
A Hierarchical Approach to Grammar-Guided
Genetic Programming: The Case of Scheduling

in Heterogeneous Networks

Takfarinas Saber1(�), David Fagan1, David Lynch1, Stepan Kucera2,
Holger Claussen2, and Michael O’Neill1

1 Natural Computing Research and Applications Group,
School of Business, University College Dublin, Ireland

{takfarinas.saber, david.fagan, m.oneill}@ucd.ie,
david.lynch@ucdconnect.ie

2 Bell Laboratories, Nokia, Dublin, Ireland
{stepan.kucera, holger.claussen}@nokia-bell-labs.com

Abstract. Grammar-Guided Genetic Programming has shown its capa-
bility to evolve beyond human-competitive transmission schedulers for
the benefit of large and heterogeneous communications networks. Despite
this performance, a large margin of improvement is demonstrated to
still exist. We have recently proposed a multi-level grammar approach
which evolves structurally interesting individuals using a small grammar,
before introducing a thorough grammar to probe a larger search space
and evolve better-performing individuals. We investigate the advantage
of using a hierarchical approach with multiple small grammars at the
lower level instead of a unique one, in conjunction with a full grammar at
the upper level. While we confirm in our experiment that the multi-level
approach outperforms the use of a unique grammar, we demonstrate
that two hierarchical grammar configurations achieve significantly better
results than the multi-level approach. We also show the existence of an
ideal number of small grammars that could be used in the lower level of
the hierarchical approach to achieve the best performance.

Keywords: Genetic Programming, Telecommunications, Hierarchical
Grammar-Guided Genetic Programming, Heterogeneous Network.

1 Introduction

The number of mobile phone users is constantly increasing and is expected to
exceed 5 billion by 2019 [16]. Communication network companies strive to retain
their current subscribers and attract new ones by diversifying their technology
offerings. The progress in the number of clients, the criticality of services, and
the hike in consumed data drove network operators away from operation cost
reduction to Quality of Service (QoS) improvement [17]. A significant part of
the QoS improvement is derived from the use of more elaborate optimisation
techniques to manage various parts of the network (e.g., antenna duty cycle, and
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signal strength variation). In parallel to software solutions, network operators
also densify their infrastructure with more performing cells [3] leading to an
infrastructure heterogeneity.

Traditional cellular networks only employ Macro Cells (MCs) to cover User
Equipments (UEs) such as smart-phones. However, MCs alone struggle to cope
with the explosion in the number of devices, and Small Cells (i.e., SCs, low-
powered cells) have to be installed alongside them, thus creating a Heterogeneous
Network (HetNet). SCs are commonly deployed in hot traffic areas (e.g., parks)
to attract UEs in their surrounding and offload MCs. While SCs are low cost and
can be deployed in an ad-hoc fashion, they are more prone to interference. The 3rd

Generation Partnership Project (3GPP [1]) provisioned a mechanism to mitigate
these inter-cell interference called Almost Blank Subframes (ABSs), under which,
time is split into one-millisecond sub-frames and MCs are muted during some of
them. Muting MCs for a certain duration alleviates the interference experienced
by SCs and allows them to communicate with their UEs. HetNets face several
problems that necessitate on-line and real-time solutions [15], particularly in
our work, we focus on the definition of ABS sub-frames and the scheduling of
communications between UEs and their attached cells.

Grammar-Guided Genetic Programming (G3P) algorithm by Lynch et al. [5])
is the first autonomic solution for the scheduling in HetNets working in a mil-
lisecond timescale. G3P evolves an expression that maps network statistics to
a transmission schedule and achieves results beyond expert-agent heuristics.
The same authors also demonstrated, using a genetic algorithm run for a long
period, that further improvements are possible. In our previous work [9], we
have proposed a multi-level grammar approach to G3P as a means to improve
its performance. We designed different grammar levels starting from a small
grammar containing a restricted number of terminals (the most important ones),
to a full grammar containing all the suitable terminals. We run G3P with the
small grammar for a few generations to evolve structurally interesting individuals,
before expanding the grammar (changing the grammar to a more thorough one)
to further explore the search space and improve the fitness.

In the current work, we investigate the advantage of using a hierarchical
grammar (with two levels): multiple small grammars instead of a unique one
at the lower level, and one full grammar at the upper level. The idea is to (i)
independently run G3P with each of the small grammars for a few generations to
evolve different structurally interesting individuals, (ii) gather the best-obtained
individuals from each independent run, and (iii) evolve them using the full
grammar for the rest of the evolution to improve the fitness function. While
several works have previously proposed to use greedy approaches to improve
the performance of evolutionary algorithms (e.g., heuristics [13, 12, 11, 8] and
exact [14, 10]), this work is the first to use different grammar hierarchies for that
purpose.

The rest of this paper is organised as follows: Section 2 formally defines
the scheduling in heterogeneous networks problem. Section 3 details the G3P
algorithm, the state-of-the-art multi-level G3P approach and our proposed hier-
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archical grammar strategy. Section 4 describes the experimental environment,
whereas Section 5 reports and analyses the results of our evaluation. Section 6
concludes this work.

2 Formal Problem Definition

We consider a HetNet H composed of a set of MCsM and SCs S withM∪S = C,
and a set of UEs ui ∈ U receiving a wireless signal σj

i from every cj ∈ C.

2.1 Heterogeneous Networks

UEs often attach to the cell that provides them with the strongest wireless signal.
However, SCs are low powered devices, thus only attach few UEs on that basis.

The 3GPP framework provisioned a bias mechanism i.e., Range Expansion
Bias (REB) in order to increase the number of UEs that attach to SCs. REB
enables SCs to attach UEs located in areas where their signal is not the strongest.
REB biases the signal σj

i of cj ∈ C to ui ∈ U by a value βj , with βj = 0 for
cj ∈M. Therefore, every UE ui ∈ U gets attached to a cell cj ∈ C such that:

cj =
|C|

arg max
k=1

(σk
i + βk) (1)

The area in which UEs would attach to cj when using the bias βj , but not
attach to cj when ignoring the bias βj is called the ‘Expanded Region’ Ej of a
SC cj ∈ S. A UE ui belongs to Ej of cj ∈ S if:

cj =
|C|

arg max
k=1

(σk
i + βk) ∧ cj 6=

|C|
arg max

k=1
(σk

i ) (2)

One of the main advantages of adding SCs to the network is the fact that
they share the same wireless channel as MCs, thus maintaining the network
spectrum and necessitating neither heavy network upgrade nor safety regu-
lations/authorisations. However, that same advantage (i.e., sharing the same
channel) leads to severe cell-edge interference at the expended regions. To cope
with this, the 3GPP standard splits the time by frames F of 40 sub-frames (SFs)
of 1 ms duration each. Thanks to this standardised time domain and using the
ABS mechanism, network operators can mute MCs at given SFs, thus allowing
SCs to communicate with their UEs with reduced interference from MCs. Al-
though, while UEs at expanded regions experience a reduction in interference
during ABS, UEs attached to MC are not communicating in the meantime.

Figure 1 shows an example of a HetNet composed of 1 MC, 1 SC and 21 UEs.
Subfigure 1 shows that only a few UEs attach to the SC due to the weakness of its
signal, while most UEs attach to the MC. Subfigure 2 shows the REB mechanism
at work, by which the SC expands its attaching region reaching more UEs and
mitigating the load on the MC. However, at the same time, the REB introduces
severe interference in the expanded region of the SC. Subfigure 3 introduces the
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ABS mechanism and mutes the MC at the given sub-frame. Therefore, avoiding
the interference at the SC’s expanded region, while keeping UEs attached to the
MC with no transmission.

Fig. 1. Example of a HetNet with 1 MC, 1 SC, and 21 UEs. Subfigure 1 shows a
few UEs are attached to the SC, while the rest of UEs are attached to the MC, thus
overloading the MC. Subfigure 2 shows the SC’s expanded region which allows the SC
to attach clustered UEs and mitigate the load on the MC. However, this leads to a
large interference at the edge of the expanded region. Subfigure 3 shows the muting
process which reduces the interference at the edge of the expanded region. However,
this also reduced the communication time of UEs attached to the MC.

2.2 Scheduling in Heterogeneous Networks

Let us consider that a UE ui is able to download an amount of data Rf
i during

the SF Sf . This downlink rate Rf
i is well-approximated by Eq., (3) using the

bandwidth B, number Nf of UEs communicating at the given SF Sf and the
Signal to Interference and Noise Ratio (SINR).

Rf
i =

B

Nf
× log2

(
1 + SINRf

i

)
(3)

MCs have a strong signal, which makes their attached UEs experience high
SINR and provides them with high downlink rates whenever the MC is not over-
loaded. Therefore, all UEs attached to MCs could be scheduled for transmission
during all SFs at which the MCs are active, making their scheduling trivial. On
the other hand, SCs are low powered devices, making UEs that are attached
to them experience a relatively weak signal. Additionally, UEs attached to SCs
would be subject to a large interference by MCs during their active SFs.

The bandwidth is hard to improve as it is a scarce and expensive resource.
This leaves two levers to act on (i.e., SINRf

i and Nf ). We could improve SINRf
i

of UEs attached to SCs by more often muting MCs. While this would lead to
an improvement SINRf for UEs attached to SCs, it also penalises the downlink



A Hierarchical Approach to G3P: The Case of Scheduling in HetNets 5

rate of UEs attached to MCs (which may be more numerous). We could also
attempt to reduce the number of UEs attached to SCs and communicating at the
same SF. This would improve the downlink rate for the scheduled UEs. However,
it would also penalise the non-scheduled UEs.

All these aspects make transmissions scheduling in HetNets a non-trivial
problem. We require a system that defines both the SFs at which MCs are muted
and schedules the SFs at which UEs communicate.

2.3 Fitness Function

HetNets operators often aim to optimise the fairness of experienced average
downlink rates by all UEs [18] that is expressed in Eq., (4) as it improves low
average downlink rates and does not reward high downlink rates. Fairness is
the fitness function we aim to optimise. Furthermore, it is the fitness function
optimised by works on which ours is based [5, 9].

Fairness =
∑
ui∈U

log
(
R̄i

)
| R̄i =

1

|F|
∑
Sf∈F

Rf
i (4)

3 Previous Work and Proposed Approach

In this section, we describe the G3P algorithm for scheduling in HetNets [5], the
multi-level grammar approach to G3P [9] and our proposed approach (i.e., the
hierarchical grammar approach).

3.1 Grammar-Guided Genetic Programming

The majority of works on transmissions scheduling in HetNets report algorithms
designed by expert network operators [2]. The most common techniques partition
UEs attached to SCs into two clusters based on SFs at which they are scheduled
to transmit.

The first autonomic algorithm that was brought to the problem of scheduling
in HetNets is a G3P [5] algorithm. G3P proposed by Lynch et al. [5] is an
adaptation of a grammar-based form of GP [6] as implemented in the PonyGE 2
framework [4]. G3P evolves an expression according to a unique grammar F in a
Backus-Naur Form (BNF). The grammar F includes arithmetic production rules
that are common to the GP community. Additionally, it includes statistics from
the networking domain as a means to incorporate domain knowledge. We refer
the reader to the original paper [5] for a formal definition of each of them:

<expr> ::= <reg> | <reg> | <reg> | <Terminal>
<reg> ::= <expr><op><expr> | <expr><op><expr> | <expr><op><expr> | <expr><op><expr> |

<non-linear>(<expr>) | <non-linear>(<expr>)
<op> ::= + | - | * | / (protected)
<non-linear> ::= sin | log (protected) | sqrt (protected) | step
<Terminal> ::= <sign><const> | <statistic>
<sign> ::= - | +
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<const> ::= 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0
<statistic> ::= downlink | num_variable | num_att | airtime | congestion |

avg_downlink_frame | max_downlink_frame | min_downlink_frame |
avg_downlink_SF | max_downlink_SF | min_downlink_SF |
avg_downlink_cell | max_downlink_cell | min_downlink_cell

G3P maps the evolved expressions and the network statistics to a transmission
‘interest’ every time a scheduling decision has to be made: whether to schedule
the UE to communicate at the given SF or not. For each UE u at every SF f , the
expression is evaluated using the network statistics at that SF, and u is scheduled
providing there is a positive interest and a sufficiently high SINR. Please refer to
the original paper [5] for a more detailed description of the mapping algorithm.

3.2 Multi-Level Grammar

In addition to the full and more thorough grammar (i.e., F as outlined above)
defined by Lynch et al. [5], we have previously defined a smaller and more
restricted grammar (i.e., S1) by only keeping a subset of terminals that we believe
are the most important [9].

The small grammar is defined by modifying <const> and <statistic>. The
number of terminals is reduced to the strict minimum by only keeping a small
subset of constants and what seems to be the most important statistics. The
downlink is what we would like to optimise. Whereas maximising the value of
min downlink frame would improve the smallest downlinks. Therefore, improving
it would have a better impact on the fitness function. We set in S1:

S1
<const> ::= 0.0 | 0.5 | 1.0
<statistic> ::= downlink | min downlink frame

After defining the grammars S1 and F, we adapted the G3P algorithm to take
the grammar S1 at the start of the evolution and dynamically modify the grammar
to F after a certain number of generations (in our case, after 10 generations). All
individuals obtained using the grammar S1 are seeded [7] as an initial population
to G3P using the following grammar (i.e., F).

While updating the grammar, we do not require any modification in the
representation of the individuals as G3P uses a tree representation of individuals
and the grammar S1 is included in the full grammar F. The individuals also
do not require the re-evaluation of their fitness as we use the same mapping
algorithm and fitness function.

3.3 Hierarchical Grammar

In this work, we also design two grammar levels. However, unlike in the multi-
level grammar approach, we design several small grammars for the lower level.
Therefore, in addition to the full grammar F from [5], we define multiple small
grammars Si | i ∈ {1, .., 5}. While the small grammar S1 is taken from [9], we
design by hand four other small grammars S2, S3, S4 and S5 in a similar way as
S1 by varying their terminals. All Si | i ∈ {2, .., 5} are a subset of F and their
production rules <const> and <statistic> have between 2 and 4 terminals each:

S2
<const> ::= 0.1 | 0.4 | 0.7 | 1.0
<statistic> ::= downlink | max downlink frame
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S3
<const> ::= 0.3 | 0.45 | 0.55 | 0.7
<statistic> ::= downlink | min downlink cell

S4
<const> ::= 0.0 | 0.2 | 0.4 | 0.6
<statistic> ::= downlink | min downlink frame | max downlink frame

S5
<const> ::= 0.4 | 0.6 | 0.8 | 1.0
<statistic> ::= downlink | min downlink frame | min downlink cell

Note that <statistic> rules always contain the terminal ‘downlink’ as it
is the most important statistic [9] (we try to improve the downlink). In addi-
tion, we include one to two other relevant terminals from {min downlink frame,
max downlink frame or min downlink cell} that have been shown to have an
impact on the fitness function [5]. Rules <const> are designed to cover different
parts of the search range (whole, centre range, higher range, and lower range).

Figure 2 shows an example of the hierarchical grammar approach with two
small grammars (S1 and S2) and a full one (F). G3P generates two initial
populations (one using each small grammar) of size ‘PopulationSize’ each (in
our case: 100 individuals per initial population). G3P independently evolves
each of them for ‘x’ generations with the same grammar used to generate them.
Afterwards, the PopulationSize

#SmallGrammars best individuals (in our case, PopulationSize
2 )

from each resulting population are selected and aggregated to form the initial
population with F, which is then evolved using the full grammar for ‘y’ generations.
Note that 2x is the computational budget for the lower level, whereas 2x + y is
the computational budget for the entire evolutionary process.

Fig. 2. Overview of the hierarchical grammar approach to G3P with 2 levels (2 small
grammars S1 and S2 at the lower level, and one full grammar F at the upper level).



8 Saber et al.

4 Experimental Design

In this section, we describe the dataset, the setup and the statistical test used to
assess the significance of our results.

We use in our work the same three HetNets as those used in the works we
are comparing to [5, 9]. All the HetNets simulate 21 MCs spread in a hexagonal
pattern in a 3.61 km2 area of Dublin city centre. The three scenarios, however,
differ in their number of SCs. The least dense HetNet contains 21 SCs (1 SC per
MC on average). The average density HetNet contains 63 SCs (3 SCs per MC
on average). The densest HetNet contains 105 SCs (5 SCs per MC on average).
Furthermore, 1250 UEs are considered in each of the scenarios. Each of the UEs
is attached to either a MC or a SC.

We use the G3P algorithm provided by the authors [5] that is implemented
using the PonyGE 2 framework [4]. We set the evolutionary parameters as shown
in Table 1.

Table 1. Evolutionary parameters defined for the different G3P approaches: single
grammar, multi-level grammar and hierarchical grammar.

Initialisation Ramped Half-Half

Max initial tree depth 20
Overall max tree depth 20

Population size 100
Number of generations 100

Selection Fair tournament
Tournament size 1% of population

Replacement Generational with elites
Elite size 1% of population

Crossover type Sub-tree with a 70% probability
Mutation type Sub-tree once per individual

Number of runs 30

We perform the non-parametric test i.e., two-tailed Mann-Whitney U test
(MWU) to check the significance of our results. MWU takes performance values
(best fitness function values) obtained by two algorithms from each run (in our
case: 30) and returns the p-value that one algorithm achieves different results
than the other. We consider tests significant with p-values below 5%.

5 Evaluation

We would like to evaluate in this section the advantage of using a hierarchical
grammar approach over both a multi-level grammar approach and the original
G3P (with one full grammar). Therefore, we consider 6 configurations:

– F: G3P with the full grammar from the start to the end of the evolution [5].
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– S110F: the multi-level grammar approach [9] with G3P starting with one
small grammar (i.e., S1) and introducing the full grammar at generation 10.

– Si10F with i ∈{2,3,4,5}: the hierarchical grammar approach with G3P start-
ing with i small grammars (i.e., S1,...,Si) and independently evolving a
population with each of them for a number of generations b 10i c, before gath-

ering PopulationSize
i of the best individuals from each of the independent runs

to create a full population that is evolved with the full grammar F for the
remaining generations.

Note that Si refers to the small grammar Si, whereas Si refers to the set of
small grammars {S1,S2,...,Si}. Furthermore, we decided to set the parameters
of the various approaches to the same values. More particularly, we set the
computational budget of the lower level in the hierarchical approaches to the
same value as for the multi-level approach (i.e., 10 generations). While fine-
tuning this parameter would likely yield better results, we seek to limit the
number of varying elements in our experiments. Therefore, by keeping the same
computational budget, we make sure that any improvement is the result of the
new approach.

Figure 3 shows the evolution per generation of the best fitness on each instance,
obtained by G3P when using the different grammar configurations (results are
averaged over 30 runs).

We see from Figure 3 that G3P successfully improves the best fitness using all
the grammar configurations. We also see that 100 generations are not sufficient
for a full convergence and running more generations is likely to yield a better
performance.

Figure 3 confirms that using the multi-level grammar approach S110F outper-
forms the single grammar F in all instances. It also shows that the hierarchical
approach S210F yields a better performance over all instances (jointly with S310F
on 63 and 105 SCs) than both the single and the multi-level grammar strategies.
However, it also shows that other hierarchical approaches (i.e., S410F and S510F)
perform poorly as they are outperformed by the multi-level grammar approach
in all instances and achieve worse results than the single grammar approach in
most cases. This is largely due to the fact that using too many small grammars
means that G3P is only allowed a small number of generations to optimise the
populations that were generated with each of these grammars (remember that the
lower level has to share a computational budget of 10 generations). This is more
acute in the case of S510F where each small grammar is allowed 2 generations
(10 generations divided by 5 small grammars) to evolve its population.

We notice that using a hierarchical approach can outperform the performance
of a G3P algorithm and outperforms the use of a single or a multi-level grammar
approach. However, the number of grammars at the lower level (i.e., number of
small grammars) has to be tailored so as to allow G3P to evolve the population
that is generated using each of these grammars. In our work, we decided to use
the same number of generations allowed to the lower level as in the multi-level
approach [9] (i.e., 10) to mitigate the effect of modifying this parameter and
make sure that any improvement would be the result of the hierarchical approach.
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21 SCs 63 SCs

105 SCs

Fig. 3. Average over 30 runs of the evolution of the best fitness obtained by G3P on
the different instances using various grammar hierarchies.

Furthermore, we defined the 5 small grammars Si ∈ {1, ..., 5} and chose to use
them in a particular order (i.e., we have to select Si to be able to select Si+1

for every i ∈ {1, ..., 4}). We anticipate that increasing the computation budget
for the lower level, choosing different grammars or setting a different grammar
selection order might affect the ideal number of small grammars at the lower
level. In our case, we have seen that using 2 or 3 small grammars is ideal.

Table 2 reports the mean and the standard deviation of the results obtained by
G3P using the different grammar configurations over 30 runs. It also includes the
p-value between each of the grammar configurations and either the full grammar
F alone or the multi-level grammar approach S110F.

Table 2 confirms that the hierarchical grammar approach S210F significantly
outperforms both the single grammar F and the multi-level grammar S110F
approaches on all instances. It also shows that S310F significantly outperforms F
and S110F on all instances (except on 21SCs where results are not statistically
significant). Furthermore, while S210F achieves the best overall mean results on
the least dense instance (i.e., 21SCs), S310F achieves the best mean results on
the densest instances (i.e., 63 SCs and 105SCs).

Table 2 also shows high standard deviations with respect to the difference
in mean values. However, the standard deviation with S210F is the lowest in
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Table 2. Mean and standard deviation (Sd) over 30 runs obtained by G3P using each
of the 6 grammar configurations on the various instances. We also report the p-value
(using MWU) between using each grammar configuration against G3P with either F or
S110F. We put in bold best mean performance and significant p-values. We also put ‘–’
when computing the p-value between a grammar configuration and itself.

Instance Function F S110F S210F S310F S410F S510F

21SCs

Mean 232.957 232.995 233.018 232.996 232.908 232.877
Sd 0.051 0.063 0.043 0.065 0.069 0.118

MWU
F – 4.43E-04 4.49E-08 1.20E-03 6.05E-04 1.71E-04

S110F 4.43E-04 – 2.17E-02 4.27E-01 2.27E-09 8.28E-10

63SCs

Mean 321.334 321.443 321.493 321.497 321.308 321.260
Sd 0.075 0.131 0.055 0.092 0.071 0.077

MWU
F – 6.76E-06 3.63E-12 6.92E-10 7.84E-02 2.13E-04

S110F 6.76E-06 – 1.95E-02 1.65E-02 1.83E-06 1.58E-09

105SCs

Mean 619.799 620.101 620.274 620.326 619.859 619.634
Sd 0.160 0.244 0.081 0.152 0.150 0.221

MWU
F – 2.75E-10 4.72E-14 1.44E-13 5.42E-02 3.38E-03

S110F 2.75E-10 – 8.01E-04 1.85E-05 7.24E-06 3.07E-11

every instance and is a sign of more stable behaviour. The standard deviation
increases from S210F to S510F (except between S310F and S410F on 63SCs).
This indicates that using more small grammars at the lower level either makes
G3P behave more erratically (converges to different fitness values) or not fully
converge in the given computational budget (requires more generations to fully
converge).

6 Conclusion

G3P has been shown to evolve high performing schedulers in HetNets. However,
a large potential improvement still exists. We have recently proposed a multi-
level grammar approach as a means to improve the performance of G3P by (i)
evolving structurally interesting individuals using a small grammar first, and (ii)
introducing a more thorough grammar to investigate the full search space and
evolve individuals with a better performance.

In this work, we proposed a hierarchical approach whereby we use multiple
small grammars independently at the lower level instead of a unique one, before
gathering the best individuals and continuing the evolution using the full grammar.
While we confirmed that the multi-level approach outperforms the use of a unique
grammar, we demonstrated that the hierarchical grammar approach with two or
three small grammars at the lower level outperforms the multi-level approach.
We also showed the existence of an ideal number of small grammars that could
be used at the lower level of the hierarchical approach (in our case 2 or 3) beyond
which results are significantly degraded.

As future work, we would like to investigate the automatic design/selection
of grammars and the effect of the computational budget on the performance
of the lower level of the hierarchical approach. We also would like to apply our
hierarchical grammar approach to other problem domains.
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