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Abstract. This study examines the potential of a neural network (NN) model,
whose inputs and structure are automatically selected by means of a genetic algo-
rithm (GA), for the prediction of corporate failure using information drawn from
financial statements. The results of this model are compared with those of a linear
discriminant analysis (LDA) model. Data from a matched sample of 178 publicly
quoted, failed and non-failed, US firms, drawn from the period 1991 to 2000 is used
to train and test the models. The best evolved neural network correctly classified
86.7 (76.6)% of the firms in the training set, one (three) year(s) prior to failure, and
80.7 (66.0)% in the out-of-sample validation set. The LDA model correctly cate-
gorised 81.7 (75.0)% and 76.0 (64.7)% respectively. The results provide support
for a hypothesis that corporate failure can be anticipated, and that a hybrid GA/NN
model can outperform an LDA model in this domain.
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1 Introduction

Classification is a commonly encountered decision scenario in business. Exam-
ples include decisions as to whether or not to invest in a firm, whether to extend
trade credit to a new customer, or whether to extend a bank loan. In each of these
scenarios, the possibility of financial loss exists if a firm is incorrectly classified
as being financially healthy. Corporate bankruptcy can impose significant private
costs on many parties including shareholders, providers of debt finance, employ-
ees, suppliers, customers and auditors. All of these stakeholders have an interest
in being able to identify whether a company is on a trajectory which is tending
towards failure. Early identification of such a trajectory could facilitate successful
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intervention, to avert potential disaster. Nonetheless, it must also be recognised
that corporate failure is a natural component of the market economy, facilitating
the recycling of financial, human and physical resources into more productive or-
ganisations (Schumpeter, 1934; Easterbrook, 1990).
Corporate failure can arise for many reasons. It may result from a single catas-
trophic event or it may be the terminal point of a process of decline. Under the
second perspective, corporate failure is a process which is rooted in management
defects, resulting in poor decisions, leading to financial deterioration and finally
corporate collapse (Altman, 1993; Hambrick and D’Aveni, 1988). Most attempts
to predict corporate failure implicitly assume that management decisions critically
impact on firm performance (Argenti, 1976). Although management decisions are
not directly observable by external parties, their consequent affect on the finan-
cial health of the firm can be observed through their impact on the firm’s financial
ratios. Previous studies have utilised a wide variety of explanatory variables in
the construction of corporate distress models, including data drawn from the fi-
nancial statements of firms, data from financial markets, general macro-economic
indicators, and non-financial, firm-specific information. In this study, we limit our
attention to information drawn from financial statements.

1.1 Motivation for study

There are a number of reasons to suppose a priori that the use of an evolutionary
algorithm combined with a neural network (NN), can prove fruitful in the prediction
of corporate failure. The field is characterised by the lack of a strong theoretical
framework and has a multitude of plausible, potentially interacting, explanatory
variables. The first problem facing the modeller is the selection of a ‘good’ subset
of these variables, and the second problem is the selection of an appropriate model
form. In applications of NNs this is not a trivial task, as many choices are open to
the modeller, including the nature of the connection structure (number of layers of
nodes, number of nodes in each layer, determining which nodes should be connected
to each other), the form of activation function at each node, and the choice of
learning algorithm and associated parameters. The selection of quality explanatory
variables and model form represents a high-dimensional combinatorial problem,
giving rise to potential for an evolutionary methodology which can automate this
process with little intervention from the modeller (Mitchell, 1996). Such automated
methodologies have clear potential for extension to many data-mining applications.
To date only a relatively limited number of studies have applied evolutionary
methodologies, including genetic algorithms (GA), genetic programming (GP), and
grammatical evolution (GE), to the domain of corporate failure prediction (Varretto,
1998; Kumar et al., 1997; Back et al., 1996; Brabazon and O’Neill, 2003). This
paper builds on these initial studies and employs a hybrid GA/NN methodology,
which combines the global search potential of a GA with the non-linear modelling
capabilities of a NN. Two prior studies have utilised a similar hybrid model (Back et
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al., 1996; Wallrafen et al., 1996). This study is distinguished from the former which
utilised the GA to evolve only the inputs for the NN, and from the latter which did
not attempt to predict corporate failure for more than a single time-period. This
study also employs a recent dataset, based on publically available information on
US companies.

1.2 Structure of paper

This contribution is organised as follows. Section 2 discusses prior literature in the
corporate failure domain and outlines the definition of corporate failure employed
in this study. Section 3 introduces the GA and discusses how it can be combined
with a NN methodology. Section 4 describes both the data utilised, and the model
development process adopted. Section 5 provides the results of the constructed
GA/NN models and compares these with results from a linear discriminant analysis
(LDA) model. Conclusions and a discussion of the limitations of the contribution
are provided in Section 6.

2 Background

Research into the prediction of corporate failure using financial data, has a long
history (Fitzpatrick, 1932; Smith and Winakor, 1935; Horrigan, 1965). Early statis-
tical studies such as Beaver (1966), adopted a univariate methodology, identifying
which accounting ratios had greatest classification accuracy in separating failing
and non-failing firms.Although this approach did demonstrate classification power,
it suffers from the shortcoming that a single weak financial ratio may be offset (or
exacerbated) by the strength (or weakness) of other financial ratios. This issue was
addressed in Altman (1968) by developing a multivariate LDA model and this was
found to improve classification accuracy. Altman’s (1968) discriminant function
had the following form:

Z = .012X1 + .014X2 + .033X3 + .006X4 + .999X5

where:
X1 = working capital to total assets

X2 = retained earnings to total assets

X3 = earnings before interest and taxes to total assets

X4 = market value of equity to book value of total debt

X5 = sales to total assets

A later study by Altman et al. (1977), using a larger dataset, selected the following
set of explanatory variables (the study did not disclose the coefficients):

X1 = return on assets (EBIT / Total Assets)

X2 = stability of earnings
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X3 = debt service (EBIT / Total Interest)

X4 = cumulative profitability (Retained Earnings / Total Assets)

X5 = liquidity (Current Assets / Current Liabilities)

X6 = capitalisation (Equity / Total Capital)

X7 = firm size (Total Assets)

Since the pioneering work of Beaver (1966) and Altman (1968), a vast array of
methodologies have been applied for the purposes of corporate failure prediction.
In the 1970s and 1980s, attention was focussed on logit and probit regression models
(Gentry et al., 1985; Zmijewski, 1984; Ohlson, 1980). In more recent times, as the
field of biologically-inspired computing has flourished, the methodologies applied
to the domain of corporate failure prediction have expanded to include artificial
neural networks (Shah and Murtaza, 2000; Serrano-Cinca, 1996; Wilson et al.,
1995; Tam, 1991), genetic algorithms (Varretto, 1998; Kumar et al., 1997), and
grammatical evolution (Brabazon et al., 2002). Other methodologies applied to this
problem include support vector machines (Fan and Palaniswami, 2000), rough sets
(Zopounidis et al., 1999), and multicriteria decision analysis models (Zopounidis
and Dimitras, 1998). Review studies covering much of the above literature can be
found in Dimitras et al. (1996), and Morris (1997). Zhang et al. (1999) provide
a good review of prior applications of artificial neural networks to the domain of
corporate failure.

2.1 Definition of corporate failure

No unique definition of corporate failure exists (Altman, 1993). Possible definitions
range from failure to earn an economic rate of return on invested capital, to legal
bankruptcy, followed by liquidation of the firm’s assets. Typically, financial failure
occurs when a firm incurs liabilities which cannot be repaid from liquid financial
resources. However, this may represent the end of a period of financial decline,
characterised by a series of losses and reducing liquidity. Any attempt to uniquely
define corporate failure is likely to prove problematic. While few publicly quoted
companies fail in any given year (Morris, 1997) suggests that the rate is below 2%
in the UK, and Zmijewski (1984) reports that this rate is less than 0.75% in the
US), poorer performers are liable to acquisition by more successful firms. Thus,
two firms may show a similar financial trajectory towards failure, but one firm may
be acquired and ‘turned-around’ whilst the other may fail.
The definition of corporate failure adopted in this study is the court filing of a
firm under Chapter 7 or Chapter 11 of the US Bankruptcy code. The selection of
this definition provides an objective benchmark, as the occurrence (and timing) of
either of these events can be determined through examination of regulatory filings.
Chapter 7 of the US Bankruptcy code covers corporate liquidations and Chapter
11 covers corporate reorganisations, which usually follow a period of financial
distress. Under Chapter 11, management is required to file a reorganisation plan in
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bankruptcy court and seek approval for this plan. On filing the bankruptcy petition,
the firm becomes a debtor in possession. Management continues to run the day-to-
day business operations, but a bankruptcy court must approve all significant business
decisions. In most cases, Chapter 11 reorganisations involve significant financial
losses for both the shareholders (Russel et al., 1999) and the creditors (Ferris et
al., 1996) of the distressed firm. Moulton and Thomas (1993), in a study of the
outcomes of Chapter 11 filings, found that there were relatively few successful
reorganisations. Out of a sample of 73 firms entering Chapter 11 between 1980
and 1986 that were examined in the study, only 44 were successfully reorganised
and only 15 of these firms emerged from Chapter 11 with more than 50% of their
pre-bankruptcy assets.

2.2 Explanatory variables utilised in prior literature

A comprehensive survey of the financial ratios employed in 47 journal articles on
corporate failure is provided by Dimitras et al. (1996). If attention is restricted to
ratios drawn from the financial statements of companies, five groupings are usually
given prominence in the literature namely, liquidity, debt, profitability, activity, and
size (Altman, 2000). Liquidity refers to the availability of cash resources to meet
short-term cash requirements. Debt measures focus on the relative mix of funding
provided by shareholders and lenders. Profitability considers the rate of return
generated by a firm in relation to its size, as measured by sales revenue and/or asset
base. Activity measures consider the operational efficiency of the firm in collecting
cash, managing stocks and controlling its production or service process. Firm size
provides information on both the sales revenue and asset scale of the firm and acts
as a proxy metric on firm history (Levinthal, 1991). A range of individual financial
ratios can represent the groupings of potential explanatory variables, each with
slightly differing information content. The groupings are interconnected, as weak
(or strong) financial performance in one area will impact on another. For example,
a firm with a high level of debt may have lower profitability due to high interest
costs. Whatever modelling methodology is applied in order to predict corporate
distress, the initial problem is to select a quality set of model inputs from a wide
array of possible financial ratios, and then to combine these ratios using suitable
weightings in order to construct a high quality classifier.

3 The genetic algorithm

This section provides an introduction to the GA and a discussion of how it can be
utilised in a NN modelling process.
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3.1 Overview of the GA

Although the development of the GA dates from the 1960s, Holland (1975) first
brought them to the attention of a wide audience. GAs have been applied in a variety
of business settings, including the domain of finance (Bauer, 1994; Deboeck, 1994;
Varetto, 1998), and several branches of management science such as inventory
management (Sarker and Newton, 2002) and vehicle routing (Baker and Ayechew,
2003).
The GA can be considered as a mathematical optimisation algorithm with global
search potential. The methodology is inspired by a biological metaphor, and applies
a pseudo-Darwinian process to ‘evolve’ good solutions to combinatorial optimisa-
tion problems. The GA adopts a populational unit of analysis, wherein each mem-
ber of the population corresponds to a potential solution to the problem of interest.
Evolution in this population is simulated over time by means of a pseudo-natural
selection process using differential-fitness selection, and pseudo-genetic (search)
operators to induce variation in the population between successive generations of
solutions.
A GA typically commences by randomly creating a population of possible solutions
to a given problem. These solutions may be as diverse as a set of rules, a series
of coefficient values, or a NN structure. Although many variants of GAs exist
(Goldberg, 1989; Mitchell, 1996), a typical approach is to encode each potential
solution as a binary string (0,1,0,1, ....). The quality of each solution is determined
by reference to a problem-specific fitness function. This function maps the binary
string to a real number representing the quality or fitness of that proposed solution.
In this paper, the fitness of a binary string is determined by a three-step procedure:

i. Decode binary string into a NN structure
ii. Train the NN

iii. Determine the predictive accuracy of the resulting NN

The predictive accuracy corresponds to the fitness of the binary string. Once the
initial population of solutions has been formed and evaluated, a reproductive process
is applied in which better quality solutions have a higher chance of being selected
for propagation of their genes (bits) into the next generation of candidate solutions.
Over a series of generations, the better adapted solutions, in terms of the given fitness
function, tend to flourish and the poorer solutions tend to disappear. Intuitively, the
GA conducts a high-quality search of the parameter space corresponding to the
chosen problem representation, in an attempt to ascertain the optimal values of
parameters for that representation of the problem. The reproductive stage provides
the engine for this search process, as it biases the search process towards high-
quality existing solutions and uses information from these to navigate the search
space.
The reproductive process is generally governed by two genetic operators, crossover
and mutation (Mitchell, 1996). The crossover operator takes two members of the
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population (chromosomes) and swaps component parts of each in order to create
potential members of the next generation of the population.As an example, suppose
two parent chromosomes are represented by the following binary strings, (0001
1101) and (1100 1100). If a single point crossover is applied after the fourth bit, the
resulting child chromosome could be (0001 1100) or (1100 1101). The mutation
operator causes small random changes in one or more of the genes of a child
solution. In a binary representation of a chromosome, a 0 may mutate to a 1 or a
1 to a 0. Successive generations of candidate solutions are evaluated, selected for
reproduction based on their differential fitness, and then subjected to a reproductive
process until pre-defined stopping criteria are satisfied. In general, evolutionary
algorithms including the canonical GA, can be characterised as:

x[t + 1] = v(s(x[t])) (1)

where x[t] is the population of solutions at iteration t , v(.) is the random variation
operator (crossover and mutation), and s(.) is the selection operator. Therefore the
canonical GA can be described as a stochastic algorithm that turns one population of
candidate solutions into another, using selection, crossover and mutation. Selection
exploits information in the current population, concentrating interest on ‘high-
fitness’ solutions. Crossover and mutation perturb these solutions in an attempt to
uncover better solutions, and these operators can be considered as general heuristics
for exploration. The GA can be formulated as a finite-dimension Markov chain,
wherein each state corresponds to a configuration of the population of bit-strings.
Depending on the form of genetic operators implemented in the algorithm, the
transition probabilities between states will vary. In the canonical GA, the inclusion
of a mutation operator implies that there are no absorbing states in the Markov
process, and that all states can potentially be visited.
The computational power of the GA results from their explicit and implicit parallel
processing capabilities. The explicit parallelisation stems from their maintenance
of a population of potential solutions, rather than a single solution. The implicit par-
allel processing capabilities arise due to the Schema Theorem (Holland, 1975). This
demonstrates that under general conditions, in the presence of differential selec-
tion, crossover and mutation, almost any compact cluster of components (bits) that
provides above-average fitness will grow exponentially in the population between
one generation and the next. The parallel nature of a GA search process makes it
less vulnerable to local optima than traditional, local search, optimisation methods.

3.2 Combining GA and NN methodologies

Artificial neural networks have been applied to many problems in both finance and
general business domains and a comprehensive bibliography of the literature of
neural network applications to business can be found in Wong et al. (2000). NNs
are inductive, data-driven modelling tools, whose inspiration is loosely drawn from
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the workings of biological neurons. Particular strengths of NNs include parallel
computation, universal approximator properties (Cybenko, 1989), robustness to
noise, and adaptive learning. They consist of processing units (nodes or neurons)
which are linked via interconnections (arcs or nerve fibres). A NN can be described
as a generalised, semi-parametric, non-linear, regression model (Brown et al., 1998)
and can map non-linear data structures without requiring an explicit, a priori speci-
fication of the relationship between model inputs and outputs. Trigueiros and Taffler
(1996) note that neural networks are most likely to dominate traditional statistical
modelling when ‘strong non-linearities, and most importantly, interactions between
independent variables, are present’ (p. 353).
A wide variety of NN architectures and training algorithms exist (Gurney, 1997).
This study utilises a fully-connected, feedforward multi-layer perceptron (MLP),
trained using the backpropagation algorithm.An MLP generally consists of a collec-
tion of non-linear processing elements linked in a node-arc structure. This linkage of
individual processing elements gives rise to emergent capabilities for the network,
permitting complex input-output mappings. Nodes may serve as holding points for
model inputs (input nodes), as holding points for the model’s output (output node),
or act as a processing unit, receiving signals from nodes, and in turn producing an
output which is transmitted to other nodes. This signal can be modified (strength-
ened or weakened) when in transit along an interconnection (arc). In constructing
an MLP the objective is to determine the appropriate node-arc structure and the
appropriate arc weights which act to modify signals in transit between nodes. The
MLP is constructed (‘trained’), using pre-existing input/output data vectors. The
connection weights, similar in concept to regression co-efficients, are determined
by means of an iterative, local search, gradient descent algorithm. The MLP pre-
dicts the value (or classification) for a given input data vector. The error between the
network’s predicted outputs and desired (correct) outputs is propagated backwards
through the network to adapt the values of connection weights. The general form
of the three-layer MLP is as follows:

zt = L


a0 +

x∑
j=1

wjL

(
y∑

i=0

biwij

) (2)

where bi represents inputi (b0 is a bias node), wij represents the weight between
input nodei and hidden nodej , a0 is a bias node attached to the output layer, wj

represents the weight between hidden nodej and the output node, zt) represents
the output produced by the network for input data vector (t), and L represents a
non-linear squashing function. The size of the hidden layer is not known a priori
and is determined heuristically by the modeller.
Despite the apparent dissimilarities between GA and MLP methodologies, the
methods can complement each other. A practical problem in utilising MLPs is
the selection of model inputs and model form, which can be very time-consuming
tasks. The application of an evolutionary algorithm provides scope to automate this
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step. MLPs develop a non-linear model linking pre-determined inputs and outputs
whereas GAs are generally used to determine high-quality parameters for a given
model structure. Hence, a combined GA/NN methodology contains both hypothesis
generation and hypothesis optimisation components.
There are several ways that GAs can be combined with an MLP methodology.
The first possibility is to use the GA to uncover good quality model inputs from a
possibly large set of potential inputs. A second use of GAs is to evolve the structure
of a network. Thirdly, a GA could be used to evolve the learning algorithm and
relevant parameters for that algorithm. Therefore a GA could be used to select any
or all of the following:

i. Model inputs
ii. Number of hidden-layers in the MLP

iii. Number of nodes in each hidden layer
iv. Nature of transfer functions at each node
v. Connection weights between each node

Evolving the connection weights removes restrictions on error functions, such as
the requirement under standard backpropagation that the error function has a con-
tinuous derivative. It is also possible to use the GA to develop NNs which are
not fully-connected, by allowing the GA to ‘turn off’ or prune arcs from the NN
(Brabazon, 2002). In this study, we evolve the selection of model inputs, the num-
ber of nodes in the (single) hidden layer, and the nature of the activation functions
at each node. Following the selection of these parameters, the resulting MLP is
trained using the backpropagation algorithm. This GA/NN combination results in
‘dual-level’ learning, whereby the choice of inputs and the architecture of the MLP
is encoded in a genetic structure which alters over the generations, representing
phylogenetic learning, and the discovery of ‘good’ weights for this structure repre-
senting epigenetic or lifetime learning (Sipper and Sanchez, 1997).

4 Problem domain & experimental approach

This section describes both the data and the model development process adopted
in this study.

4.1 Sample definition and model data

A total of 178 firms were selected judgementally (89 failed, 89 non-failed), from
the Compustat Database. Firms from the financial sector were excluded on grounds
of lack of comparability of their financial ratios with other firms in the sample. The
criteria for selection of the failed firms were:

i. Inclusion in the Compustat database in the period 1991-2000
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ii. Existence of required data for a period of three years prior to entry into Chapter
7 or Chapter 11

iii. Sales revenues must exceed $1M

The first criterion limits the study to publicly quoted, US corporations. The second
criterion injects an element of bias into the sample in that companies without a
three year financial history prior to entering Chapter 7 or Chapter 11 are omitted.
Twenty-two potential explanatory variables are collected for each firm for the three
years prior to entry into Chapter 7 or Chapter 11 of each failing firm. The date of
entry into Chapter 7 or Chapter 11 was determined by examining regulatory filings.
For every failing firm, a matched non-failing firm is selected. Failed and non-failed
firms are matched both by industry sector and size (sales revenue three years prior
to failure). The set of 89 matched firms is randomly divided into model building
(64 pairs) and out-of-sample (25 pairs) datasets. The dependant variable is binary
(0,1), representing either a non-failed or a failed firm.

The choice of explanatory variables is hindered by the lack of a clear theoretical
framework that explains corporate failure (Argenti 1976; Trigueiros and Taffler
1996;Wilson et al., 1995; Dimitras et al., 1996). Prior to the selection of the financial
ratios for inclusion in this study, a total of ten previous studies were examined
(Beaver, 1966; Altman, 1968; Altman et al., 1977; Dambolena and Khoury, 1980;
Ohlson, 1980; Serrano-Cina, 1996; Kahya and Theodossiou, 1996; Back et al.,
1996; Sung et al., Lee, 1999; Moody’s, 2000). These studies employed a total
of fifty-eight distinct ratios. A subset of twenty-two of the most commonly used
financial ratios in these studies was selected. The selected ratios were:

i. EBIT / Sales
ii. EBITDA / Sales

iii. EBIT / Total Assets
iv. Gross Profit / Sales
v. Net Income / Total Assets

vi. Net Income / Sales
vii. Return on Assets

viii. Return on Equity
ix. Return on Investment
x. Cash / Sales

xi. Sales / Total Assets
xii. Inventory / Cost of Goods Sold

xiii. Inventory / Working Capital
xiv. Fixed Assets / Total Assets
xv. Retained Earnings / Total Assets

xvi. Cash from Operators / Sales
xvii. Cash from Operations / Total Liabilities

xviii. Working Capital / Total Assets
xix. Quick Assets / Total Assets
xx. Total Liabilities / Total Assets

xxi. Leverage
xxii. EBIT / Interest
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4.2 GA/NN model construction

In genetics, a strong distinction is drawn between the genotype and the pheno-
type. The former contains genetic information, whereas the later is the physical
and behavioural manifestation of this information in an environment. In biological
settings, the genotype contains an implicit form of memory, the results of past evo-
lutionary learning. In this study, the phenotype corresponds to the developed neural
network and its classification accuracy, and a binary genotype encodes the choice
of inputs and the network structure. Initially, a population of 50 binary strings,
each corresponding to a distinct NN structure and set of explanatory variables, was
randomly generated. Each NN structure and set of inputs consists therefore of a
hypothesis linking financial variables to corporate (non) failure. Hence, the evo-
lutionary process maintains and evaluates a population of these hypotheses in an
attempt to uncover ‘ever-better’ hypotheses. This population was allowed to evolve
for 80 generations. Each network was trained three times using the backpropaga-
tion algorithm with different initial randomisations of the weight vectors, reducing
the ‘noisy fitness evaluation’ problem which can emerge when a network architec-
ture is evolved (Yao, 1999). The model building dataset was subdivided to provide
both a training and (in-sample) test dataset. The networks were constructed using
the training data and network fitness was assessed during the evolutionary process
based on their performance on the test dataset, where networks with higher classifi-
cation accuracy were considered more ‘fit’. When constructing each NN structure,
the genetic algorithm was able to choose between the following parameters:

i. Potential explanatory variables
ii. Form of activation function (linear or logistic)

iii. Number of hidden layer nodes

In developing the models, a limit of four hidden layer nodes and six input vari-
ables was initially imposed. The object in placing these constraints on the network
structures being searched by the evolutionary process, was to conserve degrees
of freedom and reduce the danger of model over-fit, with resulting poor classifi-
cation accuracy out-of-sample. The out-of-sample, validation data was not used
in the model development process. The evolutionary process at the end of each
generation was as follows. A roulette selection process explicitly favouring more
fit members of the current population, was initially applied to select members for
the mating pool. ‘Parents’ were randomly selected from this pool, and single-point
crossover was applied (crossover point is randomly selected), with probability of
0.5 to produce ‘child’ solutions. A mutation (exchange) operator was next applied.
With a probability of 0.25, two randomly chosen bits of each child solution are
exchanged. Finally, the current generation of solutions was replaced by the child
solutions.
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Table 1. LDA vs ‘Best’ individual GA/NN model after 80 generations, for one to three years prior to
failure

Results LDA GA/NN
Train Out-of-sample Train Out-of-sample

T-1 81.73% 76.00% 86.72% 80.67%
T-2 78.93% 69.33% 81.77% 72.00%
T-3 75.00% 64.67% 76.56% 66.00%

Table 2. LDA vs Average of 10 ‘Best’ GA/NN models after 80 generations, for one to three years prior
to failure

Results LDA GA/NN
Train Out-of-sample Train Out-of-sample

T-1 81.73% 76.00% 85.76% 79.83%
T-2 78.93% 69.33% 80.36% 71.53%
T-3 75.00% 64.67% 76.28% 66.67%

5 Results and discussion

Accuracy of the developed models was assessed based on the overall classifica-
tion accuracy, initially on the test and subsequently on the out-of-sample datasets.
Summarised classification accuracies for an LDA model (averaged over three ran-
domisations of the training/test data) constructed using forward stepwise selection,
and the best GA/NN model in each time period (averaged over the same three
randomisations of the training/test data), are provided in Table 1. Both LDA and
GA/NN perform reasonably well at T-1 (one year prior to failure), correctly clas-
sifying 76.0% and 80.67% respectively, of all firms in the out-of-sample datasets.
In years T-2 and T-3 (two and three years prior to failure), the classification ac-
curacy of both sets of models falls off gradually. In each time period, the GA/NN
models outperform their LDA counterparts on both the training and out-of-sample
datasets. Calculation of Press’s Q statistic (Hair et al., 1998) for each of the GA/NN
and LDA models rejects a null hypothesis, at the 5% level, that the out-of-sample
classification accuracies are not significantly better than chance.

Table 2 provides the classification accuracies for both the LDA models and the
average of the best ten GA/NN models after 80 generations, in each time period,
for the three separate randomisations of the dataset.
Additional metrics were collected on the positive accuracy (correct prediction of
non-failure) and negative accuracy (correct prediction of failure) for each of the
models. Table 3 provides these for the out-of-sample datasets for the LDA, the
best individual, and the average of ten best individual GA/NN models. All reported
results are averaged across the three different randomisations of the dataset. Gener-
ally, the out-of-sample classification accuracies for the GA/NN models are reason-
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Table 3. Positive and negative classification accuracy (out-of-sample) of LDA models vs best individual
(average of 10 best) GA/NN model(s)

Results LDA GA/NN
Positive Negative Positive Negative

T-1 78.67% 73.33% 78.67% (79.00%) 82.67% (80.67%)
T-2 81.33% 57.33% 69.33% (71.07%) 74.66% (72.00%)
T-3 62.67% 66.67% 66.67% (69.73%) 65.33% (63.60%)

Table 4. Explanatory variables of ‘Best’ GA/NN models

T-1 T-2 T-3

Cash/Sales Return on Assets EBIT Margin
Sales/Total Assets Net Income/Total Assets Return on Investment

Quick Assets/Total Assets Sales/Total Assets Inventory/Working Capital
EBIT/Interest Cash from Ops/Sales Cash from Ops/Total Liabil

Total Liabil/Total Assets Cash from Ops/Total Liabil
Working Capital/Total Assets

ably symmetric between correct prediction of non-failure and correct prediction of
failure.
Although the best GA/NN models (defined as producing the ‘best’ classification
performance on the training dataset) for each time period, over each of the three
runs, did not display identical form, there were similarities in their structure, and in
the financial ratios selected. The evolved MLPs also fall within suggested heuristic
guidelines (Trigueiros and Taffler, 1996; Bigus, 1996) regarding both the total
number of weights in the model and the size of the hidden layer.

Table 4 provides details of the ratios utilised by the best single NN model
evolved in each time period. In T-3 measures of return on both investment and
sales, cash generation relative to the size of liabilities, and the size of inventory
relative to working capital are included in the model. In T-2, emphasis is placed on
return on asset measures as well as metrics on the level of cash generation relative
to sales and the debt level of the firm. The chosen financial ratios for the model in
T-1 primarily concentrate on the level of cash, and other liquid assets relative to the
size of the firm, a measure of how well interest payments are covered by earnings,
and a metric of the size of the total indebtedness of the firm relative to its asset base.
It is interesting to note that cash, liquidity, and measures of indebtedness, rather
than profit measures are emphasised in T-1. This is in accordance with a proposition
that failing firms are running into liquidity crises in T-1, which prove fatal because
of their high level of debt.
Examination of the internal structure of the ‘best’ evolved NN models showed that
the T-1 model used three nodes (one linear and two logistic activation functions)
in its hidden layer and a logistic activation function at its output node. The T-2
model had four nodes in its hidden layer (one logistic and three linear activation
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Table 5. Average populational fitness (in-sample) for T-1 to T-3

Gen T-1 T-2 T-3
Average (Std Dev) Average (Std Dev) Average (Std Dev)

2 71.96% (7.05) 72.78% (3.84) 66.74% (3.49)
10 77.47% (3.41) 77.14% (2.00) 72.51% (1.67)
20 84.37% (1.12) 77.71% (1.22) 72.19% (1.51)
30 84.93% (2.11) 76.24% (4.60) 72.54% (1.42)
40 85.59% (3.01) 77.90% (1.20) 72.81% (1.76)
50 85.49% (3.58) 77.44% (1.25) 72.23% (1.51)
60 86.29% (1.61) 77.39% (1.55) 72.84% (1.48)
70 86.16% (1.32) 77.29% (1.56) 72.32% (1.41)
80 86.30% (1.02) 77.40% (1.53) 72.22% (1.49)

functions) and a logistic activation function at its output node. The T-3 model had
four nodes in its hidden layer (one logistic and three linear activation functions) and
a logistic activation function at its output node. The models did not tend to use the
most complex internal structure available, in particular we note that all the models
included linear activation functions in their hidden layer.

In selecting the number of generations (80), we were guided by the results of pre-
liminary experiments, which suggested that average fitness (classification accuracy
on the training data) in the population typically converged to a plateau after about 50
generations. To demonstrate the convergence of classification accuracy, a tabulation
of average populational fitness every 10 generations for one of the randomisations
of the dataset is provided in Table 5. In each of the three time periods (T-1 to T-3),
the convergence of average population in-sample fitness is noticeable by genera-
tion 50. In addition to examining the trajectory of average populational fitness, the
time-to-discover the best ‘individual’ (based on in-sample fitness) in each run was
recorded. The best individuals for T-1, T-2 and T-3 were discovered in generation
46, 6 and 27 respectively.

In evolving the NN structures, the number of hidden nodes and ratio inputs
which could be included was limited to four and six respectively, in order to conserve
degrees of freedom in the final models. A natural question is whether these limits
had an adverse affect on the classification accuracies obtained, particularly in the
case of the best model evolved for T-2 which employed six inputs. In order to
examine the affect of imposing the constraint on the number of inputs, a series of
additional experiments were conducted on the T-1 data, whereby the number of
permissible inputs was varied from 4 to 12. Although the classification accuracy
in-sample improved slightly as the number of inputs increased (to a maximum of
88.54% for the best model when 12 inputs were allowed, averaged over all three
randomisations of the dataset), out-of-sample accuracy for the best model did not
show any notable improvement (or disimprovement) beyond the six input case. This
result is consistent with prior research which indicates that the available information
content in a set of financial ratios can generally be captured in a relatively small
subset of these ratios. Although a multitude of ratios can be calculated from a given
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set of financial statements, many of them will have similar information content. For
example, it would be expected that profitability ratios, whether measured against
turnover or asset base, and whether profit was defined before or after tax, would
have overlapping information content. Hence, a relatively concise set of financial
ratios can convey much of the information content available in a set of financial
statements.

A series of experiments were also undertaken using T-1 data, in which the al-
lowed number of nodes in the hidden layer was increased to eight. This produced a
marginal improvement for in-sample accuracy to 86.98% (averaged over all three
dataset randomisations), but failed to produce any improvement in out-of-sample
classification accuracies. A further series of experiments, using T-1 data, were
undertaken to investigate whether the results from the evolved NN models were
impacted by the limitations on the population size (50 individuals). In these exper-
iments, the population size was increased to 100 individuals. The results obtained
from the larger population size demonstrated no improvement in the classification
accuracy in-sample or out-of-sample.

6 Conclusions

A series of classification models were constructed using a hybrid GA/NN method-
ology which combined the global search potential of an evolutionary algorithm with
the non-linear modelling capabilities of an MLP. The predictive quality of these
models was compared with that of a benchmark LDA model. The results of the
study are consistent with the hypothesis that impending bankruptcy can be forecast
with some degree of accuracy using ratio information drawn from financial state-
ments. The results also indicate that a combination of an evolutionary algorithm
and an MLP can develop models that are useful for this task, and that these mod-
els can outperform LDA models. It is notable that the developed GA/NN models
did not tend to employ a complex internal structure suggesting that the financial
ratios which form the pool of potential explanatory variables in this study, do not
embed highly complex, non-linear interactions which are useful for the purposes
of failure prediction. It seems plausible that lagged financial information provides
an incomplete explanation of the occurrence (or not) of corporate bankruptcy, and
because of this, complex models developed from this information set will not tend
to substantially out-perform simpler linear models. It remains an open question as
to how well models, constructed using a hybrid GA/NN methodology, perform on
richer information sets which include both financial and non-financial information
concerning firms and which also incorporate information drawn from the wider
environment.

In assessing the performance of the models developed in this paper, a number
of caveats must be borne in mind. The premise underlying these models (and all
empirical work on corporate failure prediction) is that corporate failure is a process
commencing with poor management decisions, and that the trajectory of this process
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can be tracked using accounting ratios. This approach has inherent limitations. It
will not forecast corporate failure which results from a sudden environmental event.
It is also likely that the explanatory variables utilised are noisy. Commentators
(Argenti, 1976; Smith, 1992) have noted that managers may attempt to utilise
creative accounting practices to manage earnings and/or disguise signs of distress.
Another limitation is that the underlying relationships between accounting ratios
and corporate failure may not be stationary (Altman, 2000; Kahya and Theodossiou,
1996). Accounting standards and the economic environment faced by firms varies
over time. Additionally, the firms sampled in this study are relatively large and are
publicly quoted. Thus, the findings of this study may not extend to small businesses.

Despite these limitations, the high economic and social costs of corporate failure
imply that there is value in building models that can indicate declines in the financial
health of corporations. Given the lack of a clear theory underlying corporate failure,
empirical modelling usually adopts a combinatorial approach, a task for which
evolutionary algorithms are well suited.

The potential for application of evolutionary algorithms to automate the time-
consuming process of creating NNs is noted. The fitness-evaluation step is generally
the most computationally intensive component of the GA, particularly when this
step is iterative (such as training a NN). This has discriminated against the wide-
spread use of GA/NN hybrids, however as the cost of computer processing power
declines, we expect to see greater application of these hybrids to classification
problems.
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