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Abstract—Testing is crucial to ensure the quality of software
systems – but testing is an expensive process, so test managers
try to minimise the set of tests to run to save computing resources
and speed up the testing process and analysis. One problem is
that there are different perspectives on what is a good test and
it is usually not possible to compare these dimensions. This is a
perfect example of a multi-objective optimisation problem, which
is hard — especially given the scale of the search space here.
In this paper, we propose a novel hybrid algorithm to address
this problem. Our method is composed of three steps: a greedy
algorithm to find quickly some good solutions, a genetic algorithm
to increase the search space covered and a local search algorithm
to refine the solutions. We demonstrate through a large scale
empirical evaluation that our method is more reliable (better
whatever the time budget) and more robust (better whatever
the number of dimensions considered) – in the scenario with 4
objectives and a default execution time, we are 178% better in
hypervolume on average than the state-of-the-art algorithms.

Index Terms—Multi-objective Optimisation, Hybrid-
metaheuristic, Search-based Software Engineering, Test
Suite Selection,

I. Introduction

“Test early, test often”: one of the most iconic principles
of modern software development methods consists in contin-
uously testing software artefacts – in order to fix problems
quickly. However, programs tend to have a large number
of tests and running all of them becomes not practical (or
feasible) as running and analysing tests is expensive in terms
of resources (servers) and manpower [1]. Many techniques
exist to address this problem, from test generation [2] to
distributed testing [3], test case minimisation [4] to test case
prioritisation [1]. In this paper, we address test selection [5],
which can be defined as “find a minimal subset of all the tests
that covers as much of the program as possible” – in order
to speed up the testing process, and limit the impact on the
material resources (i.e., servers) and human resources (tests
results usually need to be analysed by developers/testers).

Coverage is the key here and there are multiple ways of
computing it (see Section III), each of them telling something
different about the program under test and there is no agree-
ment on which one of them is the best (see Section II). Time is
also a dimension of the problem, as running tests takes time:
is it better to save 10 minutes or to spend these 10 minutes on
stressing more the program with tests that focus on branch
coverage? Do we need so many tests doing line coverage
or should we save an hour of testing? Etc. This is a typical
multi-objective problem: test resource managers want to make
decisions based on good subsets of the tests, i.e., sets of tests

that are better than any other possible set on a particular
combination of objectives. Eventually, test resource managers
look at the different possible sets and make a decision based
on a local optimisation (e.g., favouring objective 1 which gives
a bigger gain than objective 2 while the latter is usually more
important etc.).

In such large search spaces, many optimisation techniques
do not work well: exact solvers (e.g., MILP) only handle a
single objective thus would require a scalarisation of some
sort of the objectives, and do not scale well anyway. While
greedy algorithms and neighbouring search algorithms are too
poor (due to their guided and non-diverse search) or too slow
(due to their local nature). Evolutionary algorithms (NSGA-
II, MOEA/D), on the other hand, have recently proven to
be better [6], [7], while hybrid algorithms, i.e., algorithms
composed of various other algorithms, have not been studied
extensively for this problem (with the notable exception of
Yoo and Harman [6]). The main contribution of this paper
is to perform a thorough study (based on similar data as
the state-of-the-art [5], [7]) of the application of a three step
method, that has recently proven to be good in large scale
multi-objective problems [8], [9], [10], [11]. In particular, we
introduce our own method, GREAP (for GReedy Evolutionary
Algorithm Path-relinking), based on a greedy algorithm to find
quickly some good solutions, a genetic algorithm to increase
the search space covered and a local search algorithm to refine
the solutions. We show that our solution is (i) more robust than
the state-of-the-art to the number of objectives; (ii) is more
effective (better quality and diversity) ; (iii) is more efficient
(can work in tighter time budgets); and (iv) scales better when
the size of the programs and the number of tests increase. In
particular, we show that GREAP loses only 1% of quality
when the time budget is reduced to 25% – while state-of-the-
art algorithms lose 40+% (and they cannot find any solutions
for 3 out of 10 subjects). We also show that GREAP is the only
algorithm which always finds solutions when the number of
objectives increases from 2 to 4 (quality reduced by only 9%).
In general, for 4 objectives and a “normal” time budget (see
Section V-E), GREAP is 178% better than the other algorithms
(if we exclude the subjects for which the other algorithms
cannot find any solutions) – see Table VI.

This paper is organised as follows: Section II presents the
related work, Section III defines formally the problem; Sec-
tion IV introduces our algorithm; Sections V and VI present
the experimental setup and the results of the evaluation; and
finally Section VII concludes the paper.
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II. RelatedWork

Testing software systems usually takes the form of creating
and running test cases, which aim at checking whether the
program under test is behaving as expected. Any wrong
program logic is supposed to make the tests fail – while when
tests pass, we assume the behaviour of the program under test
is correct (as long as the tests are exhaustive and correct). The
set of all test cases is called a test suite. Developers and testers
have worked with all sorts of metrics to assess the quality of
tests, and in particular coverage metrics are widely used. Test
resource managers also consider resource consumption (e.g.,
tests execution time, financial cost of running the tests) as
an important element. Creating tests is a skill- and labour-
intensive tasks and automatic test generation [2], [12] is the
focus of a lot of interest in academia and industry. Software
artefacts evolve constantly though: various stakeholders and
developers change their opinions about what applications
should do and how to achieve their goals, parts of the code
are improved or re-factored, and so on. Tests are then used
to ensure that nothing bad is introduced in the programs and
they are executed very often against the evolving programs.

Three directions have been proposed to address this prob-
lem [13]: Test Case Minimisation [4] aims at providing subsets
of the initial test suite by eliminating redundant tests [14], i.e.,
tests that can be forgotten with no major impact Test Case
Prioritisation [15] aims at reordering the test suite, in order
to find the best order in which to apply the tests and increase
the chances of finding the defects at an early stage Test Case
Selection, the one we address in this paper and the focus of
the remaining of this paragraph, aims at selecting a subset
of the original test suite which balances quality and cost of
the test suite. Early works have often addressed the problem
as a single objective, with one property fixed (either cost or
quality) and the other property optimised. Fischer et al. [16]
proposed a 0-1 integer programming problem formulation
while Rothermel et al. [4]) later proposed a graphical rep-
resentation of the problem. In 2001, an empirical comparison
study by Mansour et al. [17] compared the early algorithms
applied on test case selection. In 2007, Yoo and Harman [5]
presented the first work on multi-objective test case selection
and introduced the concept of Pareto efficiency of selected
set of tests, that they solved using an evolutionary algorithm
(i.e., NSGA-II [18]). They have later extended their study with
a greedy algorithm [6] and produced a hybrid algorithm.
The objectives considered were execution time (cost) and
statement coverage (quality). Evolutionary algorithms are the
most popular algorithms for this problem: Dipesh et al. [13]
use a cluster-based evolutionary algorithm and consider four
objectives (execution time and three quality measures); while
Zheng et al. [7] evaluate MOEA/D for the problem, using a
various number of coverage objectives (see Section III).

Now that the problem is widely considered multi-objective,
the question of picking the right objectives becomes im-
portant. Indeed, when objectives are not independent, they
have an impact on each other and optimising one may lead
to optimising others – and in turn algorithms that optimise
this “dominant” objective(s) have an advantage. It is not a

surprise that the coverage metrics we propose in our study
are not totally independent. After all, they all try to maximise
how much of the program is tested. The relative impact of
one on the others is not clear though and recent studies by
Gregory Gay [19] show that there is a lot of research to be
done in this domain – Gay’s work addresses another problem
(namely test generation) but we think his conclusions can be
extended to our work. In particular, Gay’s finding that simple
objectives (line/branch coverage) are very efficient is a sign
that they cannot be dismissed. Another of Gay’s conclusions
is that combinations of objectives have unique results, that are
difficult to achieve when using single-/mono-objectives. This
also reinforces our ideas that the software testing field (and in
particular test selection) needs multi-objective approaches.

III. Problem Definition

Test selection is an important test resource management
problem where algorithms try to minimise the number of tests
required to stress a software artefact. Each test in a test suite
covers in some ways a part of the program and the general
idea is to find the minimal set of tests that covers the whole
program – or the largest part of the program. The general idea
being that running less tests (or just the right number of tests)
can improve the resource management.

There are various test coverage metrics: line coverage,
instruction coverage, branch coverage, etc. In this paper, we
select 3 of them in addition to the running time of the
tests (see below the definition of the problem’s objectives).
Each of these coverage metrics sees the program from a
different perspective: for instance as a sequence of instructions
(instruction coverage) or as a tree (branch coverage). Our
approach is to some extent agnostic to the different dimensions
(coverage metrics) used. In fact, our goal in this paper is to
compare algorithms that are designed to explore large multi-
dimensional search spaces - and that is why we picked them.
The choice of objectives is in this case of lesser importance.

If a subset of tests T covers, according to a coverage metric
c j, the element p j

k ∈ P j of the program P then we have the
following equation: c j(T, p j

k) = 1. We use this equation to
assess how much of a program is covered by a set of tests,
knowing that a program P is made of all its elements p j

k. We
say that a program P is fully covered, according to coverage
metric c j, by a set of tests T = {t1, t2, . . . , tn} (each ti ∈ T , T
being the original, full, set of tests), if:

∀p j
k ∈ P j, c j(T, p j

k) = 1 (1)

As said in the introduction of this paper, we see this
problem as a multi-objective optimisation problem, and we
try 3 different combinations of objectives. Each of the different
coverage metrics, as well as the time to run tests, is seen as a
different objective O j ∈ O.

The first coverage objective O1 aims at maximising the line
coverage c1 of lines p1

k ∈ P1 of the program P. The second
coverage objective O2 aims at maximising the branch coverage
c2 of code branches (control structures with all their branches
executed at least once) p2

k ∈ P2 of the program P. The last
coverage objective O3 is inspired by the modified condition /
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decision coverage (MC/DC) where we keep two criteria and
aim at maximising the MC/DC c3 of decision coverage p3

k ∈ P3

of the program P. We consider that a statement if is MC/DC
covered if and only if the two following criteria are met: (i)
each decision takes the value true and false during testing; and
(ii) each condition takes the value true and false during testing
– where a condition is a boolean atomic expression and a
decision is a boolean expression composed of different boolean
operators and conditions. The fourth and final objective O4 in
our work is the execution time of running all selected tests.

The multi-objective model of our problem can be described
through the following formulation:

minimise : O j = -
∑
p j

k∈P j

c j(T, p j
k) ∀ j ∈ {1, 2, 3}

O4 =
∑
ti∈T

cost(ti)

sub ject to : T = {t1, t2, . . . , tn} ∈ ℘(T )

(2)

The aim of multi-objective optimisation techniques is to find
the set of Pareto optimal solutions [20] (a.k.a., Pareto front). A
solution T j = {t j

1, t
j
2, . . . , t

j
m} ∈ ℘(T ) is in the Pareto optimal

set (also said as non-dominated) if and only if there is no
solution T k = {tk

1, t
k
2, . . . , t

k
l } ∈

℘(T ) with all objectives (ci’s
and cost in our case) better or equal than the objectives of
T j, with at least one objective strictly better. T j is said to be
dominated by T k if and only if ∀Oi ∈ O, Oi(T k) ≤ Oi(T j) and
∃Ok ∈ O | Ok(T k) < Ok(T j). In short, each solution on the
Pareto front is a good and makes a unique trade-off between
the objectives – in the sense that no other currently found
solution is better than this solution on all dimensions.

IV. GReedy Evolutionary Algorithm Path-relinking
Large and complex search spaces, such as the ones we are

addressing in our work, are challenging for classical optimisa-
tion techniques. Random/greedy techniques generate a lot of
poor solutions and do not work well; Local Search techniques
do not progress quickly enough in such large search spaces;
exact solvers are mostly mono-objective and require complex
scalarisation techniques and do not scale well. The solutions
that seem the most promising are evolutionary algorithms [5],
[7], sometimes combined with greedy algorithms [6]. How-
ever, they are known to improve the set of solutions quite
slowly, due in part to the poor initial population (hence the use
of greedy algorithms to bootstrap the evolutionary algorithms).

Our solution uses a three stage method [8], [11] composed
of three optimisation algorithms applied successively: (i) first
we use a modified GRASP [21] in order to ‘aggressively’
produce an initial population with good values – and also a
good coverage of the non-dominated set of solutions (i.e., with
good variety among the different solutions); (ii) the second
phase is a classic evolutionary algorithm, NSGA-II [18], but
applied to the population produced by the first phase. This
phase aims to exploit information from GRASP and produce
a good approximation of the Pareto set; and (iii) finally a third
phase pushes locally and aggressively solutions from previous
stages to the Pareto front; in our algorithm we used a path-
relinking [22]. Each step is executed for a maximum given

time based on the overall execution. The greedy part of the
first phase and the third can also be interrupted if they achieve
a certain goal (e.g., when GRASP generates enough initial
solutions, or when the path-relinking has paired all solutions).

A. First Step: Greedy Algorithm

The aim of this first step is to produce the initial population
of 100 individuals – required by GREAP’s second step (using
NSGA-II). We use a modified GRASP algorithm [21] to create
a first set of 80 solutions. The algorithm builds a solution from
an empty subset of tests and at each iteration, the algorithm
adds randomly one of the best tests (say, ti) according to a
particular utility function. The utility is the normalised sum
of coverage values ti can add to the solution, divided by the
number of coverage objectives. This value is then multiplied
by a direction λ, then we subtract the sigmoid normalised cost
of the test multiplied also by a direction 1 − λ. This direction
is modified to obtain solutions with different “perspectives”
on the coverage, and cost, objectives.

Let T ⊆ T be the selected tests at a given iteration of the
GRASP phase, with coverage objectives O

′

j, ∀ j ∈ {1, 2, 3}. Let
O
′′

j , ∀ j ∈ {1, 2, 3} be the new coverage objectives when adding
a test ti ∈ T\T to T . We consider that g j(ti) = O

′

j − O
′′

j , ∀ j ∈
{1, 2, 3} the potential gain on each of the considered coverage
objectives when adding ti to the current set of selected tests
T . We also increase the running time of the set of tests when
adding test ti, w j(ti) = O

′′

4 − O
′

4. Finally, we define the utility
U(ti) of adding a test ti to the selected ones as follows:

x1 =
∑

j∈{1,2,3}
g j(ti)

maxtk∈T {g
j(tk)}

x2 =
w4(ti)

maxtk∈T {w
4(tk)}

U(ti) = x1 ×
λ
3 −

(1−λ)
(1+e−x2 )

(3)

with λ ∈ [0, 1] being the value that allows the exploration
of different directions in the search space.The first two λ
directions picked are 0 and 1. The former builds a solution
with no selected tests (so a cost objective of 0) and the latter
with the maximum coverage in all objectives (not necessarily
all tests). After that, the directions (values of λ) are chosen to
spread the exploration as much as possible (splitting the space
covered by 2 previous values of λ).

At each iteration, the algorithm picks a (new) test from the
original test suite so that the utility function is increased at
least a factor α ≤ 1. This factor allows the algorithm to pick
good tests, increasing the overall values of the selected set of
tests. The stopping criteria of the algorithm, i.e., the conditions
that stop the algorithm from adding tests are: (i) no tests left
to add, (ii) full coverage of lines, branches and MC/DCs or
(iii) a negative utility for all the tests. In our implementation,
we fixed the value of α at 0.70. At the end of the algorithm,
the set of solutions is made of diverse good solutions. After
that, a path-relinking algorithm [23] is applied. For each pair
of solutions (a.k.a., “parents”), the path-relinking “navigates”
from one parent to the other by adding or removing a test at
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a time. If any intermediary solution is not dominated by its
parents, the algorithm adds it to the set of solutions.

Finally, to obtain a population of 100 solutions for the
second phase, we sort and keep only the non-dominated
solutions. If the number of non-dominated solutions is greater
than 100, we keep solutions with the best crowding [18] (high
variety), otherwise the algorithm takes all found solutions as
initial population in the next step [24], [25].

B. Second Step: Evolutionary Algorithm

GREAP’s second step is an evolutionary algorithm, i.e., a
stochastic optimisation method, inspired by natural evolution –
in particular evolutionary algorithms implement ‘their’ version
of the concepts of mutation, crossover and selection. In our
algorithm, we use the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) [18]. It is a Pareto-based algorithm, which
aims to select solutions using Pareto dominance and in case
of non domination between two individuals use the density
of the neighbourhood of individuals. The initial population is
generated by the first step of our hybrid algorithm, which gives
a good bootstrap to the evolutionary algorithm. Note that we
use all individuals from the first step as seeds [24], unlike
in [26], [27] where only few good individuals are added to
the initial population.

C. Third Step: Path-relinking

Finally, the third step is a path-relinking applied on the
result of the second phase. We use the same idea seen in
the first step: for every pair of solutions, the path-relinking
algorithm looks for intermediary (feasible) solutions between
them by adding or removing tests (one at a time). The
intermediary solutions are then added to the list of good
solutions if they are non-dominated. The algorithm runs for a
certain time budget or until there is no more pair of solutions
that have not been tried. The aim of the path-relinking step of
GREAP is to “fill in” the gaps between solutions belonging to
the Pareto front and to push this front as much as possible. We
picked this algorithm and not any other local search algorithm
(e.g., PLS as in other related work using three step methods[8],
[11]) as the search space in our problem is not too constrained
and most intermediary solutions are feasible.

V. Experimental Setup

This section presents: the metrics, the subjects, the time
budget, and the algorithms we compare GREAP against.

A. Metrics

Comparing different sets of non-dominated solutions in a
multi-objective context is a well-known problem [28]. First of
all, because of the complexity and the size of the problem, it
is usually not possible to obtain the exact Pareto frontier, i.e.,
the exact solutions. Second of all, because of the difficulties
to compare (and visualise) solutions in a multi-dimensional
space. Different metrics have been proposed in the literature,
often to measure the sets of non-dominated solutions from
various perspectives – namely the quality of the sets of

solutions and the spread of the sets of solutions. Some of
the metrics require to have the exact set of non-dominated
solutions (the ideal Pareto front). As we do not have this (it
is in practice often impossible to obtain) we use a classical
estimation: the best set solutions given by all the algorithms.
All of the metrics we use are known to be good ones for the
comparison of sets of non-dominated solutions [28].
• We use the Hypervolume (HV) is one of the most popular

metrics to assess the quality and the diversity of the sets of
solutions. The Hypervolume computes the space between
all solutions from the non-dominated set of solutions and
a reference point. The exact Pareto front produces the best
HV, as its solutions get the best values in every objective.
Because of its well-known utility, popularity and good
performance when it comes to comparing solutions, the
HV is our favourite metric (and many of our experiments
will only consider this one).

• The second metric, which focuses on quality, is the
generational distance (GD) which computes the average
Euclidean distance between solutions from the result of
an algorithm and the nearest solution from our approxi-
mation of the exact Pareto front (to minimise).

• The third metric is the inverted generational distance
(IGD), similar to the generational distance but computes
the minimum distance between the result set of an al-
gorithm and the approximated Pareto set. IGD is to be
minimised for both a better diversity and quality.

• The generalised spread metric (GS) computes the spread
of a population using the lower and upper bounds of
objective values found and can be used for the diversity
of solution sets. GS is useful if the sets of solutions have
similar qualities. For the GS, the lower the better.

• We also use the Pareto front size metric (PFS), which
returns the number of solutions in the result set of an
algorithm that also belongs to the Pareto front. PFS is
diversity-oriented, and the higher the better for PFS.

• Finally, our last metric is the epsilon metric (ε), which
estimates the minimal distance to transform every solution
of a result set into a solution on the Pareto front. The
lower ε the better are diversity and quality.

In our work, we aggregate results of all algorithms over the
different runs as an approximation of the Pareto front.

B. Data-Set
We have picked 6 out of 10 subjects based on recent and/or

widely considered state-of-the-art studies [5], [7]. We also
selected larger subjects, doing what we think is a thorough
analysis. We summarise the most interesting characteristics of
the subjects in Table I. In particular, we report the number
of lines of code (LOC) and number of tests. All the subjects
(see Table I) are C programs, obtained from the Software-
artifact Infrastructure Repository (SIR [29]), a large repository
of software artefacts popular in academia.

We use the tool Gcov to measure the coverage metrics. Gcov
is a source code coverage analysis and profiling tool that gives
which line/instruction/branch is executed by which test. We
also collected the execution time of all tests – which gives us
the cost value for each test.
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Table I
Number of lines of code (LOC) and number of tests in each data-set.

Data-set gzip-v3 gzip-v4 space-v38 schedule-v2 totinfo-v1
LOC 7259 7359 6199 413 407

# tests 214 214 150 2650 1052
Data-set tcas-v1 space13k-v38 grep sed make-v1

LOC 174 6199 10068 14427 35545
# tests 1608 13585 809 370 1044

C. Algorithms

We have compared our own solution (GREAP) against
two well-known evolutionary algorithms: NSGA-II [18] and
MOEA/D [30]. They are both executed in the exact same
conditions as our solution. NSGA-II is one of the most popular
genetic algorithm – note that we use NSGA-II in the second
phase of GREAP (see Section IV-B). MOEA/D has recently
been used in a multi-objective test selection work [7] and has
proven to have very good results.

Note that we did not have access to the implementation
provided by the authors of [7] and [18]. We decided to stay
as generic and impartial as possible, and we used the MOEA
framework [31]. MOEA is a free and open source Java library
with a panel of multi-objective evolutionary algorithms imple-
mented and ready to use. Our algorithm is also implemented
in Java, and also use the MOEA framework for its second
phase (NSGA-II). The parameters used for the two algorithms
and for our second phase are the default values from MOEA
framework (population sizes equal to 100).

D. Setting the Time Budget for Each Phase

GREAP is a three step hybrid algorithm, and we need to al-
locate an execution time for each of the steps. We have selected
12 different triplets of parameters, each parameter representing
the percentage of time allowed to the corresponding phase. We
ran GREAP 10 times with each triplet on one of the hardest
problem (i.e., Schedule with 4 objectives) and evaluated the
average results on all our metrics.

Table II reports the triplets alongside their average result
metrics with the following format: a triplet “a, b, c” corre-
sponds to a% of the time allowed on the first phase, b% on the
second phase and c% on the last. In bold are the best values.
The results show the importance of the first and third steps: the
worst results are coming from parameters with no time allowed
to the first or the third steps. However, cases with a long time
allowed for these two steps (first and third) do not produce
good solutions either. Secondly, two different parameters seem
better and distinct from the others: “10,80,10” and “10,70,20”.
The former favours the quality of the solution, whereas the
latter produces more solutions and a better diversity. Therefore,
we pick the last triplet for all following experiments in this
work: 10% for the first phase, 75% for the second and 15%
for the last, which offers the best trade-off between diversity
and quality: (i) close to “10,80,10” best quality metrics and
(ii) second best diversity after “10,70,20”.

E. Experimental Process

Our experiments were run on the 10 subjects presented ear-
lier, for the three combinations of objectives (two, three, four)

and the three algorithms (NSGA-II, MOEA/D and our own
GREAP). Because evolutionary algorithms and our greedy step
are stochastic methods, we performed 30 runs and averaged the
results for for each set up to reduce the impact of randomness.

We varied the number of objectives for the problem, using 2,
3 or 4 objectives by taking (in this order): (i) the cost, (ii) the
line coverage, (ii) the branch coverage and (iv) the MC/DC
coverage. The more objectives there are in the problem the
more difficult the problem is. We also varied the time budget
(see Table III) for the algorithms, starting with a value T that
corresponds to what was allowed in [7] for the six first subjects
– we then decreased that value to T/2 and T/4. We also
evaluated the algorithms on a larger budget, 2T to see how well
the algorithms performed in a less constrained environment.
Note that in the work of [7] they do not run their experiments
on Space with three or four objectives, therefore we chose
arbitrary times, similar to the ones used for the two versions
of gzip. For Space13k, also not used during previous papers,
we allow a big arbitrary time for 2 objectives, but afterwards
for 3 and 4 objectives, times are computed using a similar scale
as the increase of times alongside objectives for the three big
data-sets (Tcas, Totinfo and Schedule). Finally for Make, Grep
and Sed, also arbitrary times are used, picked to have similar
behaviour than other data-sets.

VI. Experiments

We aim at answering the following four questions:
• RQ 1: Is GREAP robust against the increase of the

number of objectives, which is known to be challenging?
• RQ 2: Is GREAP more effective (better quality and

diversity) than the others evolutionary algorithms?
• RQ 3: How does GREAP compare to other algorithms

when the time budget shrinks?
• RQ 4: Does GREAP react well to an increase of the test

suite size (when we vary the test subjects)?
All the results presented in the current section are average

values of ten runs. In order to be more readable, the values
are rounded; yet, in all cases we kept enough decimals to still
be able to compare the algorithms.

Values in bold are the best values from a particular per-
spective (described in the tables) and by default they are
statistically significant (we used a Mann-Whitney U test)
with a p-value below 0.05. These (best) values (in bold) are
followed by an asterisk (*) when not statistically significant.

A. RQ1: Robustness against a Varying Number of Objectives

In Table IV, we report the evolution of Hypervolume when
the number of objectives increases (from 2 to 4). The time used
in the experiments is T – as this is the typical time budget in
related studies. In short, we fix the metric (HV) and the time
(T ) and only vary the number of objectives.

In general, the results show better performance for GREAP
than for the other algorithms. Furthermore, the values are
always statistically significant. However, these values are close
for small subjects (the two versions of Gzip and Space),
but this gap tends to increase with the size of the subjects
(for medium subjects such as Grep and Sed but also for
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Table II
Evaluation of the time allowed for each of the three steps of GREAP. Each column corresponds to a triplet of percentage values (1 for each step). We show
results for every metric, when running the Schedule subject, with 4 objectives and a global execution time of 100 seconds. Best results are in bold.

Data-set Metric Parameters
00,90,10 0,80,20 10,90,00 10,80,10 10,70,20 20,80,00 20,70,10 20,60,20 20,40,40 33,33,33 40,40,20 10,75,15

Schedule

HV 0.9638 0.9635 0.6018 0.9649 0.9635 0.6110 0.9624 0.9639 0.9640 0.9631 0.9631 0.9644
GD 0.2248 0.0105 0.0703 0.0102 0.0097 0.0709 0.0093 0.0114 0.0107 0.0078 0.0104 0.0094
IGD 0.1622 0.0497 0.0498 0.0501 0.0495 0.0503 0.0494 0.0500 0.0499 0.0500 0.0497 0.0498
ε 0.0014 0.0015 0.0295 0.0012 0.0015 0.0296 0.0017 0.0014 0.0016 0.0015 0.0015 0.0014

PFS 12.4 27.0 11.9 28.7 31.7 10.9 27.2 28.4 29.0 30.0 28.0 30.4
GS 0.9041 0.9196 1.0787 0.9064 0.8943 1.1036 0.9077 0.9305 0.9338 0.9011 0.9384 0.9008

Table III
Execution times T for each instance according to the number of objectives.

Data-set 2 objectives 3 objectives 4 objectives
gzip-v3 176.12 224.01 335.38
gzip-v4 179.38 254.06 319.70

schedule-v2 716.48 764.61 844.12
tcas-v1 204.75 217.88 243.72

tot info-v1 294.38 297.70 335.00
Space-v38 170.00 240.00 310.00

Space13k-v38 1,000.00 1,100.00 1,200.00
grep 290.00 290.00 330.00
sed 200.00 240.00 350.00

make 295.00 300.00 340.00

larger data-sets: Totinfo, Tcas, Schedule, Make and Space13k).
Moreover, the performance of GREAP becomes clearer with
the increase of the number of objectives: the efficiency of the
other evolutionary algorithms tends to drop faster than for
GREAP. Indeed, our algorithm has good HV values for the
simpler case (2 objectives), but keeps good HV values when
the problem becomes more complex (3 then 4 objectives):
GREAP is less impacted by the increase in the number of
objectives than the other algorithms. For Space13k, in the
3 combinations of objectives, evolutionary algorithms can’t
produce good solutions. However, GREAP manages to always
find a good set of solutions, even for the hardest problem
with 4 objectives. This first set of experiments proves that
GREAP does not struggle against more complex problems
(more objectives) as other evolutionary algorithms do.

B. RQ2: Efficiency of our Algorithm

Table V is a thorough evaluation of the algorithms against
various metrics, for all subjects and with a fixed number of
objectives (we chose four objectives to be in the most difficult
context, for all algorithms) and a fixed time (T ).

First, we notice that GREAP gets significantly better quality
results (based on HV, IGD, GD and ε) than the other algo-
rithms. The only quality result for which GREAP is not the
best is GD for Tcas and Grep, and IGD for Sed. This is a
good demonstration that GREAP is the best algorithm on all
quality metrics (37 best values out of 40), with at least 3 out of
4 metrics showing better results for GREAP for all subjects.

Regarding the diversity metrics (PFS and GS), results show
that many more solutions are provided by GREAP than by
the two evolutionary algorithms. The generalised spread of
the solutions is not always in favour of GREAP though, but
when another algorithm gets better results than GREAP, this
algorithm has very poor quality and size values – which to
some extent beats the purpose of multi-objective optimisation.

We can conclude from this set of experiments that GREAP
provides better solutions in terms of quality and produces

solution sets with better diversity. Consequently, we conclude a
better efficiency for GREAP than for evolutionary algorithms.

C. Impact of the Time Budget on the Algorithms

Now (see Table VI), we answer RQ 3, and show the
‘aggressive’ behaviour of GREAP. In this set of experiments
we decrease the time budget (from T to T/2 and then T/4)
assigned to the algorithms, making the problem more difficult.
We also increase the time budget (2T ) to evaluate whether this
has a different impact on the other algorithms than on GREAP.

First, all the results show statistically better performance
for GREAP. Furthermore, we observe an increase of this
improvement when the time budget decreases. This says that
while the other evolutionary algorithms are impacted substan-
tially by the decrease in time budget, GREAP keeps good
Hypervolume values - especially for the six hardest subjects
(Grep, Make, Space13k, Schedule, Totinfo and Tcas). For
these six subjects, the other algorithms perform really poorly
(Hypervolume values can even tend to 0 in the hardest cases)
while GREAP does not vary much. Note that for the small
subjects the impact on the other algorithms’ performance is
limited, due to the simpler nature of these subjects.

GREAP always keeps good Hypervolume values even with
smaller time budgets. The decrease in performance is not
significant for small subjects and stays acceptable for larger
ones. Furthermore, because of the small evolution of the
Hypervolume in some cases, GREAP seems to have already
converged to good solutions in four out of the ten subjects (The
two Gzip versions, Space and Schedule), for the smallest time
(T/4). For the other subjects, good solutions are already found
at T/4, but GREAP keeps improving a bit the solutions.It’s
only for Space13k, the hardest subject, that GREAP improves
the Hypervolume significantly after T/4.

In terms of improvement, if we look at the impact on the
algorithms performance when the time budget is reduced from
T to T/4, we see that GREAP loses only 1% of quality, while
NSGA-II (39%) and MOEA/D (47%) are impacted much more
and cannot get any solution in some cases (Space13k, Schedule
and Tcas). If we focus on a time budget of T (reminder: we
have 4 objectives here) then GREAP is 178% better than the
other algorithms (when they find any solutions at all).

D. Impact of Subjects Size

Finally, looking at the previous three tables, we can evaluate
the quality and the diversity of the solutions produced by the
three algorithms when the size of the subjects vary. To simplify
the analysis, we classify the subjects into: small-scale (Gzip
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Table IV
Hypervolume for all the algorithms running with a time budget T against all the subjects and for a various number of objectives (2, 3 and 4). Best and

statistically significant results in bold. Note that the most complex (yet realistic) scenarios have more objectives.

# Obj. Algorithm Data-set
gzip-v3 gzip-v4 Space Schedule Totinfo Tcas Space13k Grep Sed Make

2 objectives
GREAP 0.952425 0.9491086 0.96230 0.9748 0.7949 0.8676 0.9984 0.9463 0.93791 0.9955
NSGA-II 0.952423 0.9491069 0.96220 0.0025 0.7918 0.2399 0.0 0.8639 0.93782 0.8794
MOEA/D 0.803352 0.8058796 0.82393 0.0 0.4398 0.0156 0.0 0.2350 0.34763 0.7820

3 objectives
GREAP 0.92696 0.918497 0.95732 0.9734 0.7903 0.8516 0.9981 0.9223 0.9104 0.9939
NSGA-II 0.92693 0.918477 0.95720 0.0033 0.7880 0.2279 0.0 0.7740 0.9091 0.8464
MOEA/D 0.80181 0.779943 0.85094 0.0 0.3794 0.0547 0.0 0.2479 0.3302 0.7570

4 objectives
GREAP 0.8792 0.8698 0.8173 0.9637 0.7330 0.7032 0.9918 0.8757 0.8694 0.9773
NSGA-II 0.8789 0.8691 0.8155 0.0666 0.7074 0.2240 0.0 0.7501 0.8574 0.8064
MOEA/D 0.7308 0.7164 0.6910 0.0026 0.3240 0.0317 0.0 0.3752 0.3943 0.7096

Table V
Results for all metrics and algorithms running with a time budget T against
all subjects and 4 objectives. Best and statistically significant results in

bold. Results with an asterisk (*) are not significantly better.

Data-set Algorithm Metric
HV GD IGD ε PFS GS

gzip-v3
GREAP 0.8792 0.00036 0.00027 0.00005 2111.5 0.9977
NSGA-II 0.8789 0.00046 0.00030 0.00127 1373.4 0.9516
MOEA/D 0.7308 0.00162 0.00524 0.11330 49.6 0.8986

gzip-v4
GREAP 0.8698 0.00028 0.000217 0.00031 2611.8 0.9461
NSGA-II 0.8691 0.00039 0.000225 0.00216 1552.7 0.9439
MOEA/D 0.7164 0.00211 0.004473 0.14522 38.4 0.8992

Space
GREAP 0.8173 0.0009 0.00061 0.001 2385.3 0.8121
NSGA-II 0.8155 0.0013 0.00063 0.005 1473.1 0.7760
MOEA/D 0.6910 0.0032 0.00919 0.213 58.9 0.8299

Schedule
GREAP 0.9637 0.0119 0.0594 0.0015 28.9 0.9466
NSGA-II 0.0666 0.0226 0.1364 0.0583 3.3 0.9379*
MOEA/D 0.0026 0.0797 0.1584 0.0679 1.3 0.9909

Totinfo
GREAP 0.7330 0.0129* 0.0173* 0.0001 39.8 0.7055*
NSGA-II 0.7074 0.0144 0.0205 0.0011 26.4 0.7727
MOEA/D 0.3240 0.0345 0.0868 0.0052 2.8 0.8817

Tcas
GREAP 0.7032 0.1337 0.1522 0.0 11.2 0.6644
NSGA-II 0.2240 0.0764 0.2155 0.009 4.5 0.7980
MOEA/D 0.0317 0.0864 0.3023 0.013 1.8 0.9247

Space13k
GREAP 0.9918 0.00004 0.00012 0.3490 4625.1 0.6155
NSGA-II 0.0 0.1061 0.0101 15.9655 1.1 0.9998
MOEA/D 0.0 0.1042 0.0101 15.9359 1.0 0.9998

Grep
GREAP 0.8757 0.00052 0.00046 0.0226 5276.5 0.6808
NSGA-II 0.7501 0.00048* 0.00372 0.0551 517.6 0.6119
MOEA/D 0.3752 0.00531 0.00916 0.1823 8.6 0.9792

Sed
GREAP 0.8694 0.00019 0.00019 0.0024 4435.5 0.7270
NSGA-II 0.8574 0.00029 0.00017 0.0071 804.8 0.6457
MOEA/D 0.3943 0.00223 0.00687 0.0456 17.6 0.9103

Make
GREAP 0.9773 0.00060 0.00006 0.6672 3340.5 0.6747
NSGA-II 0.8064 0.00148 0.00354 2.8886 52.3 1.0900
MOEA/D 0.7096 0.00303 0.00442 4.4109 18.0 1.1020

v3, Gzip v4 and Space), medium-scale (Totinfo, Grep and Sed)
and large-scale (Space13k, Make, Tcas and Schedule).

The first thing we notice is that the quality and diversity of
the evolutionary algorithms is inversely impacted by the size
of the subjects: the larger the subject the poorer the results.
For bigger subjects, evolutionary algorithms have a bad perfor-
mance, and the number of solutions found is decreasing with
the size of the test suites. We see that NSGA-II and MOEA/D
struggle to find a good set of solutions to push toward the
Pareto frontier. We can conclude that those algorithms do not
scale well when the size of the problem/subjects increases.

On the contrary, GREAP has good performance when
dealing with all scales, and while the results are a little less
impressive for medium- and large-scale subjects they are still
good and better than for the other algorithms.

As an example, take Space13k, the hardest problem/subject.
In the different experiments, the two evolutionary algorithms
find only one solution (except for one run of NSGA-II in the 4
objectives case, where two solutions are found when allowing
time T or more). This can be explained by the structure of the
problem: the subject has a large test suite and a small number
of LOC so the tests tend to have a large overlap between
them (they cover similar elements of the subjects). Only a

small number of tests from the original test suite are already
enough to obtain an optimal quality. Therefore, the random
initialisation of the evolutionary algorithms is full of mostly
redundant tests, making it hard for the evolutionary algorithms
to improve on what’s already a (near) optimal set of solutions.
As a consequence, we see in our experiments that the two
evolutionary algorithms optimise only the cost (and with a lot
of difficulty). GREAP manages to offer more solutions, with
different qualities and with smaller costs than the initial set of
tests. The solutions are of a good diversity over the different
objectives, which helps the second phase to explore a larger
search space and more trade-offs. This difference is due to the
first and third phases, which provide a good initial population
with small test suites and then a good shape at the end. We can
conclude that the search space is mostly composed of solutions
with the same quality as the initial test suites and a random
initialisation poorly performs. GREAP is the algorithm that
addressed the problems the best with a big test suite. This
observation can be generalised to explain the difficulties of
NSGA-II and MOEA/D to optimise the other difficult subjects.

Furthermore, GREAP successfully provides a larger set
of solutions with both a good quality and a good diversity
for the large-scale problems, in all different combinations of
objectives. Even for the hardest problems, our algorithm has
good solutions for small times. The larger the test suite the
more GREAP outperforms the other evolutionary algorithms.

Finally, we can conclude that with the increase of the test
suite size, the gap between GREAP and other algorithms
is increasing, and while GREAP is slightly better for small
subjects, it outperforms them by far on harder problems.

VII. Conclusion

Test selection is a very challenging yet critical problem
in software testing. The number of tests that are associated
with a program can be huge and running all of them is often
impossible or at least prohibitively expensive. In this paper, we
propose a novel hybrid algorithm (GREAP) to address this
problem. Our method is composed of three steps: a greedy
algorithm to find quickly some good solutions, a genetic
algorithm to increase the search space covered and a local
search algorithm to refine the solutions. We answer 4 research
questions through a thorough empirical evaluation (based on
what the state-of-the-art technique [7] was evaluated against):
• The answer to RQ 1: Is GREAP robust against the

increase in the number of objectives, which is known to
be challenging? is Yes.
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Table VI
Hypervolume for all algorithms running with different time budgets against all subjects and 4 objectives. Best and statistically significant results in bold.

Time Algorithm Data-set
gzip-v3 gzip-v4 Space Schedule Totinfo Tcas Space13k Grep Sed Make

2T
GREAP 0.8792 0.8698 0.8174 0.9702 0.7344 0.7353 0.9931 0.8784 0.8702 0.9779
NSGA-II 0.8790 0.8694 0.8159 0.2305 0.7233 0.3753 0.0300 0.8055 0.8592 0.8572
MOEA/D 0.7375 0.7221 0.7035 0.1159 0.3973 0.1347 0.0112 0.4004 0.4247 0.7673

T
GREAP 0.8792 0.8698 0.8173 0.9637 0.7330 0.7032 0.9918 0.8757 0.8694 0.9773
NSGA-II 0.8789 0.8691 0.8155 0.0666 0.7074 0.2240 0.0 0.7501 0.8574 0.8064
MOEA/D 0.7308 0.7164 0.6910 0.0026 0.3240 0.0317 0.0 0.3752 0.3943 0.7096

T/2
GREAP 0.8791 0.8698 0.8168 0.9638 0.7299 0.7003 0.9899 0.8664 0.8682 0.9724
NSGA-II 0.8788 0.8689 0.8152 0.0 0.6719 0.0313 0.0 0.6445 0.8555 0.7181
MOEA/D 0.7263 0.7110 0.6599 0.0 0.2450 0.0003 0.0 0.3445 0.3471 0.5150

T/4
GREAP 0.8791 0.8697 0.8163 0.9635 0.7126 0.7007 0.9824 0.8553 0.8665 0.9424
NSGA-II 0.8786 0.8685 0.8147 0.0 0.5979 0.0 0.0 0.5072 0.8479 0.0
MOEA/D 0.7186 0.7052 0.5910 0.0 0.1565 0.0 0.0 0.2657 0.3095 0.0

• The answer to RQ 2: Is GREAP more effective (better
quality and diversity) than the other evolutionary algo-
rithms? is Yes.

• The answer to RQ 3: How does GREAP compare to other
algorithms when the time budget shrinks? is It is a really
reliable algorithm that is not impacted (as much as
others) by the time budget.

• The answer to RQ 4: Does GREAP react well to an
increase of the test suite size (when we vary the test
subjects)? is Yes.

Now that we have proven that a three step method, such
as GREAP, is faster at finding good solutions, and is more
reliable and more robust than the state-of-the-art techniques,
we would like to explore further the combination of the three
steps. We know from observation that each step has a different
impact on the solutions. We would also like to use our 3 step
method on other Software Engineering problems to evaluate
how general this technique is, as on test suite minimisation
which is really close to our problem.
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