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Abstract. We analyse the impact of dynamic training scenarios when evolving
algorithms for femtocells, which are low power, low-cost, user-deployed cellular
base stations. Performance is benchmarked against an alternative stationary train-
ing strategy where all scenarios are presented to each individual in the evolving
population during each fitness evaluation. In the dynamic setup, different training
scenarios are gradually exposed to the population over successive generations.
The results show that the solutions evolved using the stationary training scenar-
ios have the best out-of-sample performance. Moreover, the use of a grammar
which produces discrete changes to the pilot power generate better solutions on
the training and out-of-sample scenarios.

1 Introduction

Femtocells are low power, low-cost, user-deployed cellular base stations (BS), which
operate in dynamic environments. A significant issue facing the developers of the algo-
rithms which control the behaviour of femtocells is how best to design the algorithms to
handle these unforeseen, dynamic environments. In previous studies [12, [11]] we have
successfully examined the suitability of Genetic Programming (GP), and a grammar-
based form of GP [14], Grammatical Evolution (GE) [€], to generate control algorithms
for these devices. In these earlier studies a predefined, static set of scenarios are exposed
to the evolving population to determine the quality of the evolving solutions.

Our aim in this study is to examine the impact of the training scenarios employed on
the quality of the evolved solutions. More specifically we ask:

— Is there a difference in the robustness of solutions (out-of-sample) based on the use
of stationary versus dynamic training scenarios?

The remainder of the paper is structured as follows. In Sect. [2] the femtocell problem
is described. Experiments and results are in Sect. Bland [l Finally, the conclusion and
future work is presented in Sect.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part I, LNCS 7492, pp. 518-527] 2012.
(© Springer-Verlag Berlin Heidelberg 2012



Evolving Femtocell Algorithms with Dynamic and Stationary Training Scenarios 519
2 The Femtocell Problem

As is the case with other physical network infrastructure such as base stations, there
are a number of issues surrounding the optimal placement of the hardware in addition
to the design of algorithms which manage the performance of hardware networked in
this manner. Femtocells are low power, low-cost, user-deployed cellular base stations.
Therefore, in the case of femtocells the designer of the software does not know a-priori
where (and how many) femtocells might be deployed in a site.

If we consider an intended area of coverage, e.g. an office environment as shown in
Fig. where a group of femtocells is deployed to jointly provide end-user services,
we focus on the problem of distributed coverage optimisation by adjusting the pilot
power of the BS in order to alter the coverage of the femtocells. The objectives are:

Mobility: To minimise mobility events (handovers) between femtocells and macrocells
within the femtocell group’s intended area of coverage.

Load: To balance the load amongst the femtocells in the group to prevent overloading
or under-utilisation.

Leakage: To minimise the leakage of the femtocell group’s coverage outside its in-
tended area of coverage.

There have been previous studies of applying EC to telecommunication problems [1].
But only two specifically regarding femtocell coverage algorithms and EC, one using
GP [12] and another using GE [[11]]. Most related work in the literature regarding cellu-
lar coverage optimisation deals with centralised computation methods [16, 8], e.g. the
calculation of parameters such as the number and locations of BS, pilot channel trans-
mit powers, or antenna configurations using a central server running an optimisation
algorithm. Many studies also focus on determining the optimal BS numbers or place-
ments to achieve the operator’s quality of service or coverage target. This approach is
not always practical because network design is restricted by BS placements, and in the
case of femtocells these are physically deployed by the end-user.

3 Experimental Setup

In the femtocell problem we face a number of challenges, the most pressing of which
are (i) fitness evaluations are computationally expensive, and (ii) it is not clear how best
to design the fitness evaluations in terms of the type and number of training scenarios
presented to the evolving population. In this study we focus on understanding how to
best design a fitness function by examining the robustness of solutions evolved using
dynamic and stationary training scenarios. In terms of computational expense, the dy-
namic training scenarios are potentially attractive as less scenarios are presented to each
individual of the population, thereby reducing the evolutionary algorithms run time. In
addition, there are potentially performance gains to be achieved by adopting dynamic
environments during evolutionary runs, for example, see [15]. We therefore study the
robustness of solutions depending on how they have been evolved. The two approaches
we use to drive evolution are:
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Stationary training scenario: The fitness function employs multiple training scenar-
ios at each generation. The training fitness is calculated as the average fitness across
each training scenario presented to the individual.

Dynamic training scenario: The fitness function is comprised of a single training
scenario at each generation and as the generations progress the training scenario
changes.

The guidance of the search towards a solution is different for each setup. The stationary
setup is comprised of multiple training scenarios, where evolution is trying to find a
general solution by averaging the fitness over several scenarios. The reasoning is that
solutions that are too specialised will be avoided since a solution must have good fitness
on all the scenarios. In contrast, the dynamic setup exposes the evolving population to
a single scenario which changes over time, attempting to guide the population towards
solutions which can behave well on scenarios presented over different environmental
conditions. There are more assumptions and uncertainties in the dynamic scenario re-
garding the robustness of the solution. First, the search must be given enough evalua-
tions in each scenario to find good solutions. Then, the next scenario needs to be similar
enough to allow the search to gain advantage from existing parts in the solutions. Thus,
this is a potentially powerful approach for stimulating generic parts in solutions. Al-
though it requires the capability of the search method and setup to represent and identify
general components which are preserved during the search.

3.1 Simulation Model

A user mobility and traffic model is employed, where users are initially randomly placed
at way points on the map and moving at a speed of 1ms~!, spending some time at
a way point before moving to another. In total 50, 200 and 400 users are modelled,
in low (1), medium (m) and high (h) load scenarios. Each user’s voice traffic model
produces 0.2 Erlangs of traffic during 24 hours of simulated operation time, with the
algorithm adjusting the femtocell pilot power after collecting statistics for 30 minutes.
The algorithm start time for each femtocell is randomly dithered with, and the initial
pilot channel power p = —30dBm, p € [—50,—49,...,11]. Femtocell to macrocell
handovers are triggered when a user terminal’s pilot channel receive power from the
best femtocell goes below —100dBm. Outside cell users move east-west and west-east
on the north and south edges of the map. When the signal leakage is strong enough the
outside user request a handover to the femtocell and a rejection is recorded. The outside
user tries to connect once to each leaking femtocell when moving through the femtocell
coverage.

Office (012, O8, O4). The number of BS in the office environment are 12, 8 and 4,
shown in Fig.[Il The scenario with 12 BS is denoted O12. In O4 the coordinates have
been slightly altered compared to the O8 and Q12 scenarios, by moving the BSs closer
to the walls.

The building is an office with cubicles, closed meeting rooms, and toilets. The ex-
terior of the building is mainly glass and the interior is mostly light interior walls and
cubicle partitions. This is a realistic plug-and-play femtocell deployment, which can be
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(a) (3d4 (c) O 12

Fig. 1. Received pilot power for the Outdoor(0d4)[I(a)] Cross(C5)[I(b) and Office(012)[I(c)]

sub-optimal due to the lack of exhaustive cell planning. In the simulation each femto-
cell has a maximum capacity of 8 voice calls, a macrocell underlay coverage is also
assumed. A path loss map is generated for the 450m x 500m area for each femto-
cell. For shorter distances the PL, path loss (dB) at d (meters) from a BS is mod-
elled as 38.5 + 20l0g10(d) + P Lyaus, with a smooth transition to 28 + 35log1o(d) +
PLyqus otherwise. A correlated shadow fading with a standard deviation of 8 dB
and spatial correlation of r(d) = e?/?°, The assumed transmission losses for the ex-

licit buiﬁ%ng model are a function of the incident angle, this model is taken from
%5 etall [12].

Outdoor (Od4). There are no walls and the BS placement is the same as in O4.

Cross (C5). There are walls and 5 BS. All the way points and hot-spots are different
from 012 and set to explicitly model the need for load balancing by overloading some
cells and under utilizing others. Moreover, a different path loss model is used.

The training scenarios are Od4, CS, 012 with medium load, the validation scenario
is O4], and the test scenarios are 08, O4 at low, medium and high load. The dynamic
setup starts with Od4, see Fig. The next scenario is C5 Fig. The last scenario
is 012 Fig.[I(c)] Thus, there is an increase in number of BS and the walls between each
scenario. The stationary scenarios evaluate on all the scenarios at every iteration.

3.2 Evolutionary Algorithm

In this study we use a Matlab implementation of GE, GEM [1. Two different grammars
are tested (denoted CG and SRCG). A conditional grammar that changes the pilot power
with discrete values and a conditional equation grammar changing the pilot power with
continuous values calculated from generated equations. The search space is very differ-
ent for the grammars. A difference in performance is to be expected with the number
of fitness evaluations used. In addition, the expected result from the different scenar-
ios would be that stationary scenarios should perform well since it is always the same
underlying simulation model. The setup is the same as ].

! http://ncra.ucd.ie/GEM/GEM. tgz


http://ncra.ucd.ie/GEM/GEM.tgz
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<CODE> ::= if gt (my_handover, MT)
if gt(my_load, LT)
if gt(my_macro_requests, LeT)
<function>
else
<function>
else if gt (my_macro_requests, LeT)
<function>
else
<function>
else if gt(my_ load, LT)
if gt(my_macro_requests, LeT)

<function>
else
<function>
else if gt (my_macro_requests, LeT)
<function>
else
<function>
<function> ::= <terminal><function> | <terminal>
<terminal> ::= my_power = increase_power (my_power) ;
\ my_power = decrease_power (my_power) ;
\ my_power = do_nothing (my_power) ;
Fig. 2. Conditional statement grammar (CG)
<function> ::= my power = <expr_0>;
<expr_0> ::= (<expr><op><expr>) | <pre-op>
<expr> ::= (<expr><op><expr>) | <var> | <var> | <var> | <var>
| <pre-op> \ <pre-op_step> \ <pre-op_monotone>
<pre-op> ::= sin(real (<expr>)) \ cos (real (<expr>))

\ log(real (<expr>)) \ tan(real (<expr>))
<pre-op_monotone> ::= exp(real (<expr>)) \ uminus (<expr>)
<pre-op_step> ::= atan(<expr>) \ tanh (<expr>) | sigmoid (<expr>)
<var> ::= my_power | my_load \ my_handover \ my_macro_requests

| <cnst>
<cnst> ::= <nr><nr> | <nr> | O.<nr><nr> | 0.<nr>
<nr> ::=1 |2 | 3|4 ]|5]|6]7]8]29

Fig. 3. Symbolic Regression and Conditional Statement Grammar (SRCG). Only the differences
between the CG (Fig.2) is shown

Conditional Statement Grammar (CG). We construct a grammar using conditional
statements. The thresholds and the size of the increase and decrease of power needs to
be predetermined. Here the change is 1dBm and the thresholds are mobility (M1 = 0),
leakage (LeT = 0) and load (LT = 7).

Symbolic Regression and Conditional Statement Grammar (SRCG). Creates equa-
tions and uses thresholds as in CG. Only the differences in CG and SRCG are shown
in Fig.[3l To create the SRCG we combine the grammar in Fig. Pl The multiple <var>
productions keeps the grammar from “exploding”, see [Harper [[10]. The grammar
adopted in this study is in MATLAB syntax. A wide range of functions were used and
only the real valued part of the function values was used. The unary minus is uminus.

Fitness Function. Statistics of mobility, load and leakage are collected over a speci-
fied update period. These statistics are then used as inputs into the algorithm, and for
calculating the fitness. The duration of the simulation is 7", the number of femtocells is
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N, and x is a vector of femtocells. The fitness is a vector comprised of the fitness for
each function, f = [fa (M (h, 7)), fr(L(X)), fre(Le(x))]. The mobility objective is
conflicting with load and leakage, leakage can also conflict with load. All the objectives
are normalized and equally important.

Mobility fitness is the number of handovers and relocations of users. The mobility
events between femtocells and macrocells are recorded for each period. The number
of femtocell handovers is h, macrocell handovers is h*, femtocell relocations is r,
and macrocell relocations is 7 . Mobility, M, is the ratio of update periods where a
mobility event occurs divided by the total number of update periods.

MM( ZZh +2T:§:rfvt[

t=0 i=1 t=0 =1
T T N
My(h,r) = +§:2ﬁﬂ+Z§:m
t=0 =1 t=0 =1

The mobility fitness is maximised when there are no handovers or relocation to the
macrocell underlay, and is O when all femtocell user handovers are to or from macro-
cells, otherwise
Mmﬂ):{MymmVMﬁmm if My(h,7) > 0
1 if My(h,7) =0
Load fitness has the objective that the femtocells should serve enough users. It is based
on the ratio of average number of times the load has been greater than a defined max-
imum load threshold, LT, and the total load, including the macrocell. If the mean cell
load during an update period exceeds LT then L is equal to one, else it is equal to zero.
Cell load is 0 < x < 8 in this scenario, LT = 7, below the capacity of the femtocell,

to prevent operation at full capacity. Total load is the sum of the femtocells and the
macrocell, L.

LT if LT
L(x) = x>
X ifx <LT

Average load is L(x) = Zt 0 ZZ 1 L(xit) /L (x¢).

Leakage fitness is the number of outside users trying to use the femtocell. Leakage
increases the number of unwanted users captured, which increases the signalling load
to the core network. The leakage, Le is the ratio of blocked calls, y, to the maximum
number of macrocell users, Ci, 0 < y < Cpp with Le(y) = 1 — y/Cuyo-

GE Parameters. The evolutionary parameter settings for the GE algorithm are pre-
sented in Table[1l

Nodal mutation [4] is used instead of the standard integer mutation. The multiple
objectives are tackled with the NSGA-II, see [Deb et all [3]. When reinitializing indi-
viduals the max derivation tree depth is picked from the distribution of derivation tree
depths in the first front. This is both an attempt to restrict bloat and search at derivation
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Table 1. Parameter settings for the experiments (dynamic setup (DTS) stationary setup (STS))

Parameter Value

Max wraps 2

Codon size 128

Population size 20

Initialisation Ramped half-and-half
Initialisation depth 8

Generations STS:10; DTS:30
Tournament size 2

Crossover probability 0.5

Mutation 1 event per individual
Parsimony pressure  True

Runs 28

tree depths where good solutions have been found. All evaluated solutions are added to
a tabu list and if a solution is in the tabu list the solution will be reinitialized [[11]. Fur-
thermore, monotone solutions are not allowed, i.e. only static, increasing or decreasing
power.

To find solutions which maximizes one objective and those which have uniform fit-
ness components we use the method from [Jain et al! [[13] to modify the fitness, where
a score of one is the components are uniform and zero they are non-uniform, ¢(x) =
(n Z;ZO z")j. We penalise the fitness function vector, f(x) to get f'(x) by modifying it

=07T;

with its score, h(x), where h(x) = 1 — ¢ o f(x) and f'(x) = e P (1 — h(x)1/4).

4 Results

The grammars and setups are run independently 28 times with different seeds for the
pseudo-random number generator. To simplify the presentation the average of the fit-
ness function vector is shown. Figure[d(b)| outlines the results, in terms of the run time
of the dynamic (DTS) versus stationary (STS) setups. We can observe substantially
lower run times for the DTS. Both setups use the same number of fitness evaluations
and the total run-time was also significantly different, from a t-test at a 0.05-level, for
all comparisons except SRCG in DTS and STS.

With respect to the quality of solutions evolved using the different training scenarios,
training results are presented in Figure[3 validation performance in Fig. and out-
of-sample performance outlined in Table 2]

The mean fitness of all objectives from the training fitness of all solutions in the
population, excluding extreme solutions, progresses towards higher fitness, shown in
Fig. 3l Since there are changes in the fitness function and the values are the average
of the front it is possible for the fitness value to drop. The values decrease when more
solutions with lower average are added to the first front. The difference between the
methods is significant as can be seen by the non-overlapping error-bars. The graphs
show that the representation in CG finds good solutions very fast in comparison to
SRCG. The SRCG also has a larger standard deviation. Note that the graphs only show
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Fig. 4. In Fig. the average validation fitness of the first front is shown, which is slightly
increasing. The values decrease when more solutions with lower average are added to the first
front. In Fig. (b)| comparison of evolutionary run times for the dynamic and stationary training
scenarios. On average run times are considerably lower for the dynamic training scenarios, and
on comparison of the grammars adopted the SRCG form provides additional gains.

Table 2. Fitness on test data for the non-extreme solutions on the first front. The columns show to-
tal number of solutions on the fronts in the runs (Total), average fitness of the solutions on the first
front (Avg Fit), standard deviation (Std), median (Med ), minimum (Min) and maximum (Max).

Version Total Avg Fit Std Med Min Max
CGSTS 59 0.467 0.033 0.471 0.374 0.521
SRCG STS 97 0.301 0.077 0.316 0.130 0.458
CGDTS 84 0.349 0.172 0.421 0.031 0.506

SRCG DTS 110 0.244 0.120 0.265 0.000 0.451

the training fitness during the runs and it is not possible to compare the values between
DTS and STS since the fitness in the dynamic scenario is only for the current scenario.
Thus, a validation scenario was used and in Fig. the average validation fitness of
the first front is shown, which is slightly increasing.

The non-extreme solutions from the first front for each run are evaluated on the
test scenarios. The average of the fitnesses and the average of the first front is chosen
in order to allow simple comparisons. This approach was chosen since there can be
multiple solutions with the same fitness but different phenotypes and the out-of-sample
quality of the solutions is unknown. There is a significant difference in fitness according
to the non-parametric Wilcoxon rank sum test for equal medians at a 0.05-level for all
values. Thus, we can conclude that for the femtocell scenarios examined here the test
performance was best when using the STS setup. It is worth noting that with the SRCG
and the DTS some solutions generated invalid values in the test scenarios. As expected
the DTS have a higher standard deviation compared to the STS.
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Fig. 5. Average training fitness of non-extreme solutions

5 Conclusions and Future work

A significant issue facing the developers of the algorithms which control the behaviour
of femtocells is how best to design the algorithms to handle these unforeseen, dynamic
environments. In this study we examined this issue with respect to the design of fitness
functions for an evolutionary algorithm which evolves algorithms to control femto-
cell behaviour. More specifically we asked “Is there a difference in the robustness of
solutions (out-of-sample) based on the use of stationary versus dynamic training sce-
narios?”. Given the experimental setup adopted in this study it was found that, while
the dynamic training scenarios result in more efficient run times, the stationary train-
ing scenarios produce more robust solutions. In future work we will examine different
approaches to the dynamic environment setup, and adopt a wider range of scenarios
in each case. There are also potentially many lessons to be learned from, for example,
the statistical machine learning literature on best to design training to achieve solu-
tions which generalise beyond training data (e.g., [7, 3,19, 12]). We will examine if these
methods can complement the evolutionary search adopted here.
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