
Differential Gene Expression

with Tree-Adjunct Grammars

Eoin Murphy, Miguel Nicolau, Erik Hemberg,
Michael O’Neill, and Anthony Brabazon

Natural Computing Research and Applications Group,
Univeristy College Dublin, Ireland

{eoin.murphy,miguel.nicolau,erik.hemberg,m.oneill,anthony.brabazon}@ucd.ie

Abstract. A novel extension of an existing artificial Gene Regulatory
Network model is introduced, combining the dynamic adaptive nature of
this model with the generative power of grammars. The use of grammars
enables the model to produce more varied phenotypes, allowing its appli-
cation to a wider range of problems. The performance and generalisation
ability of the model on the inverted-pendulum problem, using a range of
different grammars, is compared against the existing model.

1 Introduction

Recently in the field of Evolutionary Computation there has been an increase of
interest in developmental biology and how it affects the evolutionary models cur-
rently in use. It is interesting to investigate whether these developmental systems
can be applied to improve existing evolutionary approaches, as developmental
processes play such an important role in nature.

To date, much of the work that has been done with developmental systems in
the field of Genetic Programming (GP) has been ontogenetic in nature. That is
to say, concerning with the growth or morphogenesis of individuals, by means of
interaction with the environment [12, 5, 4]. These developmental systems derive
the phenotype from the genotype, evaluating this phenotype, before undergoing
some morphogenesis defined within the phenotype itself. This process continues,
creating more complex phenotypes. The organism morphologies in nature on
which these systems are modeled on, however, are themselves the result of an
underlying regulatory process, known as gene regulatory networks (GRNs).

GRNs, which are at the core of developmental biology allow for “differential
gene expression from the same nuclear repertoire” [3]. This is partly achieved by
including feedback loops and being directly influenced by the environment. An
outline of a new genetic representation for GP using GRNs was given by Banzhaf
[1], exploring the dynamics of such a system. This new representation has since
been extended, providing methods for encoding the state of the environment into
the GRN, as well as extracting a signal from the GRN [10]. However, even in
its extended form, the phenotype produced is a series of signals between 0.0 and
1.0, making this representation difficult to apply to many different problems.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7491, pp. 377–386, 2012.
� Springer-Verlag Berlin Heidelberg 2012

378 E. Murphy et al.

This study is concerned with applying the generative power of grammars to
the model, and investigating the effects of this complexification of the mapping
process. Making use of grammars to generate phenotypes enables the model to
be applied to many different problems. Tree-Adjunct Grammatical Evolution
(TAGE) [9], a variant of the popular grammar-based form of GP, Grammatical
Evolution (GE), is extended to include the GRN model. TAGE is ideal due to
a unique property of the grammar type it employs, Tree-Adjoining Grammars
(TAGs) [6], which produce valid individuals at every stage of derivation.

The following section gives introductions to TAGE and the GRN model. Sec-
tion 3 presents the extension of the GRN model into the TAGE algorithm,
followed by a description of the pole-balancing problem in section 4. The ex-
periments performed and results obtained are presented with some discussion in
section 5. The study concludes in section 6, outlining some future work.

2 Background

2.1 Tree-Adjunct Grammatical Evolution

TAGE is a grammar-based form of GP, combining aspects of Darwinian natu-
ral selection, genetics and molecular biology with the representational power of
grammar formalisms [11, 9]. TAGE uses a representation consisting of a TAG
and a chromosome. A TAG is defined by a quintuple (T,N, S, I, A) where: T is
a finite set of terminal symbols; N is a finite set of non-terminal (NT) symbols:
T ∩ N = ∅; S is the start symbol: S ∈ N ; I is a finite set of finite trees called
initial trees; and A is a finite set of finite trees called auxiliary trees.

Initial trees represent the minimal non-recursive structures produced by the
grammar, i.e., they contain no repeated NT symbols. Inversely, auxiliary trees of
type X represent the minimal recursive structures, which allow recursion upon the
NT X. The union of initial trees and auxiliary trees forms the set of elementary
trees, E; where I ∩ A = ∅ and I ∪ A = E.

During derivation, the adjunction composition operation make use of codons
to join elementary trees together. When using TAGs, at each stage of derivation,
before and after each adjunction operation, valid phenotypes can be extracted.
Due to space constraints, a full description of TAGE has been omitted, but
can be found in [9]. In addition, the grammars used throughout this study are
presented in Fig. 4 as context-free grammars (CFG) in an effort to save space.
TAGE can transform between CFGs and equivalent TAGs.

2.2 Artificial Gene Regulatory Networks

The GRN model [1] used in this study, which has been extended to enable input
and output [10], consists of three components: a genome, genes, and proteins.
The model mimics the biological interaction of proteins with a cell’s genes. By
binding at regulatory sites, certain proteins can regulate the expression of genes,
and hence, the production of additional proteins. Proteins are assigned concen-
trations in the model, with a total concentration of 1.0 for each type of protein.

Differential Gene Expression with Tree-Adjunct Grammars 379

The term concentration, with regards to this model, represents the proportion
of a particular protein to the rest of the proteins of the same type.

Gene. A gene consists of four sections, as shown in Fig. 1. The first two are two
32 bit regulatory sites, the enhancer and inhibitor sites. These two sites affect
a gene’s expression positively or negatively, respectively. A 32 bit promoter site,
which follows these regulatory sites, is of the form XYZ01010101 where XYZ is
an arbitrary 24 bit sequence and the final eight bits define the gene’s type or
signature. The specific eight bit signature of a promoter is used to identify genes
along the genome. Following the promoter is a 160 bit region, which encodes the
protein. These 160 bits are subdivided into five 32 bit sections. A majority vote
is performed at each bit position across the five sections to determine the 32 bits
making up the protein signature, as shown in Fig. 2.

Gene/Protein Types and Input/Output. Genes are split into two groups in
this model, Transcription Factors (TF-genes) and Products (P-genes). A gene’s
type is dependent upon its promoter’s signature, in this case XYZ00000000 is
used to identify TF-genes and XYZ11111111 to identify P-genes. TF-genes pro-
duce TF-proteins which can bind to regulatory sites and affect gene expression.
P-genes produce P-proteins which are are used solely to extract output from
the model, and as such, are prevented from binding and affecting regulation.
The sum of concentrations for each protein type must add to 1.0. Input into the
model is achieved by injecting specific concentrations of free TF-proteins into
the model. Input values are encoded into the proteins’ concentration levels. The
concentration of free proteins remains static unless new inputs are injected.

Regulation. How much each protein affects a gene’s expression by binding at
that gene’s regulatory sites (enhancer and inhibitor) is calculated by taking the
XOR of the protein’s signature with that of the regulatory site. The number of
bits set is the degree of match between the two, i.e., the number of complemen-
tary bits between them. The enhancing, ei, and inhibiting, hi, signals for the
expression of gene gi are calculated as follows:

ei, hi =
1

N

N∑

j=1

cje
β(uj−umax)) , (1)

where N is the total number of TF-proteins, cj is the concentration of protein j,
uj is the number of complementary bits between the regulatory site and protein
j, umax is the maximum number of complementary bits observed in the system,
and β is a positive scaling factor. A value of 1.0 was used for scaling factors β
and δ across all experiments.

The expression rate of gi (the production of pi) at time t+ 1 is given as:

dci
dt

= δ(ei − hi)ci , (2)

where δ is a scaling factor. Once all produced TF-protein concentrations have
been updated, these concentrations are scaled such that when summed with the
free TF-protein concentrations they add to 1.0.

380 E. Murphy et al.

XYZ01010101

Enhancer
site

Inhibitor
site

Promoter
site

Protein

Gene
Information

32 bits 32 bits 32 bits 160 bits

Fig. 1. A gene on the genome split into its different sections

Evolved Genome:
...101101000101110100101101111101011011100000101110101000101011110111101010001001000100001011111111...

...101101000101110100101101111101011011100000101110101000101011110111101010001001000100001011111111...

...111010010110100001000010011100101010010100011110101010111101010111111101101010010010100010100...

...010101101010010111010001010110010001010101010010110100101010001010010101001000000011100111010...

Search for promoters and extract genes:

Decode each protein value bit by
majority from gene information:
1110100101101000010000100111001
0101001010001111010101011110101
0111111101101010010010100010100
0101011010100101110100010101100
1000101010101001011010010101000
0101101010101001010000010111100

Set initial concentrations for
each protein found:
TF-protein and P-protein
concentrations must independently
sum to 1.0.

TF0: 0.25 P0: 0.2
TF1: 0.25 P1: 0.2
TF2: 0.25 P2: 0.2
TF3: 0.25 P3: 0.2
 P4: 0.2

GRN is run and allowed to settle into a steady-state: Inputs are injected into the system:
Existing TF proteins are scaled.

GRN is run and P-proteins are sampled after a predefined number of iterations (2000):

TF0: 0.045
TF1: 0.955
TF2: ~0.00
TF3: ~0.00

P0: 0.005
P1: 0.88
P2: ~0.0
P3: 0.002
P4: 0.113

I0: 0.0734
I1: 0.0929
I2: 0.0074
I3: 0.0505

P0: ~0.0
P1: 0.752
P2: ~0.0
P3: 0.121
P4: 0.128

TF0: 0.035
TF1: 0.741
TF2: ~0.00
TF3: ~0.00

P0: 0.005
P1: 0.88
P2: ~0.0
P3: 0.002
P4: 0.113

enhancer inhibitor promoter

gene information

Initialisation

Execution

Fig. 2. An illustrative example of the GRN model. The genome is scanned for promoter
sites and genes are extracted. Each gene’s protein signature is calculated and each pro-
tein is given an initial concentration. The system is run for a number of iterations to
become stable. The environment state is then read, encoded as TF-protein concen-
trations and injected into the system, scaling the existing TF-protein concentrations.
The system is run for a number of iterations before extracting P-proteins to be used
for mapping. This process of encoding and injecting inputs, iterating and extracting
outputs can continue indefinitely.

Differential Gene Expression with Tree-Adjunct Grammars 381

A similar formula is used for the expression rate of P-genes. P-protein concen-
trations are normalised separately from the TF-protein concentrations to sum
to 1.0.

dci
dt

= δ(ei − hi) , (3)

3 Combining Artificial GRNs and Grammars

In order to enable the use of GRNs within the TAGE algorithm, the TAGE
pipeline must be extended. The GRN model is embedded at the start of the
mapping process. This enables easy access to the evolved genome in order to
search for TF-genes and P-genes to construct the GRN, as well as providing
access to the traditional mapping process to remap the phenotype each time the
fitness function/environment changes. In order to allow for this, a feedback loop
is required from the fitness function to the mapper.

To evaluate an individual, its genome must first be mapped. The mapping call
initiates a search of the individual’s genome for genes and a GRN is constructed.
This GRN is allowed to run, without free TF-proteins (inputs), for 10000 iter-
ations in an effort to allow the network to settle into a steady state. This may
stop prematurely if a steady state within the GRN is detected earlier.

When the fitness function is called to evaluate the individual, the initial state
of the environment, encoded as concentrations of free TF-proteins, is passed
to the mapper and injected into the GRN, scaling the existing produced TF-
proteins as necessary. The GRN is then run for a predefined number of iterations
before the P-proteins and their concentrations are used to create a string of
integer codon values. These codons are then used by the traditional mapping
process to produce a valid phenotype. One of the major advantages of using
TAGs is that regardless of how many codon values are available to the mapper,
a valid phenotype can always be produced.

3.1 Using Product-Proteins as Mapping Inputs

There are many different methods of interpreting P-proteins and their concen-
tration levels to produce codon values for mapping. In this study, four such
methods are examined, two for use with a binary grammar and two for use with
grammars of any arity. The first two methods are chosen to simulate the ap-
proaches taken in [10] while still retaining the use of a direct mapping grammar.
These two methods make use of a single P-protein to produce a codon value,
whereas the remaining two methods use all available P-proteins to produce a
chromosome of codon values, enabling mapping with grammars of much higher
complexity.

Concentration Value. The P-protein’s concentration is examined. If it is found
to be greater than 0.5, a codon value of 1 is used. Otherwise, a codon value of
0 is used. Using Fig. 2 as an example, After the model has iterated, P0 has a
concentration of ∼ 0.0 producing a codon value of 0. This results in the tree at
index 0 from the grammar being chosen.

382 E. Murphy et al.

Concentration Tendency. The change in concentration of a P-protein from
input injection until the final iteration. If the magnitude of this change is greater
than some threshold, a codon value of 0 or 1 is used depending on the sign of
that change, positive or negative respectively. Otherwise, the codon value chosen
previously will be reused. Taking Fig. 2 as an example, after the inputs have been
injected, P0 has concentration of 0.05, and a concentration of∼ 0.0 after iteration
2000. As |−0.05| is both greater than the threshold of 1−10 and is negative, a
codon value of 1 is used, choosing the initial tree from index 1 in the grammar.

Sort by Concentration. The set of P-proteins is sorted in descending order
by concentration level, as was suggested in [1]. The P-protein’s 32 bit signatures
are then used to represent integer codon values, with the most concentrated
P-protein being the left-most codon. In Fig. 2, the P-proteins when sorted by
concentration are P1, P4, P3, P0, P2, using their signatures as codons in this
order, an initial tree is chosen from the grammar (one codon) and two adjunction
operations are performed (two codons each).

Sort by Concentration Tendency. Similar to the Sort by Concentrated
method above, however the P-proteins are sorted by means of the signed mag-
nitude of the tendency of their concentration values. In this case, the P-proteins
are sorted in the order P3, P4, P2, P0, P1 as P3 has the largest increase of
0.119 and P1 with the smallest of −0.128. The protein signatures are used as
codon values in this order with the grammar to create a phenotype.

4 The Inverted Pendulum (Pole-Balancing) Problem

The problem examined throughout the course of this study is the pole-balancing
problem [2, 13], a classic dynamic control problem that has recently been exam-
ined in the study of applying GRNs to evolutionary computation [10, 8]. The
description below is based on the problem setup used by Nicolau et al. [10].

The problem consists of simulating a cart which can move along a finite two
dimensional track. A rigid pole is hinged to the centre of the cart. Forces may
be applied to the cart in either direction, causing the cart and the pole to accel-
erate either left or right. The aim of the problem is to prevent the angle created
between the pole and the vertical from becoming greater than some threshold,
and keeping the cart within the bounds of the track. The problem model consists
of four state variables:

x ∈ [−2.4,+2.4]m the cart position, relative to the centre of the track;
ẋ ∈ [−1.0, 1.0]m/s the velocity of the cart;
θ ∈ [−12, 12]◦ the angle of the pole with the vertical;
θ̇ ∈ [−1.5, 1.5]◦/s the angular velocity of the pole.

The (friction-less) physical simulation of the cart-pole model is governed by the
following non-linear differential equations:

θ̈t =
g sin θt − cos θt

[
Ft+mlθ̇2t sin θt

mc+m

]

l
[
4
3
− m cos2 θt

mc+m

] ẍt =
Ft +ml

[
θ̇2t sin θt − θ̈t cos θt

]

mc +m
, (4)

Differential Gene Expression with Tree-Adjunct Grammars 383

where g = −9.8m/s2, acceleration due to gravity, mc = 1, 0kg, the mass of cart,
m = 0.1kg, the mass of pole, l = 0.5m, the half-pole length, Ft = α · 10N where
α ∈ [−1.0, 1.0], the force applied to the cart’s center of mass at time t.

These variables are encoded as free TF-proteins for the GRN model by assign-
ing a unique signature to each variable, with each variable’s value normalised in
the range [0.0, 0.1] taking up a max concentration of 0.4 in the GRN model. The
signatures of each variable are:

x: 00000000000000000000000000000000 θ: 11111111111111111111111111111111

ẋ: 11111111111111110000000000000000 θ̇: 00000000000000001111111111111111

These free TF-proteins are injected into the stabilised GRN and the existing
produced TF-proteins are normalised as required. The GRN is then iterated
2000 times, corresponding to 0.2s of simulated time for the cart-pole model.
After which, the P-proteins are mapped and the phenotype is evaluated resulting
in a scaling co-efficient, α, for the force. The value of α is clamped between −1.0
and 1.0 inclusive. The scaled force is applied to the equations of motion and
the state variables are updated, re-encoded, and fed back into the GRN. This
process continues until the maximum number of time steps is reached, or the
cart-pole model enters a failure state, i.e., −2.4 > x > 2.4 or −12◦ > θ > 12◦.
Fitness is calculated by:

F (x) =
120000

successful time steps
− 1 . (5)

5 Experiments

This study is concerned with the application of grammars to the artificial GRN
model. Several experiments are presented to help to examine this effect. The
grammars used throughout this study are listed in Fig. 4, with the general evo-
lutionary parameters of the system used in Tab. 1. For each run, the pole-cart
model is initialised with a random state at the start of each generation.

Table 1. GE parameters adopted for
each of the benchmark problems

Parameter Value

Generations 50
Population Size 250
Initialisation Random

Chromosome Size 128 (4096 bits)
Replacement Strategy Generational

Elitism 25 Individuals
Selection Operation Tournament
Tournament Size 3
Bit Mutation Prob 0.005

0 10 20 30 40 50

0
20

00
40

00
60

00
80

00

Bang Bang − Best Fitness

Generation

B
es

t F
itn

es
s

Concentration
Tendency

Fig. 3. Mean best fitness plot

384 E. Murphy et al.

<power> ::= 1.0 0.0 - | 1.0

(a) Direct mapping gram-
mar

<power> ::= <const> 0.0 <op>
<op> ::= + | -
<const> ::= 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |

0.6 | 0.7 | 0.8 | 0.9 | 1.0
(b) Discrete digits grammar

<power> ::= <const> 0.0 <op>
<op> ::= + | -
<const> ::= 0.<digits>
<digits> ::= <digit><digits> | <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 |

6 | 7 | 8 | 9
(c) Continuous digits grammar

<power> ::= <expr> <expr> <op>
<expr> ::= <expr> <expr> <op> | <const>
<op> ::= + | - | * | /
<const> ::= 0.<digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 |

6 | 7 | 8 | 9
(d) Symbolic regression grammar

Fig. 4. The grammars used, in reverse polish notation. Note that (c) generates the
range (−0.9, 0.9) and the values of (d) are clamped to [−1.0, 1.0] as previously.

In order to determine whether the system used by this study is comparable
to the work done previously by Nicolau et al. [10], 50 independent runs of the
simple grammar using the first and second output methods (see Section 3.1)
are performed, using only a single codon value, and producing either -1 or +1.
Following this, assessing the effect of grammar complexity on the system, three
different grammars of increasing complexity are examined over 50 runs using the
remaining two P-protein mapping approaches.

5.1 Analysis of Results

The mean best fitness plots of the direct mapping grammar experiments are
presented in Fig. 3. From the plot, it appears that the P-protein concentration
tendency approach performs better, managing to find solutions in far fewer gener-
ations than using the protein’s concentration value. The concentration tendency
approach also manages to find more solutions overall than the value approach.

While these plots are similar in trend to those presented in [10], showing a
similarity in performance, Fig. 3 has a higher variance. This variance can be
accounted for by the choice of selection methods, generational vs steady-state
[10]. Similar plots are presented for the three other grammars in Fig. 5. From
these plots, it appears that using the concentration tendency approach is better
than using the protein concentration itself.

Generalisation Results. The generalisation test proposed by Whitley et al.
[13] is used in this study to examine robustness. After each run, the best individ-
ual is tested for 1000 time steps on 625 test cases. For each of the problem’s four
state variables, a set of five values is calculated, with these values normalised
to 0.05, 0.275, 0.725 and 0.95 of the each variable’s range. The test cases are
obtained from combining these values. However, only 457 cases are solvable [10].

Given how quickly solutions are found by the tendency approach, as seen in
Fig. 5, it is not surprising that this approach does not perform as well in terms
of generalisation. Tab. 2 shows that while finding fewer successful solutions,
the concentration value approach performs better in the generalisation tests.

Differential Gene Expression with Tree-Adjunct Grammars 385

0 10 20 30 40 50

0
20

00
40

00
60

00
80

00

Discrete − Best Fitness

Generation

B
es

t F
itn

es
s

Concentration
Tendency

0 10 20 30 40 50

0
20

00
40

00
60

00
80

00
10

00
0

Continuous − Best Fitness

Generation
B

es
t F

itn
es

s

Concentration
Tendency

0 10 20 30 40 50

0
20

00
40

00
60

00
80

00
10

00
0

Symbolic Regression − Best Fitness

Generation

B
es

t F
itn

es
s

Concentration
Tendency

Fig. 5. Mean best fitness plots for the three more complex grammars

Table 2. Generalisation test results: 1000 time steps for 625 test cases

Approach Best Worst Median Mean Std. Dev. Suc. (50)

Best Product - Concentration 406 0 203 203.18 116.05 47
Best Single Output - Tendency 137 0 52 57.52 34.43 50
Discrete - Concentration 355 0 110 120.7 111.76 36
Discrete - Tendency 240 20 87 88.68 45.13 50
Continuous - Concentration 390 0 162 155.48 118.46 40
Continuous - Tendency 200 10 51 61.62 36.35 50
Sym. Reg. - Concentration 356 0 111 128.44 110.21 39
Sym. Reg. - Tendency 208 0 69 78.82 51.75 43

This could be due to the fact that perfect individuals which use this approach
appear much later in the run, with the population having being exposed to
more instances of the problem than those using the tendency approach. Allow
evolution to continue for the whole run rather than stopping once a solution to
any instance of the problem is found might help counteract this.

6 Conclusions

The objective of this study was to examine the effect of integrating grammars and
an artificial GRN model, the motivation for which is two fold. Firstly, advances
in developmental biology have increased our understanding of developmental
processes and how they affect the natural evolution; this knowledge is slowly
filtering into EC fields such as GP. Secondly, while artificial GRNs have been
applied to the field of GP previously [10], the phenotypes have been limited
to simple signals. By exploiting the generative power of grammars, these sys-
tems can be extended to have more varied phenotypic products, allowing their
application to a broader range of problem domains.

Addressing this, an artificial GRN model was adapted into the TAGE algo-
rithm. Different methods of extracting output from the GRN model for mapping
using a grammar were examined. The results obtained show that the inclusion of
a grammar is not detrimental to performance of the GRN in the simplest case, re-
producing results previously published in the literature [10], with more complex
grammars highlighting the system’s ability to produce and operate effectively
with a more complex genotype-phenotype mapping.

386 E. Murphy et al.

Future work includes the further study of the model, in particular the time
complexity of the algorithm, i.e., the computational cost of initialising the GRN
and processing the output proteins for mapping. The method will also be com-
pared against other approaches to the pole balancing problem, such as [7], as well
as harder instances of the problem. In addition, the system will be applied to
to other dynamic control problems as the uniquely inherent dynamism provided
by the GRN could prove to be beneficial.

Acknowledgements. This research is based upon works supported by the
Science Foundation Ireland under Grant No. 08/IN.1/I1868.

References

[1] Banzhaf, W.: Artificial regulatory networks and genetic programming. In: Genetic
Programming Theory and Practice, ch.4, pp. 43–62. Kluwer (2003)

[2] Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man, &
Cybernetics, 834–846 (September- October 1983)

[3] Gilbert, S.F.: Developmental Biology, 8th edn. Sinauer Associates Inc. (2006)
[4] Harding, S., Miller, J.F., Banzhaf, W.: SMCGP2: self modifying cartesian genetic

programming in two dimensions. In: GECCO 2011: Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation, July 12-16, pp. 1491–1498.
ACM, Dublin (2011)

[5] Hoang, T.H., Essam, D., McKay, R.I.B., Hoai, N.X.: Developmental evaluation
in genetic programming: The TAG-based frame work. International Journal of
Knowledge-Based and Intelligent Engineering Systems 12(1), 69–82 (2008)

[6] Joshi, A., Schabes, Y.: Tree-Adjoining Grammars. Handbook of Formal Lan-
guages, Beyond Words 3, 69–123 (1997)

[7] Khan, M.M., Khan, G.M., Miller, J.F.: Evolution of neural networks using carte-
sian genetic programming. In: IEEE Congress on Evolutionary Computation (CEC
2010), July 18-23. IEEE Press, Barcelona (2010)

[8] Lopes, R.L., Costa, E.: ReNCoDe: A Regulatory Network Computational Device.
In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP
2011. LNCS, vol. 6621, pp. 142–153. Springer, Heidelberg (2011)

[9] Murphy, E., O’Neill, M., Galvan-Lopez, E., Brabazon, A.: Tree-adjunct grammat-
ical evolution. In: 2010 IEEE World Congress on Computational Intelligence, pp.
4449–4456. IEEE Press, Barcelona (2010)

[10] Nicolau, M., Schoenauer, M., Banzhaf, W.: Evolving Genes to Balance a Pole. In:
Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP
2010. LNCS, vol. 6021, pp. 196–207. Springer, Heidelberg (2010)

[11] O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language, Genetic programming, vol. 4. Kluwer Academic
Publishers (2003)

[12] Spector, L., Stoffel, K.: Ontogenetic programming. In: Genetic Programming 1996:
Proceedings of the First Annual Conference, pp. 394–399. MIT Press, USA (1996)

[13] Whitley, D., Dominic, S., Das, R., Anderson, C.W.: Genetic reinforcement learning
for neurocontrol problems. Machine Learning 13, 259–284 (1993)

	Differential Gene Expression
with Tree-Adjunct Grammars
	Introduction
	Background
	Tree-Adjunct Grammatical Evolution
	Artificial Gene Regulatory Networks

	Combining Artificial GRNs and Grammars
	Using Product-Proteins as Mapping Inputs

	The Inverted Pendulum (Pole-Balancing) Problem
	Experiments
	Analysis of Results

	Conclusions
	References

