
Soft Comput (2008) 12:1073–1080
DOI 10.1007/s00500-007-0274-8

ORIGINAL PAPER

Self-organising swarm (SOSwarm)

Michael O’Neill · Anthony Brabazon

Published online: 29 January 2008
© Springer-Verlag 2008

Abstract This paper introduces a novel version of the
particle swarm optimisation (PSO) algorithm which we call
self-organising swarm SOSwarm. SOSwarm can be used for
unsupervised learning. In the algorithm, input vectors are
projected into a lower-dimensional map space producing a
visual representation of the input data in a manner similar to
a self-organising map (SOM). In SOSwarm, particles react
to input data during the learning process by modifying their
velocities using an adaptation of the PSO velocity update
function. SOSwarm is successfully applied to ten benchmark
problems drawn from the UCI Machine Learning repository.
The paper also demonstrates how the canonical SOM can be
explored within the PSO paradigm. Illustrating this linkage
between the heretofore distinct literatures of SOM and PSO
opens up several new avenues of research for the develop-
ment of novel self-organising algorithms.

Keywords Self-organising swarm · Self-organising map ·
Particle swarm algorithm

1 Introduction

Clustering is a commonly encountered scenario in many
data-mining applications, the objective being to uncover a
structure in a collection of unlabeled data (e.g., Jiang et al.
2006; Yue et al. 2007; Chung et al. 2006; Yang and Yi 2007;
Wang et al. 2007; Karakasidis and Georgiou 2004). In cluster
analysis, similar objects should be grouped into the same

M. O’Neill (B) · A. Brabazon
Natural Computing Research and Applications Group,
University College Dublin, Dublin, Ireland
e-mail: m.oneill@ucd.ie

A. Brabazon
e-mail: anthony.brabazon@ucd.ie

clusters, with dissimilar items being grouped into different
clusters. Real-world applications of clustering include the
mining of customer databases, the classification of plants
and animals, gene clustering, fraud detection, data compres-
sion and image analysis. Over the years, a wide variety of
algorithms have been developed for clustering purposes,
including K-means (MacQueen 1967), fuzzy C-means (Dunn
1973), hierarchical clustering (Johnson 1967), and mixture
of Gaussians (Dempster et al. 1977). In addition to these tra-
ditional clustering algorithms, several biologically-inspired
clustering algorithms have recently been developed. These
algorithms are derived from a variety of sources of inspi-
ration including evolutionary processes [genetic algorithm
clustering applications include Franti et al. (1997), Maulik
and Bandyopadhyay (2000), Tseng and Yang (2001) and
Garai and Chaudhuri (2004); genetic programming cluster-
ing applications include De Falco et al. (2005) and De Falco
et al. (2006)] and social systems [examples of ant-based clus-
tering include Deneubourg et al. (1991), Lumer and Faieta
(1994) and Bonabeau et al. (1999)]. Perhaps the best-known
family of biologically-inspired clustering algorithms is the
self-organising map (SOMs). Since the development of SOMs
(Kohonen 1982, 1990) a considerable literature has devel-
oped on the application of SOMs for the purposes of cluster-
ing. A particular feature of SOMs is that they typically reduce
multi-dimensional data to a low-dimensional map (or grid) of
nodes. This makes SOMs useful tools for data visualisation
(Kohonen 1998).

Earlier studies have applied PSO (Kennedy and Eberhart
1995; Kennedy et al. 2001) to refine the weight vectors for a
SOM after an initial application of a standard SOM training
methodology (Xiao et al. 2004, 2003). In contrast, SOSwarm
adopts a modified Particle Swarm Algorithm (PSA) using
unsupervised learning. In this study the resulting map is

123

1074 M. O’Neill, A. Brabazon

applied to a series of benchmark classification problems. This
second phase can be skipped if clustering alone is desired.

It seems natural to consider the adaptation of a PSA to
perform automated clustering tasks such as those typically
implemented using SOM, due to the manner in which par-
ticles of a swarm cluster to similar regions, over time in a
PSA. We investigate whether it is indeed possible to success-
fully modify a PSA to perform clustering tasks. Therefore,
in this paper we introduce the novel Self-Organising Swarm
(SOSwarm) algorithm, which adopts unsupervised learning
using a PSA framework, and demonstrate its potential by
applying it to a series of benchmark problems.

1.1 Motivation for study

This paper is motivated by two primary issues. The practi-
cal importance of clustering and classification tasks implies
that there is a continuing demand for effective and efficient
software tools for these tasks. Although the PSA paradigm
has been widely applied over the past decade, it has not yet
been widely applied for the purposes of unsupervised learn-
ing [some examples can be found in Omran et al. (2005) and
Omran et al. (2006)].

The second motivation stems from the observation that the
past twenty years has seen the development and application
of a wide array of soft computing approaches such as artifi-
cial neural networks, fuzzy systems, evolutionary algorithms,
social swarm algorithms and probabilistic reasoning in order
to solve real-world problems. Each of these methodologies
has its own strengths and weaknesses, hence it is important
that we understand the similarities and differences between
these methods in order to design robust problem solvers. Two
major paradigms in soft computing include SOMs and PSO.
In Sect. 6, this paper illustrates that a close linkage can be
drawn between these two paradigms and this opens the door
for future work which will explore this linkage.

1.2 Format of paper

In Sect. 2 we introduce the Particle Swarm Optimisation
(PSO) algorithm upon which SOSwarm is based. We then
introduce the fundamental concepts of the SOM in Sect. 3.
Following a detailed exposition of SOSwarm in Sect. 4, we
apply the algorithm to ten benchmark problems from the
UCI Machine Learning repository (Sect. 5). In Sect. 6 we
describe the linkages between the SOM and PSO paradigms
and finally we draw conclusions and outlining some possible
directions for future investigations with SOSwarm in Sect. 7.

2 Particle swarm optimisation

In the context of PSO, a swarm can be defined as ‘... a pop-
ulation of interacting elements that is able to optimise some

P1

P2 P3

P4

P5

Fig. 1 Ring topology where lbest is defined using a three-node neigh-
bourhood (each node is a neighbour of itself and two other nodes)

global objective through collaborative search of a space.’
(Kennedy et al. 2001, p. xxvii). The nature of the interacting
elements (particles) depends on the problem domain and typi-
cally each particle encodes a potential solution to the problem
of interest. These particles move (fly) in an n-dimensional
search space, in an attempt to uncover ever-better solutions.

Each of the particles has two associated properties, a cur-
rent position and a velocity. Each particle also has a memory
of the best location in the search space that it has found so far
(pbest) and knows the best location found to date by all the
particles in the population (gbest) or in an alternative version
of the algorithm, the best solution found in a local neigh-
borhood around each particle (lbest). In the local version of
the algorithm, each particle is considered to be linked to a
subset of the population of particles, and this linkage struc-
ture is fixed at the beginning of the optimisation process and
remains unchanged during it (see Fig.1). Whether the local or
global communication version is implemented, at each step
of the algorithm, particles are displaced from their current
position by applying a velocity vector to them.

The velocity magnitude/direction is influenced by the
velocity in the previous iteration of the algorithm (this sim-
ulates momentum and is also an implicit form of particle
history), and the location of a particle relative to its pbest and
gbest (or lbest). Therefore, at each step, the size and direction
of each particle’s move is a function of its own history and the
social influence of its peer group. A number of variants of the
PSA exist. The following paragraphs provide a description
of a canonical continuous version of the algorithm.

(i) Initialise each particle in the population by randomly
selecting values for its location and velocity vectors.

(ii) Calculate the fitness value of each particle. If the cur-
rent fitness value for a particle is greater than the best
fitness value found for the particle so far, then revise
pbest.

123

Self-organising swarm (SOSwarm) 1075

(iii) Determine the location of the particle with the highest
fitness and revise gbest if necessary.

(iv) For each particle, calculate its velocity according to
Eq. 1.

(v) Update the location of each particle according to Eq. 3.
(vi) Repeat steps ii–v until stopping criteria are met.

The update algorithm for particle i’s velocity vector vi is

vi,d(t + 1) = w × vi,d(t) + (c1 × r1 × (yi,d − xi,d(t)))

+ (c2 × r2 × (gbesti,d − xi,d(t))) (1)

where

w = wmax − ((wmax − wmin)/itermax) × iter (2)

In Eq. 1, yi (pbest) is the location of the best solution found to
date by particle i , gbest is the location of the global-best solu-
tion found by all particles to date, c1 and c2 are the weights
associated with the pbest and the gbest terms in the velocity
update equation, xi is particle i’s current location, and r1 and
r2 are randomly drawn from U (0, 1). The parameter w rep-
resents a momentum coefficient which is reduced according
to Eq. 2 as the algorithm iterates. In Eq. 2, itermax and iter
are the total number of iterations the algorithm will run for,
and the current iteration value respectively, and wmax and
wmin set the upper and lower boundaries on the value of the
momentum coefficient. The velocity update on any dimen-
sion is constrained to a maximum value of vmax. Once the
velocity update for particle i is determined, its position is
updated (Eq. 3), and pbest is updated if necessary (Eqs. 4, 5),
where yi represents the location of pbest.

xi (t + 1) = xi (t) + vi (t + 1) (3)

yi (t + 1) = yi (t) if f (xi (t)) ≤ f (yi (t)) (4)

yi (t + 1) = xi (t) if f (xi (t)) > f (yi (t)) (5)

After the location of all particles have been updated, a check
is made to determine whether gbest needs to be updated
(Eq. 6).

ŷ ∈ (y0, . . . , yn−1)| f (ŷ) = max(f (y0), . . . , f (yn−1)) (6)

In each iteration of the algorithm, a particle is stochastically
accelerated towards its previous best position and towards
a global (or neighbourhood) best position, thereby forcing
particles to continually search in the most promising regions
found so far in the solution space. The weight coefficients
c1 and c2 control the relative impact of the pbest and gbest

locations on the velocity of a particle. Low values for c1

and c2 allow each particle to explore far away from already
uncovered good points (there is less emphasis on past learn-
ing), high values of the parameters encourage more inten-
sive search of regions close to these points. The random
coefficients r1 and r2 ensure that the algorithm is stochastic.

A practical effect of r1 and r2, is that neither the individual
nor the social learning terms are always dominant.

The neighbourhood structure plays an important role in
determining the nature of the communication between par-
ticles during the search process. If the neighbourhood is set
at 1 (each particle only communicates with itself), then each
particle searches independently of all other particles. If the
neighborhood = N (the number of particles in the swarm)
all particles can communicate with each other and we have
the gbest version of the PSO algorithm.

Particle Swarm algorithms have been successfully applied
to a diverse range of optimisation problems including
financial modelling (Brabazon and O’Neill 2006), the auto-
matic generation of programs (O’Neill and Brabazon 2004;
O’Neill et al. 2004; O’Neill and Brabazon 2006) using a
grammatical representation borrowed from Grammatical
Evolution (O’Neill and Ryan 2003), assembly line sequenc-
ing (Rahimi-Vahed et al. 2007), and the optimisation of
weights in SOM structures (Xiao et al. 2004).

3 Self-organising map

Self-organising maps (Kohonen 1982, 1990, 1998) are a form
of artificial neural network (NN) which can cluster data using
unsupervised learning. The SOM acts to project (compress)
input data vectors onto a low-dimensional space, typically a
two-dimensional grid structure, thereby producing a visual
representation of the input data. The unsupervised learning
process is based on measures of similarity amongst the input
data vectors. During the training process, the network under-
goes self-organisation as like input data patterns are grouped
or clustered together on the grid structure. SOMs have been
utilised for a variety of clustering and classification problems
including speech recognition and medical diagnosis (Gurney
1997). The SOM bears similarities with the traditional sta-
tistical technique of principal component analysis (PCA).
However, unlike PCA the projection of the input data is not
necessarily restricted to be linear.

The SOM consists of two layers, the input layer (a holding
point for the input data), and the mapping layer (see Fig. 2).
The input layer has as many nodes as there are input vari-
ables. The two layers are fully connected to each other and
each of the nodes in the hidden layer has an associated weight
vector, with one weight for each connection with the input
layer.

The aim of the SOM is to group like input data-vectors
together on the mapping layer. Therefore the method is topol-
ogy preserving as items which are close in the input space are
also close in the mapping space. During training the data vec-
tors are presented to the SOM through the input layer one at
a time. The nodes in the mapping layer compete for the input
data vector. The winner is the mapping node whose vector
of incoming connection weights most closely resembles the

123

1076 M. O’Neill, A. Brabazon

Input Layer Mapping Layer
weights
on all
arcs

Fig. 2 A SOM with a 2-d mapping layer. On grounds of visual clarity,
only the connections between the input layer and two of the mapping
layer nodes are shown

components of the input data vector. The winner has the val-
ues of its weight vector adjusted to move them towards the
values of the input data vector, and the mapping layer nodes
in the neighbourhood of the winning node also have their
weight vectors altered to become more like the input data
vector (a form of co-operation, or peer-learning, between the
neighbouring nodes). As more input data vectors are passed
through the network, the weight vectors of the mapping layer
nodes will self-organise. By the end of the training process,
different parts of the mapping layer will respond strongly to
specific regions of input space. Once training of the network
is complete, the clusters obtained can be examined in order to
gain better insight into the underlying dataset (for example,
what input items have been grouped together, what are the
typical values for each input in a specific cluster).

3.1 PSO-SOM hybrids

There are several ways that a PSO-SOM hybrid could be
constructed. In Xiao et al. (2003, 2004) a PSO algorithm was
used to refine the weight vectors for a SOM obtained after an
initial application of a standard SOM training methodology.
In this approach each particle consisted of a complete set
of weights for the SOM, and the object was to improve the
initial clustering result by applying PSO to the population of
weight vectors. The approach in our study differs fundamen-
tally from the above and is outlined in the next section.

4 Self-organising swarm

The SOSwarm operates in a similar fashion to a SOM with
the adoption of a 2-d mapping layer but the components of

this layer are particles from a PSA. Instead of simply adjust-
ing node weights in the map space with respect to the training
input vectors, the particles in the mapping layer adjust their
values using an adapted form of a PSA velocity update func-
tion.

The canonical form of the PSA update embeds two key
elements:

• a history, and
• a social influence.

History is embedded in the PSA via the momentum term and
the pbest components of the velocity update equation. The
social influence is embedded via the influence of either gbest

or lbest in the velocity update.
Section 6 provides a further discussion on the algorithm

adopted. In undertaking our experiments in Sect. 5 we apply
the output from an unsupervised SOSwarm learning process
for classification purposes. An outline of the SOSwarm algo-
rithm used for this purpose is presented below.

0 initialise particles in mapping layer randomly

1 for(max number of iterations)

2 for(each input training vector in turn)

3 set gbest to be the input vector

4 find particle with closest match to gbest

5 denote this particle as the firing particle

6 update firing particle’s velocity
and position vectors

7 if new position better than pbest update pbest
update firing particle’s neighbours

8 endfor

9 endfor

10 assign class to each particle using training data

11 calculate classification accuracy using test data

In order to determine the firing particle (the particle that is
the closest match to an input vector) a simple distance cal-
culation is adopted

Firing particle = arg min
i

‖V − Pi‖ (7)

where V corresponds to the input vector, Pi is the i th parti-
cle’s position vector. A number of alternative distance func-
tions could be adopted and we adopt Euclidean distance as
outlined in Eq. 8 (where d is the dimensionality of the vector
or particle).

Firing particle = arg min
i

√
√
√
√

d
∑

1

(Vd − Pid)2 (8)

123

Self-organising swarm (SOSwarm) 1077

(Input Layer)
gbest

to gbest
closest match

neighbourhood

Fig. 3 A Self-Organising Swarm (SOSwarm) with a 2-d mapping layer

A visual representation of SOSwarm is presented in Fig. 3
with the adoption of a 2-d mapping layer. The particles are
arranged a priori into a fixed neighborhood topology, a simple
grid in this example. The firing particle, that is, the particle
whose position vector is closest to the current input vector
(designated as gbest) updates its position vector in a particle
swarm style according to the update Eqs. (1)–(3). In addition,
particles lying within a fixed neighbourhood of the firing par-
ticle also adjust their position vectors using the same equa-
tions, implicitly embedding a form of social communication
between neighbouring particles.

Once the map has been trained, each node in the mapping
layer is assigned a class label using the training data, based on
a simple majority voting scheme. In calculating the in sample
and out sample classification accuracy, the distance between
each input data vector and each mapping node is calculated,
with the input data vector being assigned the class label of
the mapping node it is closest to.

5 Experimental setup and results

In order to assess the utility of the SOSwarm algorithm,
four classification problems from the UCI Machine Learning
Repository (Hettich et al. 1998) are examined. The datasets
consist of varying numbers of inputs and known output clas-
ses (see Table 1). Initially, the SOSwarm clustering algorithm
is applied and then the nodes on the resulting map are labeled.
The labeled nodes are then used to classify both the in sample
(training) data and the out sample (test) data. We then report
the classification accuracies on each dataset.

The following parameters were used for the SOSwarm
algorithm, c1 = 1.0, c2 = 1.0, wmax = 0.9, wmin = 0.4,
cmin = 0, cmax = 1, and vmax = cmax. Where cmin and cmax

are used to constrain dimension values to a valid range spe-
cific to each dataset. The population of particles was set at
100 (a 10 × 10 grid structure). The algorithm was run for a
total of 10,000 iterations. In this proof of concept study the
parameter values were not optimised and are set at typical
values for a standard PSA. It might be expected that further
performance gains could be achieved through their tuning.

Table 1 Dataset training and test set partition sizes

Dataset Training Test

Wisconsin 559 140

Pima 614 154

New thyroid 172 43

Glass 171 43

Iris 120 30

Wine 142 36

Australian 552 138

Bupa 276 69

Ionosphere 281 70

Waveform 4,000 1,000

As the mapping process utilises a distance metric, the input
variables in each dataset were normalised independently on
each dimension into the range [0, 1]. The datasets were par-
titioned in training and test sets of the following sizes as
illustrated in Table 1. The distance metric in Eq. 8 is used to
determine the particle that is the closest match. A fixed grid
neighbourhood topology is adopted, with the range of the
neighbourhood as illustrated in Fig. 3. Therefore a particle
will have at most eight neighbours which will be subjected
to updates if that particle fires.

For each of 10 recuts of a problem dataset, 30 indepen-
dent runs for SOSwarm are conducted with the correspond-
ing results presented in Table 2 for the unseen test data. The
results for the training dataset are presented in Table 3. Com-
paring the in sample and out sample results, it is notable that
the mean best out sample results are similar in quality to the
mean best in sample results, indicating that the SOSwarm
methodology has generated classifiers which are generalis-
ing well out of sample.

In order to provide a benchmark for the results obtained
by SOSwarm, these results are compared with the best results
obtained on the same datasets using other classification meth-
ods. These results are drawn from a table complied by Smith
and Bull (2005) which provides benchmark information for
seven of the ten datasets on which we tested the algorithm.
Table 2 illustrates the highly competitive performance of
SOSwarm, with it outperforming six of the seven available
benchmark scores. It is worth noting that computational effort
required per iteration of SOSwarm will be very similar to that
of a traditional SOM with the addition of the calculation of the
momentum (w.vi,d), personal/cognitive learning (yid −xi,d),
and the generation of two pseudo-random constants (r1 and
r2) in Eq. 1.

6 SOSwarm and SOM

Although, as already noted in Sect. 3.1, a number of studies
have combined PSO and SOM methodologies, significantly

123

1078 M. O’Neill, A. Brabazon

Table 2 A comparison of the
results obtained on the unseen
test data for the Self-Organising
Swarm (SOSwarm) algorithm
across the benchmark problems
analysed averaged across the ten
recuts of the dataset in each case

Problem #Variables #Classes Average accuracy Best Best reported
(SD) accuracy accuracy

Wisconsin breast cancer 9 2 0.962 (0.014) 1.0 0.96

Pima indians diabetes 8 2 0.693 (0.032) 0.80 0.78

New thyroid 5 3 0.912 (0.038) 1.0 0.97

Glass 9 6 0.579 (0.061) 0.81 0.74

Iris 4 3 0.845 (0.063) 1.0 NA

Wine 13 3 0.809 (0.064) 0.97 0.98

Australian 6 2 0.710 (0.033) 0.79 NA

Bupa 6 2 0.584 (0.054) 0.75 0.71

Ionosphere 34 2 0.871 (0.039) 0.99 0.91

Waveform 21 3 0.741 (0.015) 0.79 NA

Table 3 A comparison of the results obtained on the training data for
the SOSwarm algorithm across the benchmark problems analysed aver-
aged across the ten recuts of the dataset in each case

Problem Mean average Mean best
accuracy accuracy
(Mean SD)

Wisconsin breast cancer 0.977 (0.003) 0.980

Pima indians diabetes 0.767 (0.011) 0.782

New thyroid 0.964 (0.012) 0.971

Glass 0.876 (0.019) 0.883

Iris 0.977 (0.010) 0.983

Wine 0.970 (0.013) 0.978

Australian 0.774 (0.012) 0.780

Bupa 0.762 (0.017) 0.770

Ionosphere 0.905 (0.016) 0.916

Waveform 0.771 (0.009) 0.776

however, no previous study has examined the deeper linkages
between the two methodologies. The teasing out of such link-
ages is important as both paradigms are well-developed and
are widely used. The drawing of parallels between both para-
digms opens up a door for useful cross-fertilization between
each.

In the canonical SOM, the update of a firing node’s weight
vector is governed by:

xi (t + 1) = η(t)h(t)(xi (t) − β) (9)

where xi is the firing node’s weight vector, η is the time-vary-
ing learning rate and β is the input vector. Hence, after firing,
the weight vector of the relevant node in the mapping layer,
and those of its neighbours which are defined by the neigh-
bourhood function h(t), are adjusted in order to more closely
resemble the input vector. Ignoring the update of neighbour-
ing nodes, and thinking of Eq. 9 in particle swarm terms, it

is apparent that it can be written as a velocity update:

vi (t + 1) = η(t)(xi (t) − β) (10)

Of course, the component η(t) in Eq. 10, in effect a weighting
term, is similar in concept to the weight parameter c1 in Eq. 1.
Hence, the canonical SOM update equation can be closely
approximated by a reduced (non-momentum) version of the
canonical PSA update equation.

This parallel between the SOM and a reduced form PSA
suggests multiple possibilities for the creation of new hybrid
algorithms for self-organisation. For example, the PSA
embeds momentum, a form of personal particle history which
is not included in the canonical SOM. Like the learning rate in
the SOM, the momentum term in the PSA velocity update is
time-varying, and it reduces over time in order to encourage
particle convergence. The SOSwarm algorithm described in
Sect. 4 includes momentum.

Another interesting possibility, drawing on the use of peer
learning in the PSA, is the incorporation of an additional
‘peer-learning’ term into the SOSwarm velocity update. For
example, a topology consisting of a series of small overlap-
ping neighbourhoods could be defined between the particles
before the algorithm started, with Eq. 1 being extended by
the addition of the term c3 ×r3 ×(ylocal − xi (t)), where ylocal

is the location of a randomly selected neighbouring particle
of xi (t). This social learning would tend to lessen the disrup-
tive impact of an anomalous input vector during the learning
process. This could prove especially useful in environments
where training data is noisy or contains many errors.

Table 4 provides a comparison of SOSwarm and SOM
again on ten recuts of each dataset. SOM adopts the same
fixed, hamiltonian neighbourhood as adopted in SOSwarm,
with a constant learning rate (η(t) = 1.0). To further mini-
mise the differences between SOSwarm and SOM, the imple-
mentation adopted here can thus be represented by the
following Eq. 11, where we have removed the momentum
term (w × vi,d(t)), and the cognitive learning term

123

Self-organising swarm (SOSwarm) 1079

Table 4 A comparison of the results obtained on the test data for the
SOSwarm algorithm versus SOM across the benchmark problems ana-
lysed averaged across the ten recuts of the dataset in each case

Problem SOSwarm SOM

Wisconsin breast cancer 0.962 0.956

Pima indians diabetes 0.693 0.691

New thyroid 0.912 0.898

Glass 0.579 0.583

Iris 0.845 0.826

Wine 0.809 0.814

Australian 0.710 0.707

Bupa 0.584 0.570

Ionosphere 0.871 0.883

Waveform 0.741 0.756

Mean average accuracy is reported with significant performance advan-
tage highlighted in bold

((c1×r1×(yi,d −xi,d(t)))) from SOSwarm. We have retained
the c2 × r2 coefficients applied to the difference of the node
from the input vector ((gbesti,d − xi,d(t))). Note c2 = 1.0 in
this study, so the main difference from standard SOM is the
addition of a noise coefficient as represented by r2.

vi,d(t + 1) = c2 × r2 × (gbesti,d − xi,d(t)) (11)

Any observed differences can therefore be attributed to
the momentum and cognitive learning terms that are present
in SOSwarm and absent in SOM. A two-tailed t test was con-
ducted at the 95% confidence level on the results presented in
Table 4. It is found that SOSwarm significantly outperforms
SOM on four out of the ten problems examined (Iris, New
Thyroid, Wisconsin Breast Cancer, Bupa), with SOM sig-
nificantly outperforming SOSwarm in two instances (Iono-
sphere and Waveform). There was no statistically significant
difference at this level on the remaining four problems. This
provides evidence to support the suggestion that the adop-
tion of concepts from Particle Swarm can bring performance
advantages to SOM. In particular, the results suggests that
the addition of momentum and a cognitive learning term,
which takes into consideration personal experience over ear-
lier input vectors can be useful.

7 Conclusions and future work

This paper presented a novel SOSwarm algorithm, and illus-
trated the utility of the algorithm by applying it to a series
of benchmark problems from the UCI Machine Learning
repository. Classification accuracies reveal that SOSwarm
produces highly competitive results with significant perfor-
mance gains over an equivalent SOM algorithm on four of

the instances. Given that this study represents an initial appli-
cation of SOSwarm these results are very encouraging.

There are several interesting avenues of future research
for SOSwarm. A variety of distance metrics could be used
in calculating the distance between input vectors and each
member of the swarm. In this study, we utilised a simple
Euclidean distance metric but other distance metrics could
be applied. Another open research avenue is to investigate
the effect of differing neighbourhood topologies between the
particles in the swarm. It would also be interesting to exam-
ine in what circumstances a reducing size of neighbourhood
over the course of the algorithm would be beneficial. Other
possible extensions of the study include the investigation of
different velocity update formulations in particular, drawing
on the importance of peer learning in the PSA, the exploration
of what an explicit peer-learning term can contribute to the
improvement of the SOSwarm algorithm. Although we have
applied SOSwarm for classification purposes in this study, it
could clearly be applied for clustering purposes, opening up
such potential applications as gene clustering, and customer
database segmentation.

Results presented here suggest that the incorporation of
an explicit ‘history’ mechanism in the form of momentum
and a cognitive learning term, as exists in the SOSwarm
algorithm, might be a useful feature to adopt in SOM. The
comparison between SOSwarm and SOM suggests that there
is merit to further investigate the correspondence between
these two approaches, focusing on the relative importance
of the momentum and cognitive learning, and the various
update topologies in both SOM and PSA in order to deter-
mine whether there are useful lessons which can be trans-
planted between the two paradigms.

Acknowledgments We would like to thank the anonymous reviewers
for their constructive feedback, which has helped to improve the final
draft of this paper.

References

Brabazon A, O’Neill M (2006) Biologically inspired algorithms for
financial modelling. Springer, Berlin

Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from
natural to artificial systems. Oxford University Press, Oxford

Chung F-L, Wang S, Deng Z, Shu C, Hu D (2006) Clustering analysis
of gene expression data based on semi-supervised visual clustering
algorithm. Soft Comput. 10(11):981–993

De Falco I, Tarantino E, Delia Cioppa A, Gagliardi F (2005) A novel
grammar-based genetic programming approach to clustering. In:
Proceedings of the 2005 ACM symposium on applied computing,
Santa Fe, New Mexico, pp 928–932

De Falco I, Tarantino E, Delia Cioppa A, Fontanella F (2006) An inno-
vative approach to genetic programmingf́9based clustering. Adv
Soft Comput 55–64

Dempster A, Laird N, Rubin D (1977) Maximum likelihood from
incomplete data via the EM algorithm. J R Stat Soc Ser B 39(1):
1–38

123

1080 M. O’Neill, A. Brabazon

Deneubourg J, Gross S, Franks N, Sendova-Franks A, Detrain C, Chret-
ien L (1991) The dynamics of collective sorting robot-like ants
and ant-like robots. In: Meyer J, Wilson S (eds) Proceedings of
1st conference on simulation of adaptive behavior: from animals
to animats (SAB 90). MIT Press, Cambridge, pp 356–365

Dunn J (1973) A fuzzy relative of the ISODATA process and its use in
detecting compact well-separated clusters. J Cybern 3:32–57

Franti P, Kivijarvi J, Kaukoranta T, Nevalainen O (1997) Genetic algo-
rithms for large scale clustering problems. Comput J 40:547–554

Garai G, Chaudhuri B (2004) A novel genetic algorithm for automatic
clustering. Pattern Recognit Lett 25(2):173–187

Gurney K (1997) An introduction to neural networks. University Col-
lege London Press, London

Hettich S, Blake CL, Merz CJ (1998) UCI repository of machine learn-
ing databases. http://www.ics.uci.edu/~mlearn/MLRepository.
html. University of California, Department of Information and
Computer Science, Irvine, CA

Jiang K, Liao Q-M, Xiong Y (2006) A novel white blood cell seg-
mentation scheme based on feature space clustering. Soft Comput
10(1):12–19

Johnson S (1967) Hierarchical clustering schemes. Psychometrika
2:241–254

Karakasidis T, Georgiou D (2004) Partitioning elements of the Periodic
Table via fuzzy clustering technique. Soft Comput 8(3):231–236

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceed-
ings of the IEEE international conference on neural networks, pp
1942–1948

Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Morgan
Kauffman, San Mateo

Kohonen T (1982) Self-organized formation of topologically correct
feature maps. Biol Cybern 43:59–69

Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–
1480

Kohonen T (1998) The SOM methodology. In: Deboeck G, Koho-
nen TVisual explorations in finance with self-organizing maps.
Springer, Berlin

Lumer E, Faieta B (1994) Diversity and adaptation in populations of
clustering ants. In: Proceedings of third international conference
on simulation of adaptive behaviour, pp 501–508

MacQueen J (1967) Some methods for classification and analysis of
multivariate observations. In: Proceedings of 5th Berkeley sympo-
sium on mathematical statistics and probability, vol 1. University
of California Press, Berkeley, pp 281–297

Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based cluster-
ing technique. Pattern Recognit 33:1455–1465

Omran M, Engelbrecht AP, Salman A (2005) Particle swarm optimi-
zation method for image clustering. Int J Pattern Recognit Artif
Intell 19(3):297–322

Omran MGH, Salman A, Engelbrecht AP (2006) Dynamic clustering
using particle swarm optimization with application in image seg-
mentation. Pattern Anal Appl 8(4):332–344

O’Neill M, Ryan C (2003) Grammatical evolution: evolutionary auto-
matic programming in an arbitrary language. Kluwer Academic
Publishers, Boston Computation 5(4):349–358

O’Neill M, Brabazon A (2006) Grammatical swarm: the generation of
programs by social programming. Nat Comput 5:443–462

O’Neill M, Brabazon A, Adley C (2004) The automatic generation of
programs for classification using grammatical swarm. In: Proceed-
ings of the congress on evolutionary computation CEC 2004. IEEE
Press, Portland, pp 104–110

O’Neill M, Brabazon A (2004) Grammatical swarm. In: Proceedings
of the genetic and evolutionary computation conference GECCO
2004. Springer, Seattle, pp 163–174

Rahimi-Vahed AR, Mirghorbani SM, Rabbani M (2007) A new particle
swarm algorithm for a multi-objective mixed-model assembly line
sequencing problem. Soft Comput 11(10):997–1012

Smith M, Bull L (2005) Genetic programming with a genetic algorithm
for feature construction and selection. Genet Program Evol Mach
6(3):265–281

Tseng L, Yang S (2001) A genetic approach to the automatic clustering
problem. Pattern Recognit 34:415–424

Wang P, Liu Z-Q, Yang S-Q (2007) Investigation on unsupervised
clustering algorithms for video shot categorization. Soft Comput
11(4):355–360

Xiao X, Dow E, Eberhart R, Miled Z, Oppelt R (2003) Gene-cluster-
ing using self-organizing maps and particle swarm optimization.
In: Proceedings of the IEEE international parallel and distributed
processing symposium (IPDPS), 22–26 April 2003. IEEE Press,
Nice

Xiao X, Dow E, Eberhart R, Miled Z, Oppelt R (2004) A hybrid self-
organizing maps and particle swarm optimization approach. Con-
cur Comput Pract Exp 16(9):895–915

Yue X, Abraham A, Chi Z-X, Hao Y-Y, Mo H (2007) Artificial immune
system inspired behavior-based anti-spam filter. Soft Comput.
11(8):729–740

Yang C, Yi Z (2008) Document clustering using locality preserving
indexing and support vector machines. Soft Comput (published
online 17 Oct 2007, in press)

123

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

	Self-organising swarm (SOSwarm)
	Abstract
	Introduction
	Motivation for study
	Format of paper
	Particle swarm optimisation
	Self-organising map
	PSO-SOM hybrids
	Self-organising swarm
	Experimental setup and results
	SOSwarm and SOM
	Conclusions and future work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

