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Abstract—Forecasting daily returns volatility is crucial in
finance. Traditionally, volatility is modelled using a time-series
of lagged information only, an approach which is in essence
atheoretical. Although the relationship of market conditions and
volatility has been studied for decades, we still lack a clear theo-
retical framework to allow us to forecast volatility, despite having
many plausible explanatory variables. This setting of a data-rich
but theory-poor environment suggests a useful role for powerful
model induction methodologies such as Genetic Programming.
This study forecasts one-day ahead realised volatility (RV) using
a GP methodology that incorporates information on market
conditions including trading volume, number of transactions, bid-
ask spread, average trading duration and implied volatility. The
forecasting result from GP is found to be significantly better
than that of the benchmark model from the traditional finance
literature, the heterogeneous autoregressive model (HAR).

I. INTRODUCTION

Volatility is an important concept in finance and has different
implications depending on the perspective of the user. From an
investment perspective, volatility is a measure of the degree to
which returns tend to fluctuate. Traders would like to capture
the volatility caused by positive returns, whereas in contrast,
risk management is more concerned about the volatility caused
by negative returns. Volatility is a key element in the pricing
of derivatives, and is also a key input to the regulatory capital
requirements from The Second Basel Accords. 1 Hence, many
stakeholders have an interest in being able to model and predict
volatility.

In a conventional volatility model, volatility is a latent
variable. The term realised volatility can be broadly defined as
the sum of intraday squared returns, measured at short intervals
[1]. Such a volatility estimator has been shown to provide an
accurate estimate of the latent process that defines volatility
[2] and therefore, through realised volatility estimation, the
latent volatility process is theoretically observable from past
returns.

1Basel II are recommendations on banking laws and regulations issued by
the Basel Committee on Banking Supervision.

Genetic Programming’s (GP) model induction capability
has been previously applied for volatility modelling and has
achieved good results [5], [7], [8], [9] and [11]. However,
there are still some important questions which have not
been addressed. Market conditions have been documented as
important volatility indicators and have been shown to have
a high correlation with volatility in a number of studies.
A sample of these studies include [12] which examined
the relationship between trading volume and volatility, [13]
examined the relationship between the number of transactions
and volatility, [14] examined the relationship between price
range and volatility, [35] examined the relationship between
interest rates and volatility, [16] examined the relationship
between implied volatility and volatility and [17] examined the
relationship between the bid-ask spread and volatility. A better
volatility forecast is expected when these market conditions are
taken into the model as inputs, and this is the approach we
take in this study.

In this paper, realised volatility (RV) is calculated using
data drawn from one year of FTSE 100 index futures returns,
sampled at a five-minute interval. It is well known that a five-
minute sampling interval provides a good trade-off between
accuracy, which is theoretically optimised using the highest
possible frequency, and microstructure noise that can arise
through the bid-ask bounce, asynchronous trading, infrequent
trading and price discreteness, among other factors [18]. The
calculated realised volatility is modelled directly using GP and
the one-day-ahead RV is forecasted. Forecasting results from
GP are compared with those from a benchmark HAR model
which is drawn from the finance literature.

A. Structure of Paper

The remainder of this contribution is organized as follows.
Section II provides some background on volatility modelling
and provides the motivation for applying Genetic Program-
ming to RV forecasting. Section III describes the data used in
this study. The forecasting results are provided in Section IV
and finally, conclusions and opportunities for future work are978-1-4799-7492-4/15/$31.00 c©2015 IEEE



discussed in Section V.

II. OVERVIEW OF VOLATILITY MODELLING

In this section we overview three key items. Initially, we
provide an introduction to the concept of realised volatility.
Then we briefly introduce current state-of-the-art approaches
for the forecasting of realised volatility. Finally, we provide
the motivation for the approach adopted in this paper, genetic
programming.

A. Realised Volatility
Under the concept of RV, returns are assumed to be generated
by the stochastic differential equation (Eq. 1), which is a
continuous-time stochastic process over a given time period.
The time period is divided into i equally-spaced adjacent
intervals and the quadratic variation is defined as the limit of
the sum of squared returns over these intervals, as the length
of the sampling intervals goes to zero, where ti and ti−1 are
adjacent intervals (Eq. 2). This limit is well-defined in the case
of the logarithm price process p(t), which is a semi-martingale.
In the general semi-martingale case, assuming some (mild)
restrictions on the types of leverage, the quadratic variation is
an unbiased estimator of the integrated variance,

∫ T
0 σ2(t)dt,

and the square root of the quadratic variation is called realised
volatility.

dp(t) = σ(t)dW (t) (1)

lim
i−→∞

(
∑

i

(p(ti)− p(ti−1))
2) (2)

Realised volatility can be used to measure the interdaily
volatility by summing up the intraday squared returns at short
intervals, such as five or fifteen-minute intervals [20]. This
concept is very important to volatility modelling. It has been
pointed out in [19] that the standard volatility models used
for forecasting at the daily level can not readily accommodate
the information in intraday data. The models specified directly
for intraday data generally fail to capture the longer interdaily
volatility movements sufficiently well. In contrast, using RV
allows us to model volatility using relatively high frequency
data, and also permits capture of stylised facts concerning
interday volatility [19], [20].

In an ideal world, the quadratic variation from shorter
intervals (as per Eq. 2) is always closer to the integrated
volatility than the one calculated using longer intervals. How-
ever, returns measured at intervals shorter than five minutes
are plagued by spurious serial correlation caused by various
market microstructure effects including asynchronous trading,
discrete price observations, intraday periodic volatility pattern
and the bid-ask bounce [2].

In reality, prices are observed at discrete and irregularly-
spaced intervals. There are different sampling schemes to
estimate the realised volatility as reviewed in [18]. In this
study, the RV estimation approach in [21] is followed as
we use the same futures index data, FTSE 100 prices. It
is also noted that the RV estimated using this method [21]

successfully captured the stylised long-memory effect inherent
in volatility.

B. Conventional RV Forecasting Models
It is well documented in the finance literature that realised
volatility is a highly persistent process which has a long
memory. Conventional methods used in modelling RV include
ARFIMA (Autoregressive Fractionally Integrated Moving Av-
erage) [19], [22], HAR (Heterogeneous Autoregressive) pro-
posed by [23], the simple AR (Autoregressive) type model
[24], [25], and SV with volatility treated as observable [25].
Recently there have also been HAR-type extended models
including the HAR-GARCH model proposed by [26], and
HAR with a jump process as proposed by [27].

A broad series of empirical work [25], [26], [28] has sought
to compare the various RV forecasting models.

In [26], ARFIMA, HAR and HAR-GARCH are compared
based on tick-by-tick transaction prices from S&P 500 index
futures data (1985-2004) with HAR-GARCH producing the
best forecasting performance in terms of R2, RMSE (Root
Mean Squared Error), MAE (Mean Absolute Error) and RM-
SPE (Root Mean Squared Percentage Error). In [28], AR,
ARFIMA and HAR are compared and HAR gives the best
result in terms of RMSE, MAE and R2. This conclusion
is drawn on a dataset consisting of tick-by-tick series for
USDCHF (1989 to 2003), S&P500 Futures (1990-2007) and
30-year US Treasury Bond Futures (1990-2003). In [25],
simple AR, SV and HAR are compared and HAR gives the
best forecasting performance in terms of RMSE, MAE and
other measures on a dataset of equity market indices of SPX
and DJIA(1997-2011) and two exchange rates CADUSD and
USDGBP(1998-2011). The ARFIMA has been reported in
[26] and [28] to give a similar performance as HAR, however,
its estimation procedure is more complex. HAR is used as the
benchmark model in this study.

C. Motivation for Applying GP to RV Modelling
RV transfers intraday return information to an observable
volatility, and therefore allows volatility to be modelled di-
rectly. While traditional methods of RV modelling rely solely
on lagged values of RV (see Section II-B), it has been docu-
mented that trading volume, transaction number, price range
(including the range of open and close, high and low), bid-
ask spread and implied volatility have predicative information
/ explanatory power for volatility.

It has been noted in [29] that different market information
is likely to capture distinct subtle aspects of the volatility
process, the relative prominence of which may vary over
time. Also different market information may suffer to different
extents from market microstructure biases. A study by [29]
indicates that using a combination of the outputs from a series
of GARCH models, with different volatility predictors, could
reduce the forecast errors in a range of examined stocks.

In prior work, most studies ([30], [31], [32],[33], [34], [35],
[29] and [36]) used market information to explain/forecast con-
ditional volatility in a GARCH type framework. The market



information was added in the conditional variance equation
as an explanatory factor but the underlying model was linear.
The nonlinear Granger causality test conducted in [37] shows
there is extensive evidence of bidirectional feedback between
volume and volatility which such approaches cannot capture.

In summary, while we have some knowledge of the likely
set of explanatory variables (based on market conditions) from
prior literature, we still lack a clear theoretical framework as
to which of these variables are most important and how they
should link together to form a quality model for forecasting
of RV. This setting of a data-rich but theory-poor environment
suggests a useful role for powerful model induction method-
ologies such as Genetic Programming [3] [4].

In this study, GP is used to evolve a selection of explanatory
variables from those identified as plausible in the finance liter-
ature, and then link them to RV by simultaneously evolving a
suitable functional form. The functional form returned from
training is then used to forecast a one-day-ahead RV. The
model is re-trained each day using most recent information
as no assumption is made in the modelling process that
the relative importance of each explanatory variable remains
unchanged over time. The performance of the GP models is
compared with a benchmark HAR model which only uses RV
lagged information as inputs. It should be noted that given the
importance of volatility forecasts across a range of investment
decisions, even small improvements in forecast accuracy can
have significant practical implications.

III. DATA AND METHODOLOGY

A. Data
The data in this paper is from Euronext-Liffe. This dataset con-
sists of the records of all quotes and trades for all European-
style FTSE 100 index option contracts and FTSE 100 index
futures contracts in 2004. The trade price data was used for
RV estimation and both the trade / quote information was used
to calculate intraday metrics including trading volume, bid-
ask information, price range and the number of transactions.
FTSE 100 index options data are used for the implied volatility
calculation. Interest rate information, specifically, LIBOR rates
(overnight, one-week and six-month) for 2004, were collected
from Datastream. We note that this study uses a high frequency
FTSE 100 index futures and options dataset which contains
time stamped observations on all quotes and transactions
during the period. Such data is sometimes referred to as ‘ultra
high frequency data’ [6].

The estimated RV is in Fig. 1. The first six months data
is used for initial in-sample training with the out-of-sample
testing taking place during the final six months (129 trading
days) of the year. Each day’s forecast of RV is determined
using all data available up to and including the previous day.
For the first day’s out-of-sample forecast (commencing on the
first day of July), data from January 9th to June 30th is used.
For the last day’s forecast (the last day of December), data
from January 9th to December 30th is used. The first five days
in January are excluded as lagged information is required in
the modelling process.
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Fig. 1. Annualised Daily Realised Volatility

TABLE I
POTENTIAL EXPLANATORY FACTORS USED IN GP

RV Lagged information (one to five days lag)
Absolute difference of day open and close price
Absolute difference of day highest and lowest price
Daily total trading volume
Average five-minute trading volume
Daily transaction number
Average daily absolute difference of bid and ask price
Maximum daily absolute difference of bid and ask price
Implied volatility(IV) of at money option with one month to expire
Average daily trading duration in second
Squared daily return
Squared RV
IV lagged information (two to five days lag)
Daily Libor
Weekly Libor
Six-month Libor

B. GP Approach

In this study we employ GP for symbolic regression. The
target variable is realised volatility and the evaluation of an
individual GP tree is therefore an RV forecast. The available
GP terminal set is outlined in Table I and the available function
set is described in Table II. The RV lagged information
is the RV on one to five days before the corresponding
forecasted day. The average daily trading duration gives the
daily averaged information how often a trade happens. The
Implied Volatility (IV) is estimated from the FTSE 100 index
options data. The factors in Table I are from the previous day’s
information if no explicit lag indication given.

Each GP individual has a fitness value which indicates
how good they are when tested in-sample on the training
dataset. The fitness function in this application is the mean
squared error as defined in Eq. 3, where the RVtarget is the



TABLE II
FUNCTION SET AVAILABLE TO GP

Addition
Subtraction
Multiplication
Division
Cumulative Distribution Function of Normal Distribution
Exponential Function
Nature Logarithm Function
Square Root
Cube Root
Sine Function
Cosine Function

target RV value, RVind is the evaluation of the individual and
NumberDays is the number of data points in the training
dataset.

Fitness =

√∑
(RVtarget −RVind)2

NumberDays
(3)

In the experiments, all results are reported averaged across
10 runs and each GP run consists of 50,000 individuals evolved
over 50 generations. During each GP run, the new population
will be filled by three methods from the old generation.
55 percent of the population will be filled by a crossover
method, 40 percent from a mutation method, and 5 percent
from reproduction. The GP operation is in Fig.2 The training
dataset is used by a method where all available past data is
always used. Due to the large computation requirement, only
10 training runs for each forecasted day in the out-of-sample
were done in the application. In the future the training tests
should be increased. In order to reduce the chance of over-
fitting, the maximum tree depth is set to six, based on initial
experimentation. The training process is summarized in Fig.3.

C. HAR model
In the Heterogeneous Autoregressive model (HAR) [28], RV
is modelled by its own lagged information, including RV one
day before, average RV in the last week and average RV in
the last month. This model is in Eq. 4, where c, α, β and γ
are constant coefficients.

RVt = c+ αRVt−1 + βRVw + γRVm

RVw = 1
5

∑5
i=1 RVt−i,

RVm = 1
21

∑21
i=1 RVt−i

(4)

The model coefficients are re-trained for each forecasted day.
I.e. the training data is used in the same way as discussed in
Section III-A.

IV. RESULTS

The out-of-sample results from our experiments are reported
in this section. Initially, we report the forecast errors for each
modelling methodology, then we present a statistical analysis
of these results. Finally, we report the results from a series of
information encompassing tests.

A. Forecast Errors

The forecast errors are presented in Table III. In this table,
three measures of forecast error (MAE, MAPE and RMSE)
are presented for GP and the benchmark approach (HAR).
The final column in the table presents the R2 from the linear
regression which regresses the actual RV against the predicted
values from each method. The results indicate that using the
average of the GP model’s predictions gives the smaller MAE,
MAPE and RMSE and also a notably higher correlation in
terms of R2. For each of these error measures, the GP method
reduces the error more than 7% and increased R2 by 29.3%
when compared with HAR.

B. Statistical Analysis

A series of statistical tests were undertaken to determine the
significance of the results in Table III. Diebold-Mariano tests
including the asymptotic test, sign test and Wilcoxon’s signed
test are undertaken on a pair-wise basis for the two competing
models on the full out-of-sample time period. The resulting
statistics are provided in Table IV. The null hypothesis, that
two models give equal results in terms of forecasting accuracy,
will be rejected at a 5 percent level if the relevant reported test
statistic |X| > 1.96.

The results from all three statistical tests give consistent
results, that the prediction from GP is significantly different,
from that produced by the HAR model, and as already seen in
Table III, the GP forecasts produced lower error measures (and
higher R2) than the benchmark model. The null hypothesis of
no difference, is rejected by three Diebold-Mariano tests at a
5 percent level.

C. Information Encompassing Tests

These tests are used to determine whether one of a pair of
forecasts contains all the useful information for a forecast, or
conversely, does a forecast contain additional information not
captured by the other. In this case, use of a combination of the
forecasts can produce a better forecast than either alone. The
forecast information encompassing tests are performed using
regression analysis on the full out-of-sample time period and
the results are displayed in Table V.

RV = α+ βPredicted (5)

Initially, a single factor analysis is performed for each
model, where RV is the dependent variable and the prediction
from each model is the explanatory variable as in Eq. 5. The
results from this are reported in Table V. In evaluating these
results it is important to distinguish between bias and predic-
tive accuracy. In this single factor analysis, the prediction is
unbiased only if α = 0 and β = 1. The predictive power is
indicated by R2. A higher R2 means higher predictive power.
Ideally, we seek a forecast with low residual error and high R2

[2]. While it might appear that bias is always undesirable, it
should be noted that a biased forecast can still have predictive
utility, and conversely an unbiased forecast is of little use if
the forecast errors produced by it are large.
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Fig. 2. Flow Chart of GP Process

TABLE III
OUT-OF-SAMPLE FORECAST ERROR MEASURE

Model MAE MAPE RMSE R2

HAR 0.014306 0.158370 0.017351 30.42%
GP-avg 0.013060 0.142854 0.016081 39.32%

Relative Change -8.71% -9.80% -7.32% 29.26%

TABLE IV
OUT-OF-SAMPLE RESULTS SIGNIFICANCE TESTS

Diebold-Mariano Tests Test Statistics H0: Equally Accuracy Results
Asymptotic test 3.3858 Rejected at 5%
Sign test 2.5533 Rejected at 5%
Wilcoxon’s signed test 3.4519 Rejected at 5%

The coefficients fitted in the single factor regression analysis
in Table V shows that forecast results from HAR are closer
to an unbiased prediction than those produced by GP. The
intercept α are very close to zero and the coefficient for the
model prediction, β are closer to one in HAR model. In the
GP case, α is significant as it is not zero at the 5 percent level
and the β (1.2813) is significantly higher than one. However,
indicated by R2 the prediction power from GP is much higher
than the other model and hence it has significant utility despite
its bias element.

The second fold of the information encompassing tests is
to add the extra prediction results from another model to the
right-hand side of Eq. 5 as a second regressor. An increased
adjusted R2 indicates that the first model can not subsume the
second model and the second model does give extra prediction
power. In other words, we are testing whether adding the
prediction result from a second model as an extra explanatory
factor can further improve the prediction result.

The adjusted R2 is 40.20 percent for the regression when
both GP and HAR forecasting results are used as regressors
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Fig. 3. Overview of GP application for RV Forecasting

TABLE V
OUT-OF-SAMPLE FORECAST INFORMATION ENCOMPASSING TEST

Model α p-Value β p-Value R2 Adj-R2

HAR -0.0048 0.7302 1.0043 0.0000 30.42% 29.87%
GP-avg -0.0302 0.0346 1.2813 0.0000 39.32% 38.84%

for RV. An increased adjusted R2 indicates that the second
prediction has extra information, which is not included in the
first model. The adjusted R2 of the regression where HAR is
the single explanatory variable for RV is 29.87 percent. When
the prediction from GP is added as the second explanatory
factor the adjusted R2 improves to 40.20 percent. As such, the
prediction of HAR does not subsume the prediction of GP. In
contrast, the adjusted R2 from the regression RV against the
prediction from GP is 38.84 percent, which is also lower than
40.20 percent therefore the prediction result from GP does not
fully subsumes the prediction from HAR. This suggests that a
joint forecast from the GP and HAR model could potentially
increase the predictive power.

From the empirical results, GP produces better forecasts
than the benchmark model. There are two plausible reasons for
this. First, GP takes account of market conditions (as inputs)
in forecasting RV. Second, GP permits the use of non-linear
functional forms between the RV and market conditions.

It is found from GP returned solutions that some factors
including RV with one day and five days lag and average
trading duration have occurred frequently. The relationship
between these factors and RV seem robust over time. However,
their contribution to RV forecasting at different time periods

vary.

V. CONCLUSIONS

Forecasting daily returns volatility is crucial in finance. Tra-
ditionally, volatility is modelled using a time-series of lagged
information only, an approach which is in essence atheoretical.
Although the relationship of market conditions and volatility
has been studied for decades, we still lack a clear theoretical
framework to allow us to forecast volatility, despite having
many plausible explanatory variables. This setting of a data-
rich but theory-poor environment suggests a useful role for
powerful model induction methodologies such as Genetic
Programming. This study forecasts one-day ahead realised
volatility (RV) using a GP methodology that incorporates
information on market conditions including trading volume,
number of transactions, bid-ask spread, average trading dura-
tion and implied volatility. The forecasting result from GP is
significantly better than that produced by the heterogeneous
autoregressive model (HAR), the benchmark model from the
traditional finance literature. The error measures and R2

indicate that GP provides a better estimator, and Diebold-
Mariano tests confirm that this result is statistically significant.
Further, the regression-based Information Encompassing Tests



show that the forecasts from GP contain information not
captured by the benchmark model, which indicates that a
combination forecast from GP and the conventional model
could potentially improve the forecast performance further. In
the future, the GP performance can be tested against other
conventional models including a hybrid HAR model, which
includes all potential factors used in GP as extra explanation
variable in RV forecasting.
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