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Abstract. Co-ordination of Inter-Cell Interference through scheduling
enables telecommunication companies to better exploit their Heteroge-
neous Networks. However, it requires from these entities to implement
an effective scheduling algorithm. The state-of-the-art for the scheduling
in Heterogeneous Networks is a Grammar-Guided Genetic Programming
algorithm which evolves, from a given grammar, an expression that maps
to the scheduling of transmissions. We evaluate in our work the possi-
bility of improving the results obtained by the state-of-the-art using a
layered grammar approach. We show that starting with a small restricted
grammar and introducing the full functionality after 10 generations out-
performs the state-of-the-art, even when varying the algorithm used to
generate the initial population and the maximum initial tree depth.
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1 Introduction

We have seen in the last decade a proliferation in the use of mobile phones
worldwide to reach 4.47 billion users in 2017 and this number is expected to
exceed the 5 billion barrier by 2019 [1]. Companies attempt to attract new
costumers through price cuts and the introduction of new technologies, like the
soon-to-come 5G networks. Due to the heterogeneity and growing size of the
networks, there is a large and increasing need to optimise their performance [2].

In traditional single cellular networks, Macro Cells (MCs) are employed to
cover all User Equipments (UEs) such as phones, tablets, and any other device
equipped with a broadband adapter. However, with the explosion of connected
devices, MCs struggle to cope with the load. Therefore, they have to be sup-
plemented with local and less powerful Small Cells (SCs), creating a two-tiered
configuration called Heterogeneous Networks (HetNets). SCs are deployed in ar-
eas with traffic hot-spots to attract the near-by UEs, which offloads the MCs and



mitigates their performance deficit. Despite being beneficial from cost and per-
formance points of view, SCs share the same bandwidth as the MCs, thus, mak-
ing them more susceptible to interference. To mitigate possible interference, the
3rd Generation Partnership Project (3GPP [3]) provisioned an enhanced Inter-
Cell Interference Coordination (eICIC) mechanism i.e., Almost Blank Subframes
(ABSs). The ABSs force MCs to mute periodically for a certain duration, allow-
ing SCs to communicate with their UEs without interference from the near-by
MCs.

Several challenges are induced by the configuration of these HetNets and
require real-time optimisation. In our work, we particularly address the defi-
nition of the ABS and the scheduling of the UEs when communicating with
their respective SC. The current state-of-the-art for optimising this problem in
a real-time fashion (millisecond timescale) is using a Grammar-Guided Genetic
Programming algorithm (G3P [4]). However, the designed algorithm starts with
a randomly generated initial population and uses a unique and thorough gram-
mar from the beginning to the end of the optimisation.

To improve the performance of evolutionary algorithms, some works in the
literature use greedy techniques to generate good individuals as an initial pop-
ulation (e.g., [5,6]), while others promote an incremental introduction of the
domain knowledge to the optimisation algorithm (for instance, McKay et al. [7]
use a developmental strategy of the grammar in Genetic Programming, whereas
NEAT [8] augments the typologies of neural networks.

Our work evaluates the advantage of using a succession of grammars during
the evolution with incremental granularities instead of a single one. The idea is
based on: (i) starting with a grammar that contains fewer terminals with the
aim of guiding the optimisation towards individuals with ‘ideal’ forms, and (ii)
introducing a larger and more thorough grammar after some generations with
the aim of increasing the search space and thus improving the quality of the
individuals further. We create a hybridisation of different G3P algorithms where
the first ones are used to direct the search towards interesting individuals and
the last one to probes the whole search space, similarly to [6,9,10]. Our work is
organised around and aims at answering this main Research Question (mRQ):
Is it good to use different grammar levels?

It has been shown by Nicolau [11] that the way the initial population is gener-
ated affects drastically the performance of grammar-based genetic programming
algorithms. Therefore, we evaluate the way our approach is affected by the mod-
ification of two parameters related to the initial population, in two secondary
Research Questions: (sRQ1) the algorithm used to generate the initial popula-
tion, and (sRQ2) the maximum initial tree depth.

The rest of this paper is organised as follows: Section 2 defines the problem
of scheduling in Heterogeneous Networks. Section 3 presents a short study of the
works done on the problem. Section 4 describes the state-of-the-art algorithm
G3P for the scheduling in HetNets, in addition to our multi-level grammar ap-
proach. In particular, we present the different grammars and the mapping of
an expression to a schedule. Section 5 describes the dataset, the setup and the



significance test. Section 6 aims at answering the aforementioned research ques-
tions and shows results of the experiments. Section 7 concludes our study and
proposes some future directions that we would like to explore.

2 Problem Definition

Let us consider a Heterogeneous Network N with a set of Macro Cells M and
Small Cells S. We also consider a set of User Equipements U and that every UE
ui ∈ U receives a signal σj

i from the cell cj ∈M∪ S.

2.1 Attaching UEs

UEs are known to attach greedily to the cell from which they receive the strongest
signal. Since SCs have low power, the number of UEs that attach to them is
limited. To cope with this issue, the 3GPP provisioned a bias mechanism i.e.,
Range Expansion Bias (REB) enabling SCs to attach a larger number of UEs
beyond the area where their signal is higher than the near-by MCs. Therefore,
the signal σj

i of every cell cj ∈ M∪ S to a UE ui ∈ U is biased by an REB βj ,
with βj = 0 for every cj ∈M. Every UE ui is attached to a cell cj ∈M∪ S:

cj =
|M∪S|

arg max
k=1

(σk
i + βk) (1)

Definition 1. Expanded Region Ej of an SC cj ∈ S is the area where UEs
would attach to cj, but would not attach to it without the using the bias βj. We
say that a UE ui is in the expanded region Ej an SC cj ∈ S if and only if:

cj =
|M∪S|

arg max
k=1

(σk
i + βk) ∧ cj 6=

|M∪S|
arg max

k=1
(σk

i ) (2)

Figure 1 shows an example that summarises the aforementioned concepts.

2.2 Almost Blank Subframes

Using the same communication channel between MCs and SCs exasperates the
interference at the expanded regions. The 3GPP framework defines a time do-
main (i.e., a frame F) containing 40 subframes (SF) with a 1ms time interval
for each subframe. The interference can be mitigated by muting the transmis-
sion of the MCs at some of the subframes using the ABS mechanism. Therefore,
allowing near-by SCs to communicate with UEs in their expanded region with
low interference. By muting the MCs during some SFs, UEs at the expanded
regions experience a large reduction in interference. However, UEs attached to
MCs cannot communicate with their respective cells during that time frame.



Fig. 1. Example of a Heterogeneous Network with one Macro Cell, one Small Cell, and
20 User Equipements. The grey hexagon corresponds to the area where UEs will attach
to the MC in absence of any SC. The blue area is the region where the signal from the
SC is stronger than the one coming from the MC. In red is the expanded region where
UEs attach to the SC thanks to the bias.

2.3 Scheduling

The downlink rate Rf
i of a UE ui quantifies the amount of data that can be

transferred in the SF Sf . Rf
i is described by Shannon’s formula [12] as depending

on: (i) the bandwidth B, (ii) the number of UEs communicating at the same SF
Sf , and (iii) the Signal to Interference and Noise Ratios (SINRs):

Rf
i =

B

Nf
× log2(1 + SINRf

i ) (3)

UEs attached to MCs experience high SINR making their downlink always
high. Therefore, scheduling UEs attached to MCs is trivial as they can all be
allocated to all the SFs when the MCs are active (i.e., not muted). However, UEs
attached to SCs experience a relatively low signal (SCs are low powered devices)
and are subject to high interference from MCs (during their active SFs).

While the bandwidth is expensive and scarce and thus, hard to improve,
both the SINR and the number of communicating UEs N could be improved.
The SINRf

i can be improved by muting MCs at the given SF Sf . However,
exaggerating this process would lead to a substantial reduction in the overall
downlink rate of UEs attached to MCs (which may be more numerous) as they
would not receive any data in the mean time. Similarly, reducing the number of
UEs communicating simultaneously and only communicating with fewer of them
would improve the downlink for the active ones, but would mean that dismissed
UEs will not be receiving any transmission. All these aspects make the manage-
ment of transmissions not trivial, requiring an autonomic scheduling system that
would specify: (i) SFs at which MCs are muted, and (ii) UEs communicating at
any given SF.



2.4 Fitness Function

On average, every UE ui ∈ U experiences an average downlink R̄i over all the
SFs of the same frame.

R̄i =
1

|F|
∑
Sf∈F

Rf
i (4)

HetNets typically aim at optimising fairness of downlinks experienced by the
different users in the network [13] including the state-of-the-art work [4] we are
comparing to in this paper. This fairness is expressed as the sum of average
downlink logs (i.e., log(R̄i)) of all the UEs:

Fairness =
∑
ui∈U

log
(
R̄i

)
(5)

Maximising the logs of average downlinks sets a high penalty when having
UEs with low average downlinks, while at the same time does not provide a large
reward when having UEs with excessively high average downlinks. In this work,
we aim at maximising the fairness in Eq. 5 as the fitness function.

3 Previous Works

Most works in the literature to address the scheduling of transmission in HetNets
put forward algorithms designed by expert agents. The most employed strategy
is to partition the UEs that are attached to SCs into two different groups [14]
based on the SFs they are scheduled to communicate at: (i) ABS-SFs; SFs in
which MCs are muted or (ii) Non-ABS SFs; SFs in which MCs are active. Jiang
and Lei [15] model the problem as a two-player bargaining game between ABS
and Non-ABS SFs to attract the UEs to transmit within their time intervals.
Lopez et al. [16] aim at balancing the downlinks for the UEs in both groups to
equalise each other.

Autonomic solutions for the scheduling problem in HetNets are only proposed
in the recent years. Lynch et al. [4] use a Grammar-Guided Genetic Programming
algorithm [17] to evolve the schedules in a reinforcement learning fashion. Their
algorithm has been proven to outperform the state-of-the-art systems designed
by the experts across multiple metrics. The authors also showed by running
a genetic algorithm for a longer period (not real-time) a large potential for
performance improvement, and this is one of the major motivations for our
work. The authors use a single full grammar during the entire evolution process.
In our work, we propose feeding the algorithm with a smaller and more compact
grammar, before extending it during the evolution (after some generations).

There has been much research into grammars. Many different approaches
have been proposed and investigated from probabilistic grammars, where each
production updates the probability of the production being allowed to happen
again, to developmental evaluation [7] which evolves the grammar during the evo-
lution. A comprehensive survey of these methods is presented by Hemberg [18].



With all these approaches the idea of layered learning is key. The goal is to learn
during evolution and then use that knowledge to bootstrap to the next solution.
In a similar vein, the approach proposed in this paper looks to establish a strong
corpus of individuals that are then allowed to explore the much wider search
space of the unrestricted grammar.

4 Multi-Level Grammar-Guided Genetic Programming

In this section, we describe both the state-of-the-art algorithm for scheduling in
HetNets (i.e., G3P) and our proposed approach (i.e., multi-level grammar).

4.1 State-of-the-Art: Grammar-Guided Genetic Programming

The state-of-the-art for the scheduling in HetNets is a Grammar-Guided Genetic
Programming [4] algorithm which uses a unique grammar in a Backus-Naur Form
(BNF) to incorporate domain knowledge:

<expr> ::= <reg> | <reg> | <reg> | <Terminal>
<reg> ::= <expr><op><expr> | <expr><op><expr> | <expr><op><expr> | <expr><op><expr> |

<non-linear>(<expr>) | <non-linear>(<expr>)
<op> ::= + | - | * | / (protected)
<non-linear> ::= sin | log (protected) | sqrt (protected) | step
<Terminal> ::= <sign><const> | <statistic>
<sign> ::= - | +
<const> ::= 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0
<statistic> ::= downlink | num_variable | num_att | airtime | congestion |

avg_downlink_frame | max_downlink_frame | min_downlink_frame |
avg_downlink_SF | max_downlink_SF | min_downlink_SF |
avg_downlink_cell | max_downlink_cell | min_downlink_cell

While most of the rules in this grammar are common to the GP world and
easy to understand, <statistic> contains terminals that are from the network
domain and we refer the reader to [4] for their formal definition.

The state-of-the-art algorithm is G3P: an adaptation of a grammar-based
form of GP [19] as implemented in the PonyGE 2 framework [20]. G3P is used
to evolve an expression that maps the SINR related statistics and attachment
information to a binary decision for each UE per SF: whether to schedule the
UE to communicate at the given SF or not. The authors use Algorithm 1 (please
refer to [4] for a more detailed version) to do this mapping, before evaluating
the fitness function with the resulting schedule.

4.2 Our Approach: Multi-Level Grammar

In addition to the full and more thorough grammar (i.e., F) defined by the state-
of-the-art, we define two other grammars by only updating the list of available
terminals. We have created two incremental grammars: (i) S: small, and (ii) M:
medium, such that S is included in M and M is included in F.

The small grammar is defined by modifying <const> and <statistic>. The
number of terminals is reduced to the strict minimum by only keeping a small



input : E: Expression
output: M : Schedule Matrix
for cj ∈ S do

M [j]← zeros(|F| × |U|) // define a transmission schedule matrix

for Sf ∈ F do
for ui ∈ U do

interest← evaluate(E,M, i, f) // evaluate expression for ui

in f with current Schedule

if interest > 0 and SINRf
i ≥ 1 then

Mj [j][i][f ]← 1 // set as ‘scheduled’

end

end

end

end
return N ;
Algorithm 1: Mapping of an expression to a transmission schedule.

subset of constants and what seems to be the most important statistics. The
downlink is what we would like to optimise. Whereas maximising the value of
min downlink frame would improve the smallest downlinks. Therefore, improv-
ing it would have a better impact on the fitness function. We set in S:

<const> ::= 0.0 | 0.5 | 1.0
<statistic> ::= downlink | min_downlink_frame

The medium grammar is also defined by modifying <const> and <statistic>.
We add 6 terminals to the medium grammar: 4 constants (2 signs × 2 constants)
and 2 statistics (i.e., max downlink frame and min downlink cell) that are also
related to the downlink, in addition to the terminals from the grammar S. We
set <const> and <statistic> in M as follows:

<const> ::= 0.0 | 0.3 | 0.5 | 0.8 | 1.0
<statistic> ::= downlink | min_downlink_frame | max_downlink_frame | min_downlink_cell

After defining these grammars (i.e., S, M and F), we adapted the state-
of-the-art algorithm G3P to take one grammar at the start of the experiment
and dynamically modify the grammar to a more complex one (e.g., from S to
M, M to F, or S to F). All individuals obtained using a given grammar are
seeded as an initial population [21] to G3P using the following grammar. We
do not require any modification in the representation of the individuals when
updating the grammar as they are represented in a tree form and the grammars
are included within each other. This means that an individual has both the
same representation and the same interpretation (in terms of schedule), before
and after changing the grammar.

Although modifying the values of some parameters would have probably been
ideal when introducing a new grammar (e.g., increasing the mutation rate for
few generations facilitates the introduction of new terminals), we chose to not
modify any parameter. We make this choice in order to mitigate any implication



from changing the values of these parameters and only leave one varying element
at the time (i.e., the grammar).

5 Experiment Design

We describe in this section the dataset and the setup used in our experiment, in
addition to the test used to assess the significance of our results.

5.1 Dataset

We simulate in our work three HetNets following the same process as described
in [4] and all of them serving the same geographical area that encompasses 3.61
km2 of Dublin city centre. All the HetNets contain 21 MCs spread in a hexagonal
pattern. However, they differ in the number of SCs they contain. The first HetNet
is the least dense with 21 SCs (1 SC per MC on average). The second HetNet
is denser than the first one with 63 SCs (3 SCs per MC on average). The third
and last HetNet is the densest among them with 105 SCs (5 SCs per MC on
average). Additionally, we consider that a total of 1250 UEs are in the considered
geographical area and are attached to one of the MCs or SCs.

5.2 Setup

We use the state-of-the-art algorithm G3P provided by the authors [4]. To vali-
date our approach, we design different grammar configurations (see Section 6).
We compare the best fitness function obtained when using each of the configura-
tions in G3P instead of the full grammar. We set the population size to 100 and
allow the algorithm to run for 100 generations. Furthermore, we use the Ramped
Half-Half (RHH [22]) algorithm to generate the initial population with a maxi-
mum tree depth of 20. We use the sub-tree crossover with a probability 0.5, and
undergo a sub-tree mutation to 60% of the population, while point mutating the
remaining 40%. We set all the other parameters as described in [4]. Moreover,
we repeat every experiment 30 times to minimise the effect of randomness.

5.3 Significance

In order to validate the significance of our comparisons, we perform a statistical
test using a non-parametric test: the two-tailed Mann-Whitney U test (MWU).
In every experiment, MWU takes in the different performance values (best fitness
function values) obtained by two algorithms from each run (i.e., 30). MWU
returns the p-value that one of the algorithms obtains different values than the
other. We consider tests significant when the p-value is below 0.05.

6 Evaluation

We aim in this section to answer the research questions that were formalised in
Section 1 experimentally.



6.1 mRQ: Is it good to use different grammar levels?

In order to show the relevance of combining different grammars, we compare 7
grammar configurations on the three instances (21 SCs, 63 SCs and 105 SCs). We
designed 6 different grammar configurations in addition to the default scenario
F (one full grammar from beginning to end):

– S5M10F: start with S and introduce M and F at generations 5 and 10.
– S10M20F: start with S and introduce M and F at generations 10 and 20.
– S5M20F: start with S and introduce M and F at generations 5 and 20.
– S1F: start with S and introduce F at generation 1 (after generation 0).
– S5F: start with S and introduce F at generation 5.
– S10F: start with S and introduce F at generation 10.

We set parameters of G3P to the same values over all the grammar configu-
rations as described in Section 5.

Figure 2 shows the evolution per generation of the best fitness on each in-
stance, obtained by G3P when using the different grammar configurations (re-
sults are averaged over 30 runs).

21 SCs 63 SCs

105 SCs

Fig. 2. Average over 30 runs of the evolution of the best fitness obtained by G3P on
the different instances using various grammar configurations.

We notice from Figure 2 that G3P improves the best fitness function for all
instances (constantly improves the baseline i.e., the smallest recorded values:



231.764, 319.588 and 616.874 for 21 SCs, 63 SCs and 105 SCs respectively)
regardless of the grammar configuration it is used with. We also notice that the
number of generations (i.e., 100) is not enough to achieve a full convergence
of the algorithms and increasing this parameter would allow achieving a better
performance –but would increase the execution time though.

We see that using the full grammar only (i.e., F) achieves the best results on
the 21 SCs instance (outperforming the second best grammar S5F with 1.69%
on average). However, its performance worsens significantly on the two other
instances (i.e., 63 SCs and 105 SCs) where S10F achieves the best results (S10F
achieves 7.54% and 9.95% better results than F on average on 63 SCs and 105
SCs respectively). S5F also achieves similar results as S10F. Although S5F does
not reach the same quality of results as S10F on 63 SCs and 105 SCs, it slightly
outperforms it on 21 SCs. Despite S1F being based on the same principle as S5F
and S10F (only using the small and the full grammar), it does not achieve good
results. This is mostly due to the fact that using the small grammar for only one
generation only affects the individuals in the initial population. S1F generates
individuals with phenotypes composed of a smaller set of terminals and does not
aim at converging towards ‘ideal’ individuals. This acts almost as a handicap
for the evolution as it does not provide either the greediness to converge faster
or the variety to explore the search space. Whereas, S5F and S10F optimise the
initial population further using the same small set of terminals, thus exploiting
this small number of terminals for a better convergence.

Surprisingly, algorithms which use a succession of three grammar levels do
not achieve as good results as those only using two grammars, with the excep-
tion of S5M10F. This is even more surprising as S10M20F achieves the worst
performance in almost all instances. This goes against the intuition that if we
have a grammar configuration (in this case S10M20F) similar to another one
which achieves good results (e.g., S10F), the former is likely to achieve a good
performance as well. If we look closely at the improvement curves of S10F and
S10M20F at about 10 generations, they all seem to converge (or at least improve
slowly). The introduction of the new grammar (i.e., a full grammar in the case of
S10F) enables it to introduce new terminals to the evolution and improve drasti-
cally its performance. Whereas the introduction of the medium grammar allows
S10M20F a much more limited improvement. In case of S10M20F, we notice a
second convergence/stagnation around 20 generations before the full grammar
gets introduced. However, given the limited number of generations, G3P with
S10M20F could not reach the improvement of the other ones. We believe, how-
ever, that given a larger number of generations, this configuration could improve
its performance.

Table 1 shows the mean and standard deviation over 30 runs of the best fit-
ness function on the different instances, achieved by G3P when using the afore-
mentioned grammar configurations. It also includes the p-value when comparing
every approach against G3P with the grammar configuration F.

Table 1 confirms what has been noticed in Figure 2 and shows that F achieves
the best results on 21 SCs on average, whereas S10F achieves the best results on



Instance Function F S5M10F S10M20F S5M20F S1F S5F S10F

21 SCs
Mean 233.025 232.963 232.903 232.915 232.927 233.004 232.991
Stdev 0.038 0.088 0.082 0.090 0.072 0.065 0.128

p-value - 1.89E-04 3.56E-09 4.92E-08 5.78E-08 1.56E-01 3.81E-01

63 SCs
Mean 321.341 321.415 321.330 321.328 321.367 321.439 321.473
Stdev 0.172 0.132 0.162 0.142 0.135 0.224 0.188

p-value - 3.51E-02 3.42E-01 2.55E-01 3.10E-01 4.52E-04 7.59E-04

105 SCs
Mean 619.950 619.953 619.990 619.972 620.022 620.104 620.256
Stdev 0.261 0.273 0.225 0.176 0.269 0.321 0.299

p-value - 4.09E-01 2.46E-01 3.81E-01 1.03E-01 3.19E-03 6.68E-06

Table 1. Mean and standard deviation over 30 runs of the best fitness obtained by
G3P when using different grammars. In addition, we include the p-value (using MWU)
in comparison to the results obtained against G3P with grammar F. Note that we put
‘-’ when computing the p-value for F against F as it is always 0.5 and thus not worth
including in the results. We put in bold the best mean and significant p-values.

average on both 63 SCs and 105 SCs. It also shows that the standard deviation
is rather large with regards to the difference in means. However, the p-value
confirms that results obtained with S10F and S5F are significantly better than
those obtained with F on both 63 SCs and 105 SCs. Whereas, the results obtained
with F on 21 SCs are not significantly better than those of S10F and S5F.

The answer to mRQ is: Yes. It is good to use different grammar levels in
most cases. More particularly in our case, starting with the small grammar and
introducing the full one after 10 generations is the best grammar configuration.

6.2 sRQ1: How are the results affected by the algorithm used to
generate the initial population?

We have shown from the previous research question that using S10F as a gram-
mar configuration for G3P achieves significantly better results than using F in
most cases. However, we would like to check whether these results are depen-
dent on the way we generate the initial population. Therefore, we compare both
grammar configurations F and S10F by varying the algorithms used to generate
the initial population and fixing the other parameters to the same values. We
use four different initialisation algorithms: (i) RHH: Ramped Half-Half [22], (ii)
PIG: Position-Independent Grow [23], (iii) UT: Uniform Tree [23], and (iv) UG:
Uniform Genome [23].

Figure 3 shows the evolution per generation of the best fitness on each in-
stance, obtained by G3P when using either F or S10F with different initialisation
algorithms (results are averaged over 30 runs).

We see from Figure 3 that G3P successfully improves the fitness function over
the 100 generations regardless of the grammar configuration and the algorithm
used for the initialisation. We also see that the results do not fully converge
within the 100 generations and that increasing this parameter is likely to improve
the results.

In terms of performance, we clearly see that G3P achieves the best results
when using RHH to generate the initial population on most instances, except



21 SCs 63 SCs

105 SCs

Fig. 3. Average over 30 runs of the evolution of the best fitness obtained by G3P on the
different instances using either the full grammar (i.e., F) or the two-level grammar (i.e.,
S10F), when generating the initial populations with various initialisation algorithms
(i.e., RHH, PIG, UT and UG).

63 SCs. This validates the default setting chosen for the state-of-the-art algo-
rithm [4]. We also see that with the exception of RHH on 21 SCs, using S10F
allows getting better results than F. This is an important indicator that using the
two-level grammar is better than the single grammar regardless of the algorithm
used to generate the initial population. We even notice that S10F outperforms F
on all instances and achieves better results when using initialisation algorithms
different from RHH (S10F achieves 4.93%, 17.95%, 17.64% and 12.73% better
results on average than F when using respectively RHH, PIG, UT and UG).

Table 2 shows the mean and standard deviation over 30 runs of the best
fitness function on the different instances achieved by G3P when using either
F or S10F as a grammar configuration, and when varying the algorithm used
to generate the initial population. It also includes the p-value (using MWU)
between the results with F and S10F in each scenario.

Table 2 confirms that using S10F always leads to better results than F re-
gardless of the algorithm used to generate the initial population (except with
RHH on 21 SCs). We also notice a relatively large standard deviation in compar-
ison to the difference in mean values. However, the standard deviation is similar
to both grammar configurations. Despite the large standard deviations, using



Instance Function
RHH PIG UT UG

F S10F F S10F F S10F F S10F

21 SCs
Mean 233.025 232.991 232.926 233.027 232.882 232.976 232.936 233.019
Stdev 0.038 0.128 0.057 0.042 0.064 0.073 0.081 0.053

p-value 3.81E-01 2.16E-08 5.09E-06 3.83E-05

63 SCs
Mean 321.341 321.473 321.161 321.501 321.210 321.450 321.173 321.442
Stdev 0.172 0.188 0.113 0.096 0.102 0.093 0.109 0.118

p-value 7.59E-04 1.84E-11 2.10E-10 7.05E-10

105 SCs
Mean 619.950 620.256 619.567 620.201 619.448 620.210 619.676 620.071
Stdev 0.261 0.299 0.277 0.256 0.285 0.194 0.269 0.307

p-value 6.68E-06 4.24E-09 3.35E-11 2.99E-05

Table 2. Mean and standard deviation over 30 runs of the best fitness obtained by G3P
using either F or S10F as grammar configuration, when varying the algorithm used to
generate the initial population. In addition, we include the p-value (using MWU) to
test the significance of the results. We put in bold the best mean between F and S10
F and significant p-values.

S10F allows achieving significantly better results with respect to the MWU test.
Furthermore, we see that the unique case where F achieves better mean results
than S10F is not significant.

The answer to sRQ1 is: The two-level grammar S10F allows achieving even
better performance in comparison to the full grammar when used with different
initialisation algorithms.

6.3 sRQ2: How are the results affected by the maximum initial tree
depth used to generate the initial population?

We have confirmed in the previous research questions that we achieve a better
performance when using the two-level grammar S10F against when using only
the full one (i.e., F). We have also confirmed that the results are not biased by
the choice of the initialisation algorithm, as they are better with all the of them
(except in case of RHH with 21 SCs).

In this part, we attempt to confirm whether the quality of results obtained
using the two-level grammar is not negatively impacted by the maximum depth
of the initial trees. We, therefore, run G3P using both F and S10F, with various
maximum initial tree depths (i.e., 5, 10, 20 and 30), while setting the other
parameters to their default values (more particularly, the algorithm used to
generate the initial population is set to RHH).

Figure 4 shows the evolution per generation of the best fitness on each in-
stance, obtained by G3P when using either F or S10F with different maximum
depths for the initial trees (averaged over 30 runs).

We see from Figure 4 that G3P improves the fitness function with all the
maximum initial tree depths without fully converging within the 100 genera-
tions. We see that using the depth 20 achieves the best results only on the
instance 21 SCs, whereas the maximum depth 10 achieves the best results on
the other ones. Similarly to what has been noticed when varying the initiali-
sation algorithm, S10F outperforms F in all the cases (instances × maximum



21 SCs 63 SCs

105 SCs

Fig. 4. Average over 30 runs of the evolution of the best fitness obtained by G3P on
the different instances using either the full grammar (i.e., F) or the two-level grammar
(i.e., S10F), when generating the initial populations with various maximum initial tree
depths (i.e., 5, 10, 20 and 30).

initial tree depths) except in 21 SCs with a depth of 20. This clearly shows that
using the two-level grammar S10F is better than the full one and that it is not
biased by the maximum initial tree depth. In addition to the fact that the value
of maximum initial tree depth affects the final results, it also seems to affect the
difference between the two grammars (i.e., S10F outperforms F more when using
a maximum depth of 30 with 12.93% improvement than when using a maximum
depth of 20 with 4.93% improvement on average).

Table 3 shows the mean and standard deviation over 30 runs of the best
fitness function by G3P with either F or S10F as a grammar configuration
while varying the maximum initial tree depth. It also includes the p-value (using
MWU) between results with F and S10F in each scenario. As with Table 2, Ta-
ble 3 confirms that using S10F always leads to significantly (i.e., based on MWU)
better results than F regardless of the maximum initial tree depth (except with
depth 20 on 21 SCs).

The answer to sRQ2 is: The two-level grammar S10F allows achieving even
better performance in comparison to the full grammar when used with different
maximum initial tree depths.



Instance Function
5 10 20 30

F S10F F S10F F S10F F S10F

21 SCs
Mean 232.991 233.018 232.993 233.035 233.025 232.991 232.954 233.033
Stdev 0.044 0.060 0.050 0.035 0.038 0.128 0.055 0.051

p-value 3.62E-02 2.54E-03 3.81E-01 7.15E-06

63 SCs
Mean 321.288 321.485 321.310 321.521 321.341 321.473 321.255 321.491
Stdev 0.085 0.100 0.080 0.086 0.172 0.188 0.067 0.090

p-value 1.75E-09 4.88E-10 7.59E-04 2.49E-11

105 SCs
Mean 619.731 620.213 619.833 620.324 619.950 620.256 619.750 620.266
Stdev 0.194 0.221 0.176 0.141 0.261 0.299 0.214 0.208

p-value 4.24E-09 6.64E-11 6.68E-06 9.28E-10

Table 3. Mean and standard deviation over 30 runs of the best fitness obtained by
G3P using either F or S10F as grammar configuration, when generating the initial
populations with various maximum initial tree depths (i.e., 5, 10, 20 and 30). We also
include the p-value (using MWU) to test the significance of the results. We put in bold
the best mean between F and S10F and significant p-values.

7 Conclusion

We studied the use of different levels of grammars as a mean to improve the qual-
ity of the schedules in HetNets obtained by the G3P algorithm. Our approach
consists of starting the optimisation with a short grammar which contains only
the most important terminals in order to direct the search towards ‘ideal’ indi-
viduals. Then, to introduce a more thorough grammar during the evolution.

We showed that starting with the small grammar and introducing the full one
after 10 generations, allows us to outperform the standard configuration which
only uses one full grammar with up to 10% on average. We also showed that our
approach is better in most cases regardless of the initialisation algorithm and
maximum initial tree depth used to generate the initial populations.

In the future, we would like to analyse the sensitivity of the approach towards
the number and the quality of the terminals in the small grammar. We also
would like to investigate whether adding a local search to the two-level grammar,
creating a three-step method [6], would be beneficial. Furthermore, we would
like to study the way the approach is affected when the grammar is modified at
positions other than terminals. Moreover, the quality of results obtained on the
scheduling in HetNets motivates us to study the performance of our two-level
grammar approach on problems from other domains.
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