of
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Algorithm 1: Semantic Similarity based Crossover

select Parent 1P1;
select Parent 2P2;
Count=0;
while Count<Max Trial do

choose a random crossover pointSubtree1 in P1;
choose a random crossover pointSubtree2 in P2;
generate a number of random points (P) on the problem domain;
calculate the SSD betweenSubtree1 andSubtree2 onP
if Subtree1 is similar to Subtree2 then

execute crossover;
add the children to the new population;
return true;

else
Count=Count+1;

if Count=MaxTrial then
choose a random crossover pointSubtree1 in P1;
choose a random crossover pointSubtree2 in P2;
execute crossover;
return true;

crossover. SSC is in fact an extension of SAC in two ways. Firstly, when two subtrees
are selected for crossover, their semantic similarity, rather than semantic equivalence
as in SAC, is checked. Secondly, semantic similarity is moredifficult to satisfy than
semantic equivalence, so repeated failures may occur. ThusSSC uses multiple trials to
find a semantically similar pair, only reverting to random selection after passing a bound
on the number of trials. Algorithm 1 shows how SSC operates indetail. In our experi-
ments, the value of MaxTrial was set to 12, with this value having been calibrated by
earlier experimental results.

4 Experimental Setup

To investigate the impact of SSC on the ability of GP to generalise, we used six real-
valued symbolic regression problems. The tested problems,training and testing data are
shown in Table 1. These functions were taken from some other work on GP learning
generalisation [5, 7, 16]. It is noted that the testing sets are often much larger than the
training sets and in some cases they contain values that are not in the training intervals
(F5,F6). This makes the experimental setting more general.

The GP parameters used for our experiments are shown in Table2. Despite this
being an experiment purely concerned with generalisation ability of crossover, we have
retained mutation with a small rate in the system because theaim of the experiment is
to study crossover in the context of a normal GP run. Our experiments were conducted
on four configurations as follows:
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Table 1. Symbolic Regression Functions.

Functions Training Data Testing Data

F1 = x4 +x3 +x2+x 30 random points⊆ [-1,1] 100⊆[-1:0.02:1]
F2 = x3−x2−x−1 60 random points⊆ [-1,1] 100⊆[-1:0.02:1]
F3 = arcsin(x) 30 random points⊆ [-1,1] 200⊆[-1:0.01:1]
F4 =

√
x 60 random points⊆ [0,4] 200⊆[0:0.02:4]

F5 = 0.3sin(2πx) 30 random points⊆ [-1,1] 100⊆[-0.5:0.02:1.5]
F6 = cos(3x) 60 random points⊆ [-1,1] 200⊆[0:0.01:2]

Table 2. Run and Evolutionary Parameter Values.

Parameter Value

Population size 500
Generations 50
Selection Tournament
Tournament size 3
Crossover probability 0.9
Mutation probability 0.05
Initial Max depth 6
Max depth 15
Max depth of mutation tree 5
Non-terminals +, -, *, / (protected version),

sin, cos, exp, log (protected version)
Terminals X, 1
Raw fitness mean absolute error on all fitness cases
Trials per treatment 100 independent runs for each value

1. Standard Crossover (SC): The fitness is measured as the error rate on the whole
training set. The best-of-run individual is the individualwith the lowest error rate
on the training set in entire evolutionary time. This individual was then tested on
the testing data set to give the result for solution generalisation capacity of the run.

2. Standard Crossover with Validation (SCV): The training set is randomly divided
into 2 (for each run): 67% is used for training (training set)and the remaining 33%
is used for validating (validation set). At each generationthe fitness of individuals
is measured on the training set and this fitness is used for tournament selection. At
the same time, a two-objective trial (fitness and size of an individual) is conducted
in order to extract a set of non-dominated individuals (the Pareto front). The indi-
viduals in the Pareto front are then evaluated on the validation set, with the best
of run individual selected as the one of these with the smallest error rate on the
validation set. This configuration is similar to the validation configuration in [9].

3. Semantic Similarity based Crossover (SSC): This configuration is similar to Con-
figuration 1 with only one difference is that SSC is used steadof SC.
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Table 3. Number of solutions of four schemas.

Fs Ms
Training Validating Testing

GS MS BS US GS MS BS US GS MS BS US

F1

SC 22 76 2 0 - - - - 16 72 11 1
SSC 49 50 1 0 - - - - 39 59 3 1
SCV 28 71 1 0 29 65 6 0 14 71 14 1
SSCV 52 48 0 0 56 44 0 0 32 58 9 1

F2

SC 4 81 15 0 - - - - 5 69 26 0
SSC 15 85 0 0 - - - - 12 86 2 0
SCV 7 82 11 0 6 76 18 0 3 66 31 0
SSCV 18 79 3 0 18 79 3 0 13 74 13 0

F3

SC 62 38 0 0 - - - - 37 62 1 0
SSC 88 12 0 0 - - - - 71 29 0 0
SCV 65 35 0 0 68 32 0 0 24 74 20 0
SSCV 90 10 0 0 90 10 0 0 54 46 0 0

F4

SC 22 77 1 0 - - - - 4 88 7 1
SSC 34 64 0 0 - - - - 9 91 1 0
SCV 21 78 1 0 24 74 2 0 2 94 4 0
SSCV 29 70 1 0 38 60 2 0 2 95 3 0

F5

SC 0 99 1 0 - - - - 0 4 94 2
SSC 5 95 0 0 - - - - 1 5 91 3
SCV 1 99 0 0 0 94 6 0 0 2 92 6
SSCV 4 96 0 0 5 91 4 0 0 2 93 5

F6

SC 49 45 6 0 - - - - 40 8 41 11
SSC 61 38 1 0 - - - - 54 7 34 5
SCV 47 46 7 0 48 45 7 0 38 7 45 10
SSCV 59 38 3 0 58 37 5 0 51 4 40 5

4. Semantic Similarity based Crossover with Validation (SSCV): This configuration
is similar to Configuration 2 but with SSC rather than SC.

5 Results and Discussion

To examine and compare the generalisation performance of these methods, we use a
new performance metric to measure the quality of solution ofa run. For each run, we
select the best individual (based on its fitness on the training data sets or the validating
sets) as the final solution of the run. This solution is then tested on the testing sets. We
defineε = 5.10−3 as a constant to determine the quality of a solution. For a solution
with fitness f t on the training sets (or validating sets or testing sets respectively), we
classify it into four categories

1. A good solution (GS) iff t < ε
2. A moderate solution (MS) ifε ≤ f t <10ε
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Table 4. Mean and Standard Deviation of the average of best fitness on three data sets.
Note that the values are scaled by 102.

Functions Methods
Training Validating Testing

Mean Std Mean Std Mean Std

F1

SC 1.54 1.23 - - 6.13 34.1
SSC 0.75 0.99 - - 2.17 9.10
SCV 1.30 1.09 1.57 1.79 3.86 10.2
SSCV 0.67 0.76 0.80 1.01 3.19 9.61

F2

SC 3.07 1.81 - - 3.88 2.42
SSC 1.38 0.84 - - 1.82 1.27
SCV 2.92 1.83 3.16 2.27 4.14 2.58
SSCV 1.62 1.32 1.64 1.42 2.53 2.45

F3

SC 0.61 0.70 - - 1.00 1.10
SSC 0.25 0.23 - - 0.49 0.44
SCV 0.55 0.54 0.54 0.79 1.06 1.01
SSCV 0.23 0.21 0.28 0.60 0.62 0.55

F4

SC 1.29 0.99 - - 1.84 1.50
SSC 0.85 0.75 - - 1.37 1.11
SCV 1.19 0.94 1.29 1.12 1.86 1.52
SSCV 0.99 1.07 1.17 1.76 1.56 1.29

F5

SC 2.40 0.87 - - 16.2 12.7
SSC 1.98 0.83 - - 14.1 12.6
SCV 2.35 0.78 3.01 1.19 18.4 19.6
SSCV 1.79 0.84 2.57 1.37 16.1 13.6

F6

SC 1.37 1.77 - - 20.0 28.5
SSC 0.66 0.98 - - 16.2 22.2
SCV 1.46 1.83 1.48 2.09 23.3 40.0
SSCV 0.84 1.37 1.19 2.32 17.8 25.6

3. A bad solution (BS) if 10ε ≤ f t <100ε
4. An Unacceptable solution (US) if 100ε ≤ f t

The number of each category of solutions found on three data sets are shown in
Table 3. It can be seen from this table that SSC is consistently better than SC on the
training sets. These results are consistent with those in [25] where SSC was shown to
be significantly better than both SC and SAC. The results alsoshow that SSC found
good solutions more often than SC on all problems. The numberof moderate and bad
solutions of SSC are also significantly less than ones of SC. It is noted that none of
the methods scored unacceptable solutions on the training sets. This means that on the
tested problems, it is rather easy for all GP systems to overfit the training data. The
table also shows that by using validation sets, the solutions selected at the end of the
runs have validation errors almost similar to training errors and the solution quality of
SSCV is also consistently better than one of SCV.
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The results on test sets show some deterioration in the quality of the solutions for all
methods. The table, however, also shows that the performance of SSC on the test sets is
still better than SC. SSC generate more good solutions and less bad and unacceptable
solution on the test sets regardless of how the test sets are designed. It confirms that
the generalisation power of GP is increased when equiped with SSC. In other words,
by adding semantic control via SSC, the performance of GP is improved not only on
training data but also on unseen data. On the testing sets, solution quality of SCV and
SSCV are slightly worse than SC and SSC respectively. It seems that the generalisation
ability of both SC and SSC are not enhanced when the validation sets are used. It is not
entirely surprising as it was also shown that the use of a validation set only improves
the stability of the best-of-run solutions on the test sets and the improvement was not
significant [9].

Table 5. The average size of population and the good solutions on training and testing
sets

Fs
ASP ASGSTr ASGSTs

SC SSC SCV SSCV SC SSC SCV SSCV SC SSC SCV SSCV
F1 52.9 43.2 50.1 43.4 64.6 59.8 62.1 60.2 30.8 30.4 20.7 23.1
F2 58.0 55.6 57.6 55.4 83.1 43.1 59.2 77.8 38.5 29.6 38.0 58.0
F3 43.2 40.3 41.8 42.2 58.7 63.5 64.2 62.5 61.5 55.6 48.1 53.0
F4 51.5 48.0 51.7 48.9 65.3 52.3 54.7 49.2 73.8 80.7 53.2 57.0
F5 65.5 63.7 65.7 63.8 NA 50.4 87.5 51.2 NA 90 NA NA
F6 55.6 42.0 55.8 42.0 64.6 51.5 63.3 41.8 25.9 23.3 31.2 23.3

The second performance metric used here is the mean and standard deviation of the
best fitness on three data sets. These results are presented in Table 4 (after the values are
scaled by 102 ). A Ranked Wilcoxon Test was also conducted to analyse if theuse of
SSC results in significantly better solution quality over SC. The confidence interval is
95% and the results are printed bold face if they are statistically significant. The results
in this table are consistent with those in Table 3, i.e., SSC is significantly better than SC
on all tested functions both on the training and test sets. Unlike some other techniques
for improving GP generalisation [5], at least on similar testing problems, SSC does not
only improve the solution performance on the traning sets (overfitting) but also on the
test sets (generalisation). The table also shows that usingvalidation sets does not help
to increase the power of SC or SSC. The superiority of SSCV over SC is mostly related
to its semantic control mechanism (with an exception on function F5).

Since there is a strong correlation between the complexity of solutions and their
ability to generalise (Ockham’s razor or Minimum Description Length - MDL princi-
ple [22], statistics on solution size were also recorded andanalysed. This includes the
average size of a solution in the population (ASP), the average size of the good solu-
tions on the training sets (ASGSTr) and the average size of the good solutions on the
test sets (ASGSTs). These results are depicted in Table 5. Inthis table, when a method
could not find any good solution, NA is printed instead. It canbe seen that the average
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size of a solution in the population for SSC is constantly smaller than SC. It means
that SSC not only helps to improve GP solution quality but also to reduce code bloat.
This is important as the primary motivation of SSC is to design a crossover operator
based on semantic control but not to reduce size or code bloat(i.e., the control exerted
on the semantic level seems to have a positive consequence for the syntactic aspects of
the evolving programs). While the reason for reducing code bloat of SSC is not inves-
tigated in this paper, it seems that the better individuals in SSC tend to be smaller than
ones of SC. The results of the average size of the good solutions on the training sets
give more evidence for this conclusion. These results show that the ASGSTr of SSC
is often smaller than one of SC (with one exception on function F3). These results can
be considered as one of the underlining reasons for the improvement in generalisation
power that SSC brings to a GP system.

The results in Table 5, contrary to those in Tables 3 and 4, also show the remarkable
effect of the use of validation sets. It shows that the good solutions found by using
validation sets (either with SC or SSC), are often smaller insize than without validation.
It is understandable as the methods with validation sets tend to select smaller solutions
to measure error on the test sets. The results are consistentwith Gagne [9], where it was
also shown that the use of a validation set helps to reduce thesize of the best individuals
of runs.

6 Conclusions and Future Work

In this paper, we investigated the impact of semantic control on the ability of GP to
generalise by using a recently proposed semantic based crossover,Semantic Similarity
based Crossover(SSC). The traditional approach for improving generalisation in the
field of GP in particular and Machine Learning in general by using validation sets was
also examined. Four GP systems were tested on a number of real-valued symbolic re-
gression problems. The empirical results shows a significant positive impact of semantic
control in GP on its generalisation ability, and limited effects of using validation sets
were observed (except in terms of the average size of good solutions). Further analysis
on the average size of individuals in the population and the solutions shows that using
semantics (via SSC) also helps to reduce GP code bloat. This leads to both significant
GP performance improvement and its ability to find simpler solutions.

Although the experiments provide strong evidence for the important role of seman-
tic control in reducing GP code bloat which leads to the improvement of GP general-
isation, it offers no explanation. We are aiming to investigate such causal relationship
in the future. It might be very important as it creates a bridge between semantic and
syntactic aspects of the GP evolutionary process. Furthermore, and perhap equally im-
portant, we are planning to find the answer for the limited impact of validation sets in
the GP learning process as found on the problems examined here. Last but not least, we
are also intending to do a more comprehensive comparison between SSC generalisa-
tion ability with some other generalisation methods in the GP literature (e.g. Tarpeian
Control, Relaxed GP, Linear Scaling and No same mate etc).
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