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Abstract. This paper explores the computational power of genetic reg-
ulatory network models, and the practicalities of applying these to real-
world problems. The specific domain of financial trading is tackled; this is
a problem where time-dependent decisions are critical, and as such ben-
efits from the differential gene expression that these networks provide.
The results obtained are on par with the best found in the literature,
and highlight the applicability of these models to this type of problem.

1 Introduction

The Evolutionary Computation (EC) literature tends to adapt mostly evolution-
ary models in a Darwinian sense: a population of individuals is created, executed,
and assigned fitness scores. The most fit individuals are then more likely to sur-
vive, through a stochastic process, and the evolutionary cycle continues in this
fashion, until a stopping condition is met. This model has proven to be successful
throughout the years, but the knowledge of biological systems is ever increasing,
and there is a growing trend in exploring more complex and realistic models [2].

One of the key aspects of genetics that is seeing increasing attention is the
developmental processes that occur throughout the life of organisms. Rather than
adopting a fixed, direct mapping from genotype to phenotype, developmental
systems explore the lifelong, conditional expression of genes.

Genetic Regulatory Networks (GRNs) are a key element of gene expression
regulation in biological organisms, and one that has seen recent attention in
the EC field [1,10,13,11,5]. GRN-based algorithms explore the idea of differental
gene expression through regulatory processes, and as such are potentially useful
for dynamic and noisy environments.

This paper further explores the potential of GRNs for Evolutionary Computa-
tion, and exemplifies how to apply a recently introduced model [1] to a financial
prediction benchmark. GRN models seem well suited to this kind of problem,
where at different times of its life, an individual needs to adapt to a constantly
changing environment. The results obtained further highlight the potential of
GRNs as a computational device, and hopefully help to pave the future for their
adoption within the EC community.
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The next section introduces the biological principles behind GRNs, and details
the implementation of the model used. Section 3 then introduces the problem do-
main, and Section 4 details the experimental setup and results achieved. Section
5 concludes this study, and highlights future work directions.

2 Gene Regulatory Networks

2.1 Background

In the cell environment, DNA segments containing genes are transcribed (i.e. ex-
pressed) into mRNA (messenger RNA) strands, which, through a translation
process, are used to combine amino-acids, thus forming proteins. Some of these
proteins are known as Transcription Factors : their role is to help regulate the
expression of other genes, by binding at specific regulation sites. This process
results in complex networks, with genes producing proteins regulating the ex-
pression of other genes; these are known as Gene Regulatory Networks (GRNs).

In the work presented here, the model originally introduced by Banzhaf [1]
is used. This model consists of a binary linear genome, which is scanned for
promoter regions, identifying the location of genes. It assumes that each gene
is always composed of two regulatory sites (inhibiting and enhancing), and that
all proteins produced are transcription factors.

This model has been used frequently in the literature. It was shown to ex-
hibit similar dynamics to its natural counterparts, such as the appearance of
specific regulatory network motifs [3] and the resulting network topologies [8],
and has been evolved to optimise those topologies [12]; the resulting networks
have also been extracted and used as a computational device, for a subset of Ge-
netic Programming benchmark problems [11]. The resulting complex regulatory
dynamics have also been studied, from the evolution of oscillatory dynamics [10]
to actual control problems such as the pole balancing benchmark [13], and also
the flag-colouring developmental problem [5].

2.2 The Model

The model used represents the genome as a binary string. This string is scanned
for 32 bit long binary sequences, representing promoter regions; if found, these
identify the location of a gene. The following 32× 5 bits then represent the gene
contents, and the previous 32×2 bits represent enhancing and inhibitory regions,
respectively. Fig. 1 illustrates this.

In this model, a promoter site is the sequence XYZ01010101, where X, Y and
Z are any 8 bit sequences. The protein produced by the gene is a 32 bit binary
sequence, extracted by a majority rule between all 5 sequences of 32 bits that
compose it (that is, if 3 or more equally located bits are set to 1, then the
corresponding bit in the protein is set to 1).

Regulation works by matching the binary signature of transcription factors
and regulating sites with the XOR operation: the result is the regulating strength.
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Fig. 1. Bit string encoding of a gene. If a promoter site is found, the gene information
is used to create a protein, whose quantity is regulated by the attachment of proteins
to the enhancer and inhibitor sites.

The enhancing and inhibiting signals regulating the production of protein pi are
then calculated as:

ei, hi =
1

N

N∑

j=1

cj exp(β(uj − umax)) , (1)

where N is the total number of proteins, cj is the concentration of protein j, uj

is the number of complementary bits between the (enhancing or inhibitory) reg-
ulating site and protein j, umax is the maximum match observed in the current
genome, and β is a positive scaling factor.

The production of pi is calculated via the following differential equation:

dci
dt

= δ(ei − hi)ci , (2)

where δ is a positive scaling factor (representing a time unit). All the concentra-
tions are normalised at each time step, ensuring that

∑
i ci = 1.0 at all times;

this results in competition for resources within the cell environment.

Input and Output. The original model is a closed world, in that there is
no direct interaction with the environment. However, in most problem domains
(particularly in reinforcement learning), a training set of input values are associ-
ated with a set of responses (or outputs), and the fitness of a solution is typically
the difference between the responses obtained and a set of known correct out-
puts. To this end, a set of I/O extensions were introduced to the original model
[13], which are also used in the current work.

To introduce the notion of an input signal, extra regulatory proteins (EPs) are
injected into the system. These are not produced by any gene, but also contribute
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to the regulation of all gene expressions. They represent all the variables required
to describe the state of the environment, and their concentrations reflect the
(normalised) value of those inputs (and as such are unscaled).

To extract output signals from the model, genes are divided into two classes:
TF-genes (i.e. genes encoding transcription factors), and P-genes (genes encoding
product proteins). These classes of genes are established by scanning the genome
for two different promoter sites: in this work, XYZ00000000 represent TF-genes,
and XYZ11111111 represent P-genes. While the expression levels of TF-genes
contribute to the regulatory process as before, the output of P-genes does not;
the concentration of the proteins they produce is used as an output signal.

The regulation of TF-genes remains as previously stated, using Eq. 1, but
they are normalised taking into account the concentration of EPs as well.

The regulation of P-genes is also determined by Eq. 1, but their expression is
calculated with the following equation:

dci
dt

= δ(ei − hi) . (3)

Like TF-genes, all concentrations are normalised at each time step, ensuring
that

∑
i ci = 1.0 at all times; however, the concentration of TF-proteins and

P-proteins are normalised independently.

3 Index Trading

In the financial domain, a market index is a weighted average measure of the
price of individual shares that compose that market. Rather than trading single
shares (or a portfolio of shares), a popular alternative is to trade on the share
market index via an exchange-traded fund, which mirrors as close as possible the
collective behaviour of the shares comprising the market. This type of trading
has the advantage of not being tied to fluctuations of single shares, but rather
to a broader market move. This also means that specific and unexpected share
fluctuations are slowly absorbed by the market index [6], allowing for some degree
of predictability [9].

Evolutionary algorithms have been successfully applied to financial modelling;
the reasons for their applicability include their ability to efficiently explore the
search space, and uncover dependencies between input variables, leading to their
proper inclusion in the final models [7]. Brabazon and O’Neill [4] provide an
overview of the application of evolutionary computation to financial modelling.

The work presented here follows closely the methodology of previous appli-
cations of Grammatical Evolution [15] to index trading [14,4], and uses three
datasets, from the UK FTSE 100 index, the Japan Nikkei index, and the German
Dax index. All data is drawn from the period between 1/1/1991 and 3/12/1997.

3.1 Technical Indicators

Rather than just observing the raw and historical market price data, it is useful to
pre-process this information into technical indicators. These potentially uncover
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possible useful trends and other information from the raw data series, while
simultaneously reducing the inherent noise in the series. Although a potentially
infinite number of such indicators may exist, certain classes of indicators are
regularly used by investors [9,16]. The following indicators are used in this study:

– Moving Average. This indicator returns the average price of the last n
days; as it smooths out daily price fluctuations, it can unveil the underlying
trend of the market. The parameter n controls the degree of smoothness.

– Stochastic Oscillator. This indicator returns the relative location of the
current price in relation to its full price range over a period of of n days; it
is useful in trying to predict price turning points.

– Momentum Change. This indicator compares the closing price with that
of n days ago, and returns the rate of change. It indicates trend by remaining
positive while an uptrend is sustained, or negative in the opposite case.

3.2 Datasets

Fig. 2 plots each dataset. These were divided into one training and three testing
periods, of 365 days each, for the purpose of model validation. In accordance
with previous studies [4], the data was pre-processed prior to evolution. Initially
the raw prices were transformed into a moving average with a 75 day gap; these
values were then normalised into the range of 0 to 1. This means that data from
the first 75 days was not used for the purposes of trading simulation, neither
was the data remaining after the four training and testing datasets.

3.3 Methodology

An evolved trader produces one of three signals for each day of the training or
test periods: buy, sell, or do nothing. Starting with an initial capital of $10000,
the following trading methodology is used [9,14]. If a buy signal is issued, a fixed
$1000 investment is made in the market index; this position is automatically
closed at the end of a ten day period. If a sell signal is issued, an investment
of $1000 is sold short, and it is also closed after ten days. This means that a
maximum of $10000 are invested at any given point in time. The profit or loss
at the end of each trading period takes into account a one-way trading cost
of 0.2%, and a further 0.3% to account for slippage. Uncommitted funds take
into account a risk-free rate of return, which is approximated using the average
interest rate over the entire dataset.

4 Experiments

4.1 Encoding Input and Output Variables

Four technical indicators were used in this study: a moving average of 10 days
(mAvg(10)), momentum change of 5 (mChange(5)) and 10 days (mChange(10)),
and a stochastic oscillator of 10 days (sOsc(10)). These were encoded using EPs,
as explained in Section 2.2; the signatures for the EPs were chosen to be as dif-
ferent as possible, and were encoded as follows:
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Fig. 2. Plots of the three markets analysed, and the train and test periods used. Gray
shaded areas show the initial 75 day moving average gap, and the remaining data after
the four year-long training and testing sets, and were not used for the simulations.
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mAvg(10): 00000000000000000000000000000000

sOsc(10): 00000000000000001111111111111111

mChange(5): 11111111111111110000000000000000

mChange(10): 11111111111111111111111111111111

The GRN was allowed to first run for a maximum of 100000 iterations, or until
all protein concentrations were stabilised; after this period, the trading session
begins. To synchronise the GRN with the trading simulator, a trading signal was
extracted every 2000 iterations.

To extract a trading signal from the network, the rate of change of a given
P-gene is analysed: if its concentration has increased by more than 0.1%, then a
buy signal is issued; if it has decreased by more than 0.1%, a sell signal is issued;
otherwise, a do nothing signal is issued1. All P-genes present in the genome are
tested, and the most successful one is used.

This methodology thus encodes technical indicators as regulatory proteins,
which influence the internal regulatory process of the genome, and therefore
influence the resulting concentration of P-genes, which can then be interpreted
as a trading signal. It is a very similar process as seen in previous applications
of GRNs to time-series datasets [13].

4.2 Evolutionary Setup

A (250+250)−ES evolutionary strategy was used to evolve the binary genomes:
a population of 250 individuals is used to create 250 offspring, and the best 250
of all parents and offspring are used as the new parent population (a maximum of
100 iterations were allowed). The variation operator used was a bit-flip mutation,
set to 1% and adapted by the 1/5 rule of Evolution Strategies [17].

4.3 Measuring Performance

A two-set methodology was used, with the system being trained in an initial
training set of one year. Once the training period was over, the system went
“live”, and was ran on the three test (out of sample) periods, for the purpose of
a live trading simulation.

A common passive trading strategy is Buy and Hold, where an investor buys
stocks and holds them for a long time. It is based on the idea that financial mar-
kets give a good return for investment in the long run, regardless of fluctuations
and periods of volatility. In order to evaluate the performance of the evolved
traders, their performance was compared to a buy and hold strategy for each of
the training and test datasets.

When evolving an index trader, certain aspects required special attention. It
would be inadequate to simply calculate fitness as the profit return, as this fails
to consider the risk of deploying an evolved trader [14]. A measurement of this
risk is provided by the maximum drawdown, that is, the maximum cumulative

1 This is an entirely experimental value, and has not been optimised; it was left to the
structure of the GRN to adapt to it.
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loss of the system during each of the datasets. As seen in previous studies [14,4],
this can be incorporated into the fitness calculation by subtracting the maximum
cumulative loss from the profit of each period. This is in addition to trading costs
and slippage penalties, as detailed in Section 3.3.

4.4 Results and Analysis

Table 1 presents the results obtained with the best evolved controller for the
FTSE, Nikkei and Dax markets, for the train and validation periods. The best
evolved trader for the FTSE and Nikkei markets outperforms the benchmark
buy and hold strategy, whereas on the Dax market it slightly underperforms;
this is likely linked to the fact that the Dax market is very well behaved, across
the period analysed, with very rare fluctuations. These results are on par with
similar EC approaches found in the literature [14,4].

Another interesting aspect of the evolved traders is their low investment risk.
The buy and hold strategy keeps the full available capital of $10000 invested
at all times, whereas the evolved traders kept average capital investments of
only $3582.19, $2806.85 and $3225.34, for the FTSE, Nikkei and Dax markets,
respectively. This is a combination of the inclusion of risk penalties in the fitness
function, and the fact that the system can only trade $1000 daily.

Fig. 3 plots the best evolved trader for the FTSE market. It exhibits a very
cautious approach to trading, with large periods of inactivity, resulting from a

Table 1. Best evolved traders for all datasets compared to Buy & Hold benchmark

FTSE market
Period (days) Buy & Hold Best-of-run Avg. daily inv.

Train (75 to 439) -1269.28 3275.96 5939.73
Test 1 (440 to 804) 4886.9 1083.58 2191.78
Test 2 (805 to 1169) -1089.8 541.806 3709.59
Test 3 (1170 to 1534) 1908.53 500.949 2487.67

Total 4436.35 5402.295

Nikkei market
Period (days) Buy & Hold Best-of-run Avg. daily inv.

Train (75 to 439) -6345.5 6163.38 5128.77
Test 1 (440 to 804) 1014.79 1125.6 1457.53
Test 2 (805 to 1169) -5263.49 2144.71 3679.45
Test 3 (1170 to 1534) 4040.59 1331.56 961.644

Total -6553.61 8514.05

Dax market
Period (days) Buy & Hold Best-of-run Avg. daily inv.

Train (75 to 439) -882.241 2899.86 4586.3
Test 1 (440 to 804) 4047.63 952.689 3347.95
Test 2 (805 to 1169) -551.995 608.161 1471.23
Test 3 (1170 to 1534) 2972.24 992.868 3495.89

Total 5585.634 5453.578
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Fig. 3. Best evolved trader for the FTSE index. Blue dots indicating buy, do nothing
and sell signals are plotted along with the raw market prices.

slow reaction to the regulatory proteins representing technical indicators, within
the GRN. This is mostly induced by the inclusion of the risk-free rate of return
and the maximum drawdown penalty into the fitness function. This is seen in
Fig. 3, in the third testing period, where the trader exhibits a very cautious
approach, even though the market is generally trending upwards. Further opti-
misation of structure and parameters of the GRN should improve this issue.

5 Conclusions

This paper explored the computational power of regulatory networks, and how to
apply them to a real-world financial trading domain. The methodology required
to apply GRNs was explored, and the results obtained show the potential of this
approach, with results on par with the literature.

There remains much work to be done. Regarding the current problem domain,
the evolved trader seems occasionally unresponsive to market changes; the use
of different technical indicators could improve this issue. Also, regarding the
applicability of the model, further research is required, in particular with what
concerns its parameterisation.
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2010. LNCS, vol. 6021, pp. 196–207. Springer, Heidelberg (2010)

14. O’Neill, M., Brabazon, A., Ryan, C., Collins, J.J.: Evolving Market Index Trad-
ing Rules Using Grammatical Evolution. In: Boers, E.J.W., Gottlieb, J., Lanzi,
P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP
2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and
EvoLearn 2001. LNCS, vol. 2037, pp. 343–352. Springer, Heidelberg (2001)

15. O’Neill, M., Ryan, C.: Grammatical Evolution - Evolutionary Automatic Program-
ming in an Arbitrary Language, Genetic Programming, vol. 4. Kluwer Academic
(2003)

16. Pring, M.J.: Technical Analysis Explained: The Successful Investor’s Guide to
Spotting Investment Trends and Turning Points. McGraw-Hill (1991)

17. Rechenberg, I.: Evolutionsstrategie 1994. Frommann-Holzboog, Stuttgart (1994)


	Applying Genetic Regulatory Networksto Index Trading
	Introduction
	Gene Regulatory Networks
	Background
	The Model

	Index Trading
	Technical Indicators
	Datasets
	Methodology

	Experiments
	Encoding Input and Output Variables
	Evolutionary Setup
	Measuring Performance
	Results and Analysis

	Conclusions
	References




