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Abstract The foraging strategies of various organisms, in-
cluding amongst others, ants, bacteria and honey bees, have
served as the design inspiration for several families of op-
timisation algorithms. The success of these algorithms in
a wide variety of appplication domains has spurred inter-
est in the examination of the foraging behaviours of other
organisms in order to further extend the range of naturally-
inspired optimisation algorithms. A variety of animals, in-
cluding some species of birds and bats, engage in social
roosting whereby large numbers of conspecifics gather to-
gether to roost, either overnight or for longer periods. It
has been posited that these roosts can serve as an ‘infor-
mation centre’ to spread information concerning the loca-
tion of food resources in the environment. In this paper we
look at one example of social roosting, that of the common
raven, and draw inspiration from this to design an optimisa-
tion algorithm. We also consider the role of individual per-
ception in the foraging process. The utility of the resulting
algorithms are assessed on a series of benchmark problems
and the results are found to be very competitive. Potential
for future work using the social roosting metaphor is also
indicated.
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1 Introduction

When the location and quality of food resources are not
known with certainty, organisms need to develop a search
strategy in order to find them. Foraging success is vital for
survival, and organisms with better-quality foraging strate-
gies will be preferentially selected in the process of evolu-
tion. This observation has led to the development of a sig-
nificant literature in computer science which takes inspira-
tion from the foraging strategies of various organisms in
order to design powerful search algorithms. Examples in-
clude ant colony optimisation algorithms (Bonabeau et al.,
1999; Dorigo, 1992; Dorigo and DiCaro, 1999; Dorigo et
al., 1996; Dorigo and Stiitzle, 2004), bacteria foraging al-
gorithms (Passino, 2000, 2002), and honey bee algorithms
(Chong et al., 2006; Nakrani and Tovey, 2004; Pham et al.,
2006; Yang, 2005) to name but a few.

Real-world foraging behaviours are context-sensitive and
depend on the nature of exploited resources as characterised
by their location, size and quality (Deygout et al., 2010), the
degree of competition for these resources, the predation risk
faced whilst foraging, the locomotion capability of an organ-
ism, its sensory and cognitive capabilities, its daily energy
requirements, the energy ‘cost’ of finding, subduing and di-
gesting food resources, and the ability of the organism to
store energy. As would be expected, there has been heavy
interaction of these factors in evolutionary time. It is also
plausible that advances in sensory capabilities and mobility
have been driven, at least in part, by their adaptive impact
on resource capture capability.

Another aspect of foraging is that it takes place in a
dynamic environment as food source location, and quality,
changes over time as a result of factors such as consump-
tion and degradation as a result of environmental influences.
This suggests that higher-quality food foraging strategies
will need to be adaptive to changing conditions and to feed-
back based on the degree of past success. This underscores
the importance of both lifetime and social learning based on
feedback or via social influences such as the passing on of
strategies to younger animals from their elders through ob-
servation and imitation.

The activity of food foraging can be individual where
each individual in a species forages on its own (solitary for-
aging) or social, where foraging is a group behaviour. Social
foraging, a subfield of behavioural ecology, has attracted
substantial research interest (Giraldeau and Caraco, 2000;
Stephens and Krebs, 1986; Viswanathan et al., 2011) and
topics of interest include:

1. how do members of the group search for food,
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2. how are food finds communicated to other members of
the group,

3. and how are food finds divided up between members of
the group.

The essence of social foraging is that there must be some
communication between organisms resulting in recruitment
to new food sources. Recruitment may occur at a communal
nest or den (Sumpter and Brannstrom, 2008). Taking the two
best-known families of foraging algorithms (ant and honey
bee), in both cases the organisms are central place foragers
in that they return to a colony or hive in order to store food
and therefore they can interact with ‘tribe’ members and po-
tentially pass on information about food finds. A key as-
pect of their interaction is that successful foragers seek to
recruit other conspecifics to food resources that they have
found. This ‘interaction’ may be direct or indirect, an exam-
ple of the latter being provided by pheromone trail-marking
by some species of ants.

Many other organisms also engage in social gathering
and an as yet neglected area of the foraging literature in
computer science is that related to social roosting. Several
animals engage in social roosting including bats and birds
and these roosts can potentially serve as an information cen-
tre leading to the exchange of information concerning the
location of food resources. In this study, we examine one in-
stance of social roosting and associated foraging behaviour,
namely the nocturnal roosting behaviour of juvenile, com-
mon ravens, and design a series of ‘raven-roost’ optimisa-
tion algorithms drawing inspiration from this process.

1.1 Structure

The remainder of this contribution is organised as follows.
Section 2 provides some background on raven roosting and
foraging behaviours, and the associated information centre
hypothesis. Section 3 outlines the design of the raven roost
algorithm. In Section 4 we outline the experimental design,
and present the results for each algorithm variant. Finally,
conclusions and opportunities for future work are discussed
in Section 5.

2 Raven Roosting

A social behaviour which is exhibited by some animals, in-
cluding some bird and bat species, is ‘roosting’ where mul-
tiple animals come together to rest. This naturally leads to
the question as to what are the advantages of this behaviour.
Initial explanations centred on the possible anti-predatory
benefits, increased opportunities for mate choice, enhanced
care of young, increased opportunity for status display and
thermal benefits during overnight roosting (Dall, 2002; Mar-
zluff and Heinrich, 2001).

An alternative explanation, the Information Center Hy-
pothesis (ICH), was proposed by Zahavi (1972); Ward and
Zahavi (1973) and this suggested that birds join colonies
and roosts in order to increase their foraging efficiency by
means of the exchange of information regarding the location
of food. The author(s) claimed that enhanced food foraging
success was the primary reason for the evolution of gregari-
ousness in birds.

The core tenent of the ICH is that birds which success-
fully find food advertise this fact at the roost site and are
subsequently followed by several conspecifics to the food
resource (i.e. they ‘recruit’ for the food resource). Interest
in the ICH is not restricted to bird roosting behaviours. The
possibility that information transfer could also occur in com-
munally roosting bats was initially suggested by Fleming
(1982). Later work by Wikinson (1992) examined the for-
aging behaviour of the bat species Nycticeius humeralis and
found that unsuccessful foragers tend to follow previously
successful foragers and that the foraging success of putative
followers is greater than that of unsuccessful bats which de-
part solitarily. The author concluded that information trans-
fer concerning good foraging sites was taking place, poten-
tially via echolocation pulses, although the exact mechanism
of information transfer was not isolated in the study.

Raven roosts consist of juvenile, non-breeding, unrelated
common ravens. Ravens normally arrive at roosts shortly
before sunset and typically leave the roost in highly syn-
chronised groups at dawn the next day. The first compre-
hensive study of information transfer in raven roosts was
undertaken by Marzluff et al. (1996) who examined roost-
ing behaviours of the common raven (Corvus corax) in the
forested mountains of Maine (USA). Ravens in this region
are specialist feeders on the carcasses of large mammals in
winter. These food sources are ephemeral as they degrade
or are consumed quickly, and the location of carcasses is
unpredictable. Hence, the search for food resources is con-
tinuous. The typical food discovery process observed com-
menced with a small number of birds feeding at a carcass
site, followed by a rapid (overnight) doubling in numbers
with most of these birds arriving simultaneously at dawn.
The carcass would be consumed over several days and at the
final stage of carcass depletion, feeding group size declined
rapidly as many birds left the carcass in the afternoon (prior
to sunset) and did not return to it the next day.

Marzluff et al. (1996) undertook careful observation at
both roosting and foraging sites, and monitored the change
in the number of ravens at a carcass from one day to the
next. The number of birds at a carcass at different times
of the day was also monitored in order to control for lo-
cal enhancement effects during a day. Control experiments,
wherein naive birds (birds with no knowledge of the location
of food locations) were released at roosts demonstrated that
naive birds found feeding locations by following their roost
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mates, providing evidence for the existence of information
sharing. Observations by the authors also indicated that the
same individuals in a roost are not always knowledgable,
suggesting that information sharing rather than mere para-
sitism (wherein ‘excellent’ foragers were simply followed
by less-skilled conspecifics) was taking place. The study
concluded that information sharing did take place at roosts
and that ravens which successfully found a new food re-
source recruited other members of the roost to that resource.

These findings were extended in a study by Wright et al.
(2003) which examined the behaviour of ravens in a large
roost in North Wales in the United Kingdom. In contrast to
North America, raven roosts in Europe are typically larger
and have more stable membership. The researchers deposited
baited carcasses at various locations around the roost and
found that most carcasses were consumed within five days.
Observational evidence suggested that recruitment started
for each carcass via a single bird on day zero with subse-
quent recruitment of about six to seven birds per day. Birds
that first discovered the baited carcasses recruited conspecifi-
cs using pre-roost (evening) acrobatic flight displays and vo-
calisations. The ‘discoverer’ birds spent the night surrounded
in the roost by the group that would follow them out the
next morning to the food source. Recruitment appeared to
be a competitive activity which was more successful for ge-
ographically closer carcasses, consistent with the idea that
the pre-roost displays accurately reflected the energetic state
of the displaying bird and therefore the relative distance and
profitability of the carcass discovered. The authors consid-
ered that the findings ‘provide strong circumstantial evidence
for raven roosts as structured information centres’.

In a similar fashion to the foraging activities of ants and
bees, socially roosting birds can be influenced by means of
social learning through a recruitment mechanism. Of course,
the foraging process of ravens (and indeed of social insects)
has a number of additional complexities. A bird may have
private knowledge of food resource locations and hence may
place different weight on socially-acquired information de-
pending on its private knowledge. This is also true of honey
bees (Wray et al., 2011), although this issue has attracted lit-
tle attention thus far in the honey bee optimisation literature.
In addition, birds can survey a wide terrain whilst in flight
and may decide to deviate from a ‘follower’ behaviour if an
alternative food source is seen whilst in flight.

In the following sections we undertake a number of ex-
periments which examine the utility of a series of optimi-
sation algorithms which are inspired by a social roosting
process, which incorporates both social and private infor-
mation. We also consider the implications of embedding an
individual ‘perception’ process in the algorithms. Consider-
ing these issues could potentially provide some interesting
insights into high-level foraging behaviours as well as as-
sisting in the design of efficient optimisation algorithms.

3 Model Development

In the proposed raven roosting optimisation (RRO) algo-
rithm, a randomly-located (in the input space) roosting site
is chosen. The roost location is then fixed for the remain-
der of the algorithm. Initially, each of the population of N
‘ravens’ are placed at random locations in the search space.
Each of these locations corresponds to a potential food re-
source location. Next, the fitness values of the N locations
is assessed, and the location of the best solution is denoted
as “LEADER”.

The roosting process is then simulated by mimicking an
information-sharing step. As in real-world raven roosting,
only a portion of the roost members will be recruited to a
new food source and other roost members will continue to
return to a ‘private’ food location or to continue with solitary
trial and error search for food. A proportion of the ravens
(Percyoliow) are recruited to leave the roost and follow the
LEADER. Mimicking noisy recruitment and personal per-
ception, a recruited follower is able to ‘perceive’ a hyper-
sphere of radius (Rjeqqer) around the LEADER and may
therefore forage at another location in this region, if a better
location is seen by them. On leaving the roost, unrecruited
birds travel to the best location that they have found to date
(their personal best) and continue to forage there. The in-
clusion of a personal best ‘memory’ for each bird embeds
a concept of ‘private information’ as unrecruited birds in
essence are choosing to rely on private information rather
than piggy-back on socially-broadcast information from the
LEADER.

Whilst in flight to the intended destination, individual
birds maintain a search for new food sources en-route. We
simulate this process by dividing their flight into N;c,,s. The
length of each step is chosen randomly, and the bird’s posi-
tion in flight is updated using the following equation:

Dit = Pit—1 + dit (D

where p; ; is the current position of the ith raven, Dit—1 18
its previous position, and d; ; is a random step size. At each
step, a raven senses its surrounding environment in the range
of radius R, and makes N, random perceptions within
this hypersphere. If a better location is perceived than the
bird’s personal best, there is Probg,, chance that the raven
stops its flight at that point and forages at the newly-found
location; otherwise, it takes another step and continues to
fly to its destination. At the conclusion of the algorithm, the
fittest location found is returned. Pseudocode for the algo-
rithm is provided in Algorithm 1.

In our experiments we design and test 13 variants of the
raven roosting optimisation algorithm in order to undertake
a comprehensive analysis of the relative importance of dif-
ferent parameter settings and of each of the key mechanisms
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Algorithm 1: Raven Roosting Optimisation Algorithm

Randomly select a roosting site;

repeat
The N foraging ravens are assigned to N random locations in the search space;
Evaluate the fitness of each raven location;
Update the personal best location of each raven;
The location of the best solution is denoted as LEADER;
Recruit Perc o100 percentage of the N foragers from the roosting site which will search in the vicinity of the LEADER (within the
range of radius R.,q4e) and the rest of the ravens will seek to travel to their personal best locations;
Set step = 0;
while step < Nsteps do
On the way to its destination (whether the destination is the LEADER’s vicinity or the personal best location), each raven flies for
a while and searches in the vicinity of its current position (within the range with radius Rpcpt);
if a better solution is found then
There is a Probstop chance the raven will stop;
Update the personal best location;
else
| It continues to fly;
end
step = step + 1;

end

For the ravens which finally arrive their destinations (the LEADER’s vicinity or the personal best), update their personal best locations
if necessary;

Update location of the best solution found so far if necessary;

until terminating condition;

Table 1 Parameter Setting of Algorithms

Radius of . . Proportion of Probability of
Algorithm Perception Rad(l;sl of Le‘;lder Pe(l;sfeptm)ns Steps (Nsteps) Followers Stopping

(Rpept) cader pept (Percyotiow) (Probstop)
RROO 5 G%W S G%W 10 10 0.2 0.1
RRO1 5 G%W - S%W 10 10 0.2 0.1
RRO2 Lzﬁjﬁ Mﬁgﬁ 10 10 0.2 0.1
RRO3 1,8%\/ﬁ 1.s%m 10 10 0.2 0.1
RRO4 3,6%\/ﬁ Mf,gm 5 10 0.2 0.1
RROS 3,6%\/ﬁ Mf,gm 20 10 0.2 0.1
RRO6 3,6%\/ﬁ Mf,gm 10 5 0.2 0.1
RRO7 ﬁ Mf,gm 10 20 0.2 0.1
RROS 3,6%\/ﬁ Mf,gm 10 10 0.4 0.1
RROY 361},” 3.6%\/ﬁ 10 10 0.6 0.1
RRO10 361},” 3 G%W 10 10 0.8 0.1
RROI1 ﬁ 3 G%W 10 10 0.2 0.2
RRO12 361},” Mf,gm 10 10 0.2 0.4

Note: R is the radius of the search space.
D is the dimensionality of the test problem.
N is the number of ravens (in RRO) or particles (in PSO).

in the algorithm. Details of these variants are set outin Table 4 Results and Discussion

I and are discussed in detail in the next section.
In this section we describe the experiments undertaken and
present the results from these experiments. Four standard
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Table 2 Optimisation Problems

Name Function Search Space Optima
Delong F(z) = 37, a2 [-5.125.12]" 0.0"

1 -3 n C n n
Griewank F(z) =14 37 qobp — [1]= cos(34) [—600 600] 0.0
Rastrigin F(z) =10n+ 37, [27 — 10 cos(2n;)] [-5.12 5.12]" 0.0"

Rosenbrock P(z) = Y72 [100(zig1 — 27)% + (1 - 24)?] (—3030]" Lo”

benchmark problems (Table 2), at three levels of dimension-
ality (20, 40 and 60), were used to test the developed algo-
rithms. Two of these functions namely, DeJong and Rosen-
brock, represent unimodal problems; and the other two, Grie-
wank and Rastrigin, are more complex multimodal functions
which contain multiple local optima. The aim in all the ex-
periments is to find the vector of values which minimise the
value of the test functions.

4.1 Overview of Experiments

In the first set of experiments we undertake a proof of con-
cept study to assess the performance of the canonical ver-
sion of the algorithm (denoted as RROO) on the four bench-
mark problems. This is then followed by an investigation
of the importance of the perception mechanism in the RRO
algorithm. Accordingly, we test a variant of the RRO algo-
rithm in which the perception mechanism is switched off
(this variant of the RRO is denoted as RROv) and compare
its performance against that of the canonical RRO algorithm
which has the perception mechanism.

The second set of experiments examine the sensitivity of
the canonical RRO to changes in the values of six of its pa-
rameters. In each case, we select two or three values for each
of these parameters, producing 12 variants of the RRO algo-
rithm (denoted as RRO1-RRO12). The specific values of the
parameters for each algorithm variant are set out in Table 1.
Whilst these are chosen judgementally, the values chosen
for the two radii (I2,cpt & Ricader) are problem-specific, as
they are influenced by the choice of the number of ravens
(N), the radius (size) of the search space (R), and the di-
mensionality of this space (D). In this study, the values of
Rpyept and Rjeqqer Were chosen after initial experimentation

R
a and
3.6 &

S36UN . )
Finally, the results from RRO are compared against those

of canonical Particle Swarm Optimisation (PSO) a powerful
and well-known optimisation heuristic.

In each experiment, 30 ravens in the case of RRO, or
30 particles in the case of PSO, are used. In order to al-
low a reasonably fair comparison, we adjust the the num-
ber of algorithm iterations as necessary in order to equalise

the number of fitness function evaluations across all exper-
iments. The experimental parameters are shown in Tables
3&4. All reported results are averaged over 30 experiments
for each problem and algorithm, and we test the statistical
significance of all differences in performance at a conserva-
tive 99% level using a t-test. The experiments were under-
taken on an Intel Core i7 (2.93 GHz) system with 12 GB
RAM.

Table 4 Parameter Setting of Experiments

Parameters Values
Trials 30
Size of Population N =30
Dimension of Problem D = 20,40, 60

4.2 Hypotheses

The first set of experiments concern the testing of the im-
portance of the perception mechanism of the RRO. The null
hypothesis is that the algorithm with perception mechanism
turned off (RROV) performs better than the canonical RRO
(RROO). Therefore the following hypothesis is tested.

— H, o: the RROv algorithm outperforms the RROO algo-
rithm;

The next set of hypotheses concern the analysis of the
performance of the 12 variants of RRO with different param-
eter settings (RRO1-RRO12) against the performance of the
canonical algorithm (RROO). In this case, the null hypothe-
ses are that the variant algorithm outperform the canonical
algorithm.

— H,: the RROI (¢ :

RROO algorithm;

1 — 12) algorithm outperforms the

The final set of hypotheses concern the analysis of the
performance of the various versions of RRO against the per-
formance of PSO. The null in each case is that PSO performs
better.
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Table 3 Iteration Settings for Each Trial

RROO0 RRO1 RRO2 RRO3 RRO4 RRO5 RRO6

RRO7

RRO8 RROY9 RRO10 RRO11 RRO12 RROv PSO

500 500 500 500 1000 250 1000

250

500 500 500 500 500 5000 60000

— Hjy: the PSO algorithm outperforms the RROO algorithm;

— H,: the PSO algorithm outperforms the RROv algorithm;

— H;: the PSO algorithm outperforms the RROi (z : 1-12)
algorithm.

4.3 Analysis of Perception Mechanism in RRO

In order to assess the effect of the perception mechanism
on the performance of the RRO algorithm, two algorithms,
RROO with a perception mechanism and RROv without a
perception mechanism, were tested on the four optimisation
problems (shown in Table 2) using 20, 40, and 60 dimen-
sions respectively. The performance of both algorithms were
also compared with that of the canonical PSO.

Figures 1&2 compare the average fitness of the three al-
gorithms for the tested problems, and Tables 5-7 show the
best fitness value obtained from all 30 runs (‘Best’), and the
average of the best fitnesses (‘Mean’) and its standard devia-
tion over all 30 runs. The results show that the standard RRO
algorithm (RROO) outperforms the RROv algorithm on all
problems, and that in ten out of twelve of the test instances
(four test problems at three levels of dimensionality) the dif-
ference is statistically significant (the relevant p-values are
shown in Table 7). Comparing the RROO algorithm against
PSO, the results show that the RROO outperforms PSO on
all problems, and that in eleven out of twelve cases the dif-
ference is statistically significant. In the case of RROv, it
outperforms PSO on ten of the twelve problems and the dif-
ference is statistically significant in nine out of the ten.

Hence, we conclude that the perception mechanism is
an important component of the RRO algorithm, and that
the canonical RRO algorithm is highly-competitive against
PSO, outperforming it on all cases.

4.4 Parameter Sensitivity Analysis

Figures 3-12 show the results of sensitivity analysis of the
six parameters of RRO respectively, and Tables 5-7 show
the best fitness value obtained from all 30 runs (‘Best’), and
the average of the best fitnesses (‘Mean’) and their standard
deviation over all 30 runs.

Columns H;  (i:1-12) in Tables 5-7 show the p-values
of the statistical tests used to determine whether there are
any differences in mean performance between the RROO al-
gorithm and the other variants of RRO algorithm.

Columns Hy-H, in Tables 5-7 show the p-values of the
statistical tests used to test whether there is any difference
between the performance of PSO algorithm and the RRO
algorithms.

4.4.1 Impact of Varying Perception Radius

Figures 3 & 4 compare the performance of the canonical
version of RRO (RROO) with three variants (RRO1-3) which
have larger perception radii for R),,; and/or ;.4 In gen-
eral, across most problem instances, the performance rank-
ing across the four algorithm variants is as follows:

RRO0,1 > RRO2,3 > PSO

Little difference is noted between the performance of RROO
and RRO1, or between RRO2 and RRO3 on the various
problem instances. This indicates that the performance of
the RRO algorithm is sensitive to the changes on parameter
Rycpt, and not as sensitive to the changes in the parame-
ter Rjcqder. Comparing the performances of RRO1, RRO2,
RRO3 against that of PSO, all are found to outperform PSO,
and the difference in mean performance are statistically sig-
nificant in virtually all problem instances.

4.4.2 Impact of Varying Number of Perception Samples

Next we consider the parameter which governs the number
of perception samples that the ravens can utilise. In essence,
this proxies elements of the animal’s cognitive processing
ability, as in addition to the radius of sensory perception be-
ing finite, assessments of resource quality within the range
of sensory perception are likely to be imperfect due to time
and cognitive limitations. In RROO, ten samplings are made
in each ‘perception’, and in algorithm variants RRO4 and
RROS this number is altered to 5 and 20 respectively (note,
total number of fitness function evaluations is held constant
across all experiments). Figures 5&6 show that the perfor-
mances of the three algorithms, RROO, RRO4 and RROS5,
are similar over all problem instances with no clear evi-
dence that increasing or decreasing the number of samplings
(within the range tested) makes a notable difference. This
suggests that the RRO algorithm is not highly sensitive to
the changes in the parameter Npp:. Both RRO4 and RROS
outperform PSO on all problem instances, significantly so
on eleven of the twelve instances.
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Fig. 1 Component Analysis I (DeJong & Rosenbrock Functions). The x-axis only shows the iterations for testing the RROO algorithm.
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Fig. 7 Sensitivity Analysis I of Parameter Ns¢eps (DeJong & Rosenbrock Functions). The x-axis only shows the iterations for testing the RRO7
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Fig. 9 Sensitivity Analysis I of Parameter Percyoi0. (DeJong & Rosenbrock Functions). The x-axis only shows the iterations for testing the
RRO algorithms.



16 Anthony Brabazon et al.

Griewank (20D) Rastrigin (20D)
200 T T T T 220 T T T T
RROO RROO
= = =RRO8 - = =RRO8
180 ~ = =RRO9 - = = RRO9
- = =RRO10 200 = = =RRO10H
PSO PSO
160
140 q
g 2
£ 120 1 ¢
[ [
g g
2 100 = 2
o @
=3 =3
<] [
S go i @
2 kS
60 q
0 I I I I I I I I I 80 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Iteration Iteration
Griewank (40D) Rastrigin (40D)
600 T T T T 600 T T T T
RROO RROO
- = =RRO8 - = =RRO8
- = = RRO9 - = =RRO9
- = =RRO10|] 550 = = =RRO10H
500 Pso fi ——PSO
500 q
400 T
2 2
4] @
s =} 4
[ [
g g
& 300 408
@ @
=3 =3
o o b
o o
s s
< <
200
100 --<—ZI222C°77
0 I I I I I I I I I 250 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Iteration Iteration
Griewank (60D) Rastrigin (60D)
1200 T T T T 950 T T T T
RROO RROO
= = =RRO8 = = =RRO8
= = = RRO9 900 = = =RRO9 H
= = =RRO10|| = = =RRO10
1000 ——PSO_[] ——— PSO
850
800 q 800 q
@ @
@ @
o [
g £
[ L 750 q
k7l @
4 4]
[ o
o o
g g 7
g g
< <
= e
0 I I I I I I I I I 500 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Iteration Iteration

Fig. 10 Sensitivity Analysis II of Parameter Np¢,.. Follow (Griewank & Rastrigin Functions). The x-axis only shows the iterations for testing the
RRO algorithms.
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Fig. 11 Sensitivity Analysis I of Parameter Probstop (DeJong & Rosenbrock Functions). The x-axis only shows the iterations for testing the RRO
algorithms.
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Fig. 12 Sensitivity Analysis II of Parameter Probstop (Griewank & Rastrigin Functions). The x-axis only shows the iterations for testing the RRO
algorithms.
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Table 5 Results of Algorithm Comparison (I)
Function PSO RROO RRO1 RRO2 RRO3
Best Mean Best Mean H Best Mean H H Best Mean H H Best Mean H H
(Std.) (Std.) 0 (Std.) 1 1.0 (Std.) 2 20 (Std.) 3 3-0
DeJong 20D 4.2752 21.1347 1.6065 2.6663 0.00 1.1565 2.1496 0.00 0.07 5.2718 7.3157 0.00  0.00 4.6700 6.7133 0.00  0.00
(20.7797) (1.4325) (0.5512) (1.2992) (1.3111)
40D 75.4903 141.9867 9.5379 17.9804 0.00 10.1402 17.1491 0.00 0.73 26.9314 43.2206 ( 0.00  0.00 29.0524 41.7310 0.00  0.00
(41.1804) (11.0417) (7.4220) 5.5639) (5.1826)
60D 211.9589 295.2266 30.2088 45.7234 0.00 30.4605 45.9524 0.00 095 88.6984 110.2546 0.00  0.00 94.4696 108.9824 0.00  0.00
(43.8444) (16.6323) (17.8679) (8.8859) (7.84617)
Griewank 20D 15.9867 98.7569 5.7483 9.6480 0.00 6.1322 9.3319 0.00 0.77 17.7677 26.0183 0.00  0.00 12.7696 24.8437 0.00  0.00
(53.9338) (4.9005) (3.4726) (4.2394) (5.4425)
40D 187.5288 505.3347 38.3486 70.2330 0.00 37.8556 61.5970 0.00 0.25 111.4742 145.0010 0.00  0.00 123.1153 150.0776 0.00  0.00
(139.6617) (32.0062) (25.1599) (17.2393) (13.6288)
60D 697.1503 1013.9464 90.9474 152.2529 0.00 103.4983 171.2382 0.00 0.32 303.8749 369.3153 0.00  0.00 302.2994 375.2835 0.00  0.00
(159.2638) (60.6620) (86.6312) (25.1409) (30.9475)
Rastrigin 20D 111.4707 149.9047 60.3031 89.7571  0.00 64.5716 840321 0.00 0.04 63.9981 91.958  0.00 039 72.6854 89.2459  0.00 081
(23.3029) 9.1124) (12.6712) (10.8918) (8.1506)
40D 348.0436 458.8609 239.5747 287.2116 0.00 241.3647 286.5220 0.00 0.89 267.2119 305.2914 0.00  0.00 244.7283 305.7325 0.00  0.00
49.0941) (20.0619) (21.0780) (19.7228) (23.4687)
60D 687.6921 806.2230 474.5812 5254923 0.00 4827234 530.4105 0.00 047 480.8923 546.6167 0.00  0.00 506.3305 559.2304 0.00  0.00
(48.6207) (28.8488) (23.3308) (28.4400) (27.7060)
Rosenbrock 20D 0.0022E+8 0.0573E+8 0.0002E+8 0.0008E+8 0.13 0.0003E+8 0.0012E+8 0.13  0.16 0.0029E+8 0.0064E+8 0.17  0.00 0.0031E+8 0.0062E+8 0.17  0.00
(0:2028E+8) (0.0004E+8) (0:0015E+8) (0.0023E+8) (0.0022E+8)
40D 0.0410E+8 1.6465E+8 0.0079E+8 0.0169E+8 0.00 0.0066E+8 0.0195E+8 0.00 041 0.0790E+8 0.1409E+8 0.00  0.00 0.0641E+8 0.1316E+8 0.00  0.00
(1.0408E+8) (0.0092E+8) (0.0145E+8) (0.0288E+8) (0.0233E+8)
60D 1.7760E+8 3.8955E+8 0.0421E+8 0.1288E+8 0.00 0.0399E+8 0.1323E+8 0.00 0.89 0.5535E+8 0.8037E+8 0.00  0.00 0.4396E+8 0.7330E+8 0.00  0.00
(1.2999E+8) (0.1136E+8) (0.0956E+8) (0.1121E+8) (0.1410E+8)
Table 6 Results of Algorithm Comparison (II)
Function RRO4 RROS RRO6 RRO7 RRO8
Best Mean H, H,, Best Mean  H, H;, Best Mean  H, Hg, Best Mean  H, H,, Best Mean  H, Hg,
(Std.) (Std.) (Std.) (Std.) (Std.)
DeJong 20D 1.4991 2.5669 0.00 0.76 1.5891 2.5454 0.00 0.69 1.5088 29136 0.00 0.44 1.2010 2.5728 0.00 0.80 1.4606 4.1146 0.00 0.06
(1.1619) (0.8687) (1.0286) (1.4167) (3.9197)
40D 9.0582 18.8028 0.00 0.77 10.8285 15.9968 0.00 0.39 16.2316 23.4681 0.00 0.03 10.8245 17.1935 0.00 0.76 11.1705 19.7799 0.00 0.57
(10.8095) (6.3378) (9.0448) (8.6807) (13.4182)
60D 28.8283 44.9532 0.00 086 30.3544 48.6439 0.00 0.57 36.3137 58.5603 0.00 0.00 25.0978 46.4181 0.00 0.88 29.6150 57.9549 0.00 0.09
(17.2981) (23.0164) (16.7095) (20.5039) (35.2765)
Griewank 20D 6.0347 9.5260 0.00  0.90 6.6022 11.6896 0.00 0.22 7.3184 12.2352 0.00 0.16 6.1172 10.9125 0.00 041 6.8504 13.6950 0.00 0.15
(2.5569) (1.7297) (8.7066) (6.7669) (14.6094)
40D 36.8656 52.4067 0.00 0.01 32.3914 59.6499 0.00 0.16 42.0510 74.0755 0.00 0.64 37.4639 67.5224 0.00 0.75 36.4429 72.1251 0.00 0.86
(18.4740) (26.2060) (31.9177) (34.1407) (53.0083)
60D 98.5873 166.0234 0.00 044 106.8965 186.0886 0.00 0.08 142.4185 200.8603 0.00  0.00 100.3306 169.7919 0.00 0.34 101.0157 201.3229 0.00 0.03
(76.6849) (85.9802) (69.4473) (80.0074) (104.6275)
Rastrigin 20D 71.3454 90.9226 0.00 0.63 65.3628 87.3840 0.00 0.39 85.8851 107.0209 0.00 0.00 38.4059 83.1847 0.00 0.03 725187 90.3095 0.00 081
(9.6148) (12.2795) (10.4252) (13.5187) (9.1947)
40D 248.0362 283.0796 0.00 042 2539719 289.3054 0.00 0.68 271.3238 326.9089 0.00  0.00 232.0383 282.4597 0.00 0.40 239.8390 289.9280 0.00 0.60
(20.0364) (19.6366) (18.4973) (23.7787) (20.6859)
60D 460.6616 527.8386 0.00 0.74 479.2569 518.8316 0.00 0.34 499.4723 570.2138 0.00 0.00 421.6484 516.0484 0.00 0.25 482.2438 520.0339 0.00 047
(26.1039) (24.6766) (30.0119) (34.2679) (30.4802)
Rosenbrock 20D 0.0001E+8 0.0008E+8 0.13 0.80 0.0003E+8 0.0011E+8 0.13 0.29 0.0003E+8 0.0018E+8 0.13 0.11 0.0004E+8 0.0011E+8 0.13 045 0.0003E+8 0.0011E+8 0.13 030
(0.0004E+8) (0.0011E+8) (0.0033E+8) (0.0019E+8) (0.0013E+8)
40D 0.0068E+8 0.0273E+8 0.00 0.11 0.0119E+8 0.0228E+8 0.00 0.12 0.0183E+8 0.0485E+8 0.00  0.00 0.0075E+8 0.0254E+8 0.00 0.09 0.0075E+8 0.0289E+8 0.00 0.10
(0.0343E+8) (0.0184E+8) (0.0441E+8) (0.0255E+8) (0.0392E+8)
60D 0.0407E+8  0.0995E+8 0.00  0.20 0.0500E+8 0.1354E+8 0.00 0.84 0.1070E+8 0.1799E+8 0.00 0.03 0.0351E+8  0.1148E+8 0.00 0.66 0.0435E+8 0.1481E+8 0.00 0.55
(0.0547E+8) (0.1447E+8) (0.0678E+8) (0.1342E+8) (0.1347E+8)
Table 7 Results of Algorithm Comparison (III)
Function RROY RRO10 RRO11 RRO12 RROvV
Best Mean  H, H,, Best Mean  H,, H,, Best Mean  H,, H,, Best Mean  H,, Hy,, Best Mean  H, Haq,
(Std.) (Std.) (Std.) (Std.) (Std.)
DeJong 20D 1.5511 5.3019 0.00 0.02 1.7374 9.8000 0.00  0.00 2.2931 11.9306 0.02  0.00 15.5601 25.1969 030 0.00 15.8007 22.8450 0.66  0.00
(6.0197) (8.2305) (7.9883) (5.6315) (4.1234)
40D 12.4404 33.0257 0.00 0.00 9.8889 43.5791 0.00 0.00 129182 49.7813 0.00  0.00 51.6317 93.8596 0.00 0.00 62.7160 87.2870 0.00  0.00
(23.1231) (30.2329) (23.1734) (16.6496) (10.3682)
60D 33.5133 70.2673 0.00  0.00 33.2854 110.7640 0.00  0.00 35.7375 113.4807 0.00 0.00 98.1337 168.8542 0.00  0.00 147.0169 166.5786 0.00  0.00
(31.7188) (45.8308) (39.2146) (25.8505) (1 31)
Griewank 20D 7.4927 16.4869 0.00 0.01 6.5483 24.4491 0.00  0.00 8.0266 40.7251 0.00  0.00 36.3134 81.1147 0.09  0.00 56.4041 76.7073 0.03  0.00
(14.0096) (22.0757) (22.8007) (19.9827) (9.7682)
40D 33.8026 111.8769 0.00 0.01 429797 130.1342 0.00 0.00 52.5280 193.9789 0.00 0.00 206.7434 311.2986 0.00  0.00 227.4857 297.6577 0.00 0.00
(82.9200) (85.6608) (70.9648) (51.1770) (39.3877)
60D 92.1387 214.1813 0.00  0.00 111.1807 303.8207 0.00  0.00 96.4510 0.00  0.00 355.9943 601.4963 0.00 0.00 468.2077 569.7915 0.00  0.00
(108.4552) (160.3469) (78.6815) (53.8802)
Rastrigin 20D 60.9972 95.5107 0.00 0.06 78.2426 104.8989 0.00 0.00 67.2630 96.7490 0.00 0.01 76.8831 108.1296 0.00  0.00 69.1588 93.1236 0.00 0.21
(14.0398) (13.8468) (11.4940) (13.4959) (11.4649)
40D 251.4815 300.4172 0.00  0.02 257.0324 313.3773 0.00  0.00 242.8399 303.2224 0.00  0.00 300.5967 327.5516 0.00 0.00 259.8361 300.7493 0.00  0.00
(23.5029) (22.0377) (24.1622) (18.7778) (18.5818)
60D 4757276 537.4513 0.00 0.12 492.9566 561.0391 0.00 0.00 452.1456 534.1298 0.00 029 478.7062 547.3517 0.00  0.00 4332352 531.5328 0.00 0.52
(29.9695) (32.8767) (33.8848) (28.3334) (42.4731)
Rosenbrock 20D 0.0003E+8 0.0054E+8 0.16  0.00 0.0004E+8 0.0099E+8 0.20  0.00 0.0004E+8 0.0231E+8 0.36  0.00 0.0030E+8 0.0779E+8 0.58  0.00 0.0068E+8 0.0628E+8 0.88  0.00
(0.0078E+8) (0.0138E+8) (0.0301E+8) (0.0415E+8) (0.0260E+8)
40D 0.0062E+8  0.0651E+8 0.00  0.00 0.0125E+8 0.1751E+8 0.00  0.00 0.0169E+8 0.2743E+8 0.00 0.00 0.1384E+8 0.5553E+8 0.00 0.00 0.3425E+8 0.5320E+8 0.00 0.00
(0.0897E+8) (0.2062E+8) (0.1891E+8) (0.1981E+8) (0.0991E+8)
60D 0.0450E+8 0.2332E+8 0.00 0.03 0.0525E+8 0.5410E+8 0.00  0.00 0.0612E+8 0.6355E+8 0.00  0.00 0.2949E+8 1.3542E+8 0.00  0.00 1.0703E+8 1.4290E+8 0.00  0.00
(0.2434E+8) (0.4634E+8) (0.4136E+8) (0.4067E+8) (0.1983E+8)
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4.4.3 Impact of Varying Number of Flight Steps

The parameter Ng,, governs the number of flight steps
taken by a raven. At the end of each step, a ‘perception’
is made of the landscape by the bird. In RROO we set the
value of this parameter at ten. In order to examine the sen-
sitivity to this setting we compare the results of RRO0 with
RROG (five steps) and RRO7 (twenty steps). Again we con-
trol for the number of total fitness function evaluations of all
algorithm variants.

Figures 7&8 show that algorithm performance is slightly
sensitive to changes in the parameter Ny, as increasing
the value of this parameter tends to improve performance.
However, the differences between RROO and RRO7 are not
found to be statistically significant. Both RRO6 and RRO7
are found to outperform PSO with the difference in mean
performances being statistically significant in eleven of the
twelve problem instances.

4.4.4 Impact of Varying Proportion of Followers

The parameter Percyoiiower determines the proportion of
the population that follow the LEADER from the roost to
its food find, and serves as a tunable ‘recruitment’ propen-
sity parameter. The parameter setting also governs how in-
tensively the roost population ‘exploits’ the food find of the
LEADER, or in other words, the level of reliance of the roost
on social as distinct from private information. In RROO the
value of this parameter is set to 0.2, compared with values
of 0.4, 0.6 and 0.8 in RRO8, RROY and RRO10 respectively.
Figures 9&10 show that the performance ranking across the
algorithm variants is:

RRO0O > RRO8 > RRO9 > RRO10 > PSO

The results show that algorithmic performance is sensitive
to the setting of the parameter Perc oo, With increasing
reliance on social information leading to a degradation in
the performance of the algorithm. Most likely this occurs as
high values of this parameter will encourage heavy exploita-
tion of LEADER information, thereby reducing the diversity
of the search process. All three variants (RRO8, RRO9 and
RRO10) outperform PSO with the differences being statisti-
cally significant in eleven of the twelve problem instances.

4.4.5 Impact of Varying Probability of Stopping

The parameter Prob;,, governs the probability that a raven
will stop at a location that it ‘sees’ during flight if it has bet-
ter food resources than the bird’s personal best location. In
essence, this parameter governs the propensity of a bird to
change feeding location. It also proxies a ‘noisy’ assessment
of resource quality by a bird, as it allows for the case that a

good food source is found by a bird but is incorrectly as-
sessed as to its quality. Obviously the value of this parame-
ter can vary between O and 1, the former case corresponding
to the situation where in-flight perception is turned off, the
latter to a ‘greedy’ search under perfect assessment of re-
source quality. In RROO, the probability of stopping is set at
0.1. Two variants on this are examined, RRO11 and RRO12
where the value is 0.2 and 0.4 respectively.

Figures 11&12 show that the performance ranking across
the algorithm variants is:

RRO0O > RRO11 > RRO12 > PSO

These results indicate that performance is enhanced when
the probability of stopping is low, and that the performance
of the algorithm is sensitive to the parameter value for Prob,_
top- Whilst this may appear a counter-intuitive result, in that
good feeding sites are bypassed, a lower stopping probabil-
ity will encourage longer flights from the roost, and there-
fore greater traversal of the search space. Comparing the per-
formance of RRO11 and RRO12 with PSO, the two variants
of RRO generally outperform PSO (except for two instances
of RRO12) with the differences being statistically significant
in most problem instances.

Figures 3-12 also compare the performances of the PSO
and the 13 RRO algorithms. As discussed above, virtually all
of the RRO algorithms outperform the PSO algorithm across
the problem instances with the degree of out-performance
tending to increase as the dimensionality of the problem in-
stance increases, indicating good scalability of the RRO.

5 Conclusions

Social-roosting behaviours are common in nature and pro-
vide an opportunity for information-sharing between con-
specifics. In this study we draw inspiration from the so-
cial roosting and foraging behavior of ravens in order to de-
velop a novel optimisation algorithm. The performance of
the algorithm is tested on a number of standard benchmark
optimisation problems and is found to be very competitive
against the well-known PSO heuristic. A series of analyses
are undertaken on the canonical raven roost algorithm and
these indicate the importance of the perception mechanism
in the algorithm, and highlight the degree of sensitivity of
the algorithm’s performance to various parameter settings.
The study opens up a door for follow-on work in a num-
ber of areas. Perception can be operationalised in the algo-
rithm in a variety of ways and it would be interesting to ex-
amine the impact on the algorithm’s performance of alter-
native implementations of this mechanism. As would be ex-
pected with any new algorithm there is also scope to further
test its utility on a wider range of problems and to under-
take further parameter sensitivity analysis. More generally,
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the domain of social roosting can be extended to include
the roosting and foraging behaviour of other bird species
and other animals such as bats. In the latter case, while the
echolocation capability of bats is well-known, we still have
a poor understanding of its role in peer-to-peer communica-
tion. It remains an open research question as to what other
forms of optimisation algorithms can be inspired by the ac-
tivities of a wider range of socially roosting animals.

Another interesting area of future work would be to com-
pare the communication mechanisms, and perceptive capa-
bilities, of socially-roosting animals with those of social in-
sects such as ants and honey bees. Whilst a notable literature
has emerged concerning the application of ant and honey bee
foraging metaphors for the construction of optimisation al-
gorithms, these have placed most focus on social communi-
cation and recruitment. In contrast, the results from the RRO
algorithm indicates that the inclusion of specific perception
and memory mechanisms can assist in the design of quality
optimisation algorithms.
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