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Abstract

Plants represent some 99% of the eukaryotic biomass of the planet and have been
highly successful in colonising many habitants with differing resource potential. The
success of plants in earning a living suggests that they have evolved robust resource
capture mechanisms and reproductive strategies. In spite of the preponderance of plant
life, surprisingly little inspiration has been drawn from plant activities for the design
of optimisation algorithms.

In this chapter we focus on one important aspect of plant activities, namely seed
and plant dispersal. Mechanisms for seed and plant dispersal have evolved over time
in order to create effective ways to disperse seeds into locations in which they can
germinate and become established. These mechanisms are highly varied, ranging from
morphological characteristics of seeds which can assist their aerial or animal-mediated
dispersion, to co-evolved characteristics which reward animals or insects who disperse
a plants seeds. At a conceptual level, dispersal can be considered as a search process,
wherein the seed or plant is searching for good locations and therefore, inspiration
from dispersal activities of plants can plausibly serve as the design inspiration for
optimisation algorithms.

Initially, we provide an overview of relevant background on the seed dispersal
process from drawing on the ecology literature. Then we describe a number of existing
optimisation algorithms which draw inspiration from these processes, and finally we
outline opportunities for future research.

1. Introduction

The key imperative of a plant’s life is to maximise its number of viable offspring [11]. Many
species of plants reproduce by producing seeds and then dispersing these in the landscape.
The seeds are in essence embryonic plants, enclosed in a protective coat, usually with some
stored food in order to provide energy for the germination process. The technical term for
the dispersed unit is a diaspore and this may consist of a seed, spore or fruit containing
seeds, plus any additional tissue which assists in dispersal. In this paper we employ the
term seed in a board sense to encompass all of these cases.

If the seeds find a suitable location, they germinate and in turn reproduce themselves.
Hence, the process of seed dispersal plays a critical role in ensuring the long-term success
of a plant species and is the predominant process by which plants can ‘move around’ a
landscape [18].

1.1. Dispersal Mechanisms

Plants make use use of multiple dispersal mechanisms, including:

1. wind dispersal,

2. animal dispersal,

3. water dispersal, and

4. ballistic dispersal.
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Hence, dispersal mechanisms can be classed as abiotic (wind, water or gravity) or biotic
(insect or animal dispersal). Many plants use more than one dispersal mechanism and
dispersal can take place in stages. For example, wind dispersed seeds can subsequently be
redispersed by ants or seed hoarding rodents.

Morphological adaptations in plants and seeds have arisen over time in order to increase
the efficiency of seed dispersal. In the case of wind dispersal, seeds which have characteris-
tics such as small size, wings, hairs etc. fall more slowly, essentially by lowering their wing
loading (ratio of mass to surface area), and this promotes wider seed dispersal. Species
with these adaptations are very common, comprising some 10-30% of all plants, and up to
70% of the flora in temperate plant communities [18]. Wind dispersed plants are common
in dry habitants such as deserts [9]. An interesting example of this is provided by tumble
weeds where the plant shoot dies and detaches from the root system. The seeds attached
to the upper part of the plant are then dispersed as it is blown around the landscape. Some
curious adaptations have emerged in order to promote the effectiveness of wind dispersal
mechanisms whereby a plant manipulates its environment in order to ‘generate’ a local wind
current in order to assist dispersal. One example is provided by the spores of ascomycete
fungi where by synchronising the ejection of thousands of spores, the fungi create a flow
of air that carries their spores further than they would otherwise disperse [37]. Another
example is provided by oyster and shiitake mushrooms which release water vapour before
releasing their spores which in turn cools the surrounding air creating convection currents
thereby helping to disperse their spores [36].

Some curious adaptations have emerged in order to promote the effectiveness of wind
dispersal mechanisms whereby a plant manipulates its environment in order to ‘generate’
a local wind current in order to assist dispersal. One example is provided by the spores
of ascomycete fungi where by synchronising the ejection of thousands of spores, the fungi
create a flow of air that carries their spores further than they would otherwise disperse [37].
Another example is provided by oyster and shiitake mushrooms which release water vapour
before releasing their spores which in turn cools the surrounding air creating convection
currents thereby helping to disperse their spores [36].

Adaptations for animal dispersal include the offering of ‘rewards’ for dispersion, such
as fleshy, nutritious, fruits which attract the attention of frugivores (fruit eaters) who con-
sume the fruit. The seeds contained in the fruit pass through the digestive tract of the animal
and are eventually excreted back into the environment. This means of seed dispersal is com-
mon with some 50-75% of tree species in tropical forests producing fleshy fruits adapted for
animal consumption [9]. A similar figure is quoted by [30] who notes that 75% of tropical
tree species display adaptations for biotic seed dispersal. Other (non-reward) adaptations
for animal dispersal include clinging structures such as hooks or resin whereby seeds stick
to fur or feathers of animals and are accordingly dispersed as the animal moves around the
environment (this mechanism led to the discovery of Velcro in 1948, inspired by the ob-
servation of seed burrs sticking to the hair of a dog [20]). Many types of animals are seed
dispersers including various species of mammals, birds, bees, fish and reptiles [10, 30]. One
example of such dispersal is provided by ants. It is estimated that more than 10,000 plant
species have evolved mechanisms to assist dispersal of their seeds by ants [31]. Typically
the ants are attracted using by an elaiosomes, or fleshy structure, attached to the seed which
is rich in lipids and proteins. The elaiosome and attached seed is taken to the nest to feed
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larvae and the seed is then discarded and later germinates. Animals and insects can also
play a role as secondary dispersers. For example, ants and dung beetles can transport seeds
which have fallen from plants.

Apart from wind and animal dispersal, seeds can also be dispersed by water, for example
via buoyant coconuts. Some plant species have evolved ballistic fruits that open explosively
and can toss seeds several metres from the parent plant. In this chapter we employ the term
seed in a board sense to encompass all of these cases.

1.2. Why Do Plants Disperse Their Seeds?

An obvious question given the wide range of strategies adopted by plants to disperse their
seeds is what evolutionary advantages accrue to plants from their investment in dispersal
structures? Such investments only make sense if dispersing seeds leads to a higher rate of
seed survival and a higher rate of subsequent establishment. Three hypotheses are usually
proposed to support the adaptive nature of seed dispersal [9], namely the:

1. escape hypothesis, the

2. colonisation hypothesis, and the

3. directed-dispersal hypothesis.

The core of the escape hypothesis is the claim that seeds which are dispersed further from
their parent have higher rates of survival and reproductive success. In other words, if seeds
were only dispersed in close proximity to their parent, their rates of mortality would be
higher, due to density-dependent mortality factors such as insect / rodent predators which
would be attracted to clusters of ‘target plants’, susceptibility to pathogen attack, and re-
source competition from other seedlings. Another factor which could promote dispersal is
‘shade escape’ as a non-dispersed seed would end up competing directly with their parent
for light and other resources. In a study of 34 tree species, [1] found that seeds from species
requiring light-gaps for early seedling survival had slower rates of descent, enhancing their
chances of escape from the light shadow of their parent.

The colonisation hypothesis notes that habitats and environments change over time, and
a currently resource poor environment may subsequently become more abundant. Hence,
seeds which reach this environment, perhaps remaining dormant initially, will be well-
placed to germinate and colonise the area if conditions later improve. This hypothesis un-
derscores the fact that seed dispersal can be temporal as well as spatial, as some seeds can
remain in a dormant condition for considerable periods awaiting better conditions. Dor-
mancy capability is valuable, as it can notably increase the reproductive success of the
parent plant [33].

The directed dispersal hypothesis [9] argues that plants can adapt their diaspores and
/ or their morphology in order to enhance their chances of dispersing seeds into locations
which provide good conditions for seed establishment and growth. For example, plants can
adapt their morphology in order to utilise differing seed dispersing agents. Non-random dis-
persal into resource rich environmental patches presents an obvious evolutionary advantage
advantage over random seed dispersal methods [26, 32].
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1.3. Design Trade-Offs

Plants can exert some control over their seed dispersal patterns as morphological factors
such as plant height, fruit / seed size and design, and ease of abscission (release of fruit/seed)
are all adaptable over time.

Taking plant height, a taller plant can produce a wider seed shadow via wind dispersal
than a low-sized plant. Of course, a greater degree of tissue investment is required to grow a
taller plant, leaving less energy for seed production, potentially creating a design trade-off.

In the case of seed design, plants can select different levels of investment in their seeds,
with some plants adopting a ‘low investment’ model, where the plant invests little in in-
dividual seeds but produces a large number of them, with other plant species adopting a
‘high investment’ model, producing fewer, larger, seeds. A larger seed can contain greater
energy reserves thereby enhancing the probability of germination but larger seeds are usu-
ally harder to disperse than smaller ones, requiring larger animals, stronger winds or more
powerful propulsion mechanisms [34]. Hence, larger seed size will impact on the design of
the plant’s dispersal mechanisms.

The level of investment in fruit production (for fruiting plants) can also be adapted as
production of richer, more attractive, fruits will enhance biotic seed dispersal but at the
expense of leaving less energy for other plant requirements.

In essence, when ‘selecting’ a dispersal mechanism, two costs are being balanced, the
cost of seed mortality (arising when seeds produced by a plant fail to subsequently ger-
minate), and the allocation costs (i.e. the costs of that dispersal mechanism. In summary,
plants can employ a wide variety of seed dispersal techniques, each requiring different lev-
els of resource investment, and each requiring differing plant morphologies which embed
specific trade-offs.

1.4. Structure of Paper

The remainder of this chapter is organised as follows. Section 2. provides some background
on aspects of the seed dispersal process Section 3. outlines a number of optimisation algo-
rithms whose design has drawn inspiration from the plant propagation process. Conclusions
and opportunities for future work are discussed in Section 5.

2. Background

As the seed dispersal pattern of plants is important both for individual and species-level
survival, a significant research effort has been expended in order to gain insight into the
dispersal patterns for various plant species. Levey et al (2008) [13] notes that the ‘Holy
grail of seed dispersal is to accurately predict the probability distribution of seed density
from a particular configuration of parents and then relate those distributions to seedling
demography’ (p. 604).

The spatial distribution of seed dispersal from an individual plant, or cluster of plants,
is known as a seed shadow. More formally, these seed shadows can be represented by
a probability distribution, relating the probability that an individual seed is dispersed a
given distance from its maternal plant. Spatial dispersal patterns can be considered either
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in one dimensional terms, focussing on dispersal distance, or in two dimensions by also
considering the directionality of dispersion. Both dispersal distance and direction for an
individual plant will be impacted by the nature of the plant’s dispersal mechanism and by
location-specific factors.

Ballists and ant-dispersed seeds tend to travel the shortest distances (up to a few metres
typically), with wind-dispersal and animal dispersal producing greater dispersal distances in
terms of both mode and maxima. Directional dispersal can be influenced by several factors,
the most obvious of which is prevailing wind direction in the case of wind-dispersed seeds
[34]. The directionality of animal dispersed seeds will be influenced by the topology of the
local environment as this will impact on animal movement patterns.

A practical issue that arises in attempting to capture empirical data on seed dispersal is
that long-range dispersal events tend to be under-reported as it becomes difficult to accu-
rately attribute seeds to specific parent plants as seeds disperse over increasing distances.
For example, extreme distance dispersal events, such as may occur when seeds get stuck to
the feathers or feet of birds are unlikely to be captured in empirical studies. The problem
of capturing good data on long-dispersal events is noted by many studies, with [5] pithily
stating that ‘for [dispersal] distances exceeding a few hundred metres we essentially know
nothing’. However, there have been some attempts to construct general frameworks of
long-distance dispersal [7] in order to facilitate the construction and testing of the biogeo-
graphical consequences of long-distance dispersal. Understanding long-distance dispersal
of seeds is of critical importance in gaining insight into the spread of plant populations
(including invasive species), and in explaining the diversity and dynamics of ecological
communities [4].

Another perspective on seed dispersion is that it can be considered as taking place across
time as well as spatially [7]. An obvious example is the case of long-distance dispersal
whereby a seed or spore may be dispersed by rafting on ocean flotsam, and take many
days to reach its final destination. More generally, seed germination and spore revival may
be long delayed awaiting suitable environmental conditions and thus we can distinguish
between seeds germinating from a seed bank (seeds dispersed in the past which have lain
in the soil) and seed rain (recently deposited new seeds arising from current dispersal).

2.1. Modelling Seed Dispersal

Two main approaches have been taken to modelling of seed dispersal patterns, a concep-
tual approach which attempt to build a model from the underlying physical mechanisms of
dispersal, and an empirical approach which seeks to reverse fit a mathematical model to
real-world data.

In seeking to build a model of seed dispersal, [13] notes that an important distinction
must be made between cases where the seeds are dispersed abiotically, for example by
wind, and cases where seeds are dispersed biotically, for example, by animals or insects.
In the former case, the focus is on parameterising a mechanistic seed dispersal model, ac-
counting for plant height, characteristics of the seed structure, wind conditions etc. In the
latter case, the situation is more complex, and it is necessary to consider factors governing
animal movement, animal physiology, and animal behaviour. Initially thought to be infre-
quent, reports of such directed dispersal by animals are increasing, as more detailed studies
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of the food caching behaviours of animals are undertaken [35].

2.1.1. Modelling Wind Dispersal

The earliest studies which attempted to construct a model of wind borne dispersal of seeds
used a ballistic formulation, considering seeds to be non-powered projectiles [8]:

x =
Hu

F
(1)

where x is the predicted horizontal distance from maternal parent to the deposition site,
H is seed release height above the ground, F is a constant descent velocity, and u is the
horizontal wind velocity averaged between H and the ground. The basic ballistic model
assumes that the dispersed seed reaches terminal velocity (the falling velocity of a seed in
still air) immediately after release, and that horizontal wind velocity is constant during the
descent phase.

Although this model is a simplification of reality, it highlights that there will be a vari-
ation in the deposition distance depending on the wind speeds in the downwind, crosswind
and vertical directions, the terminal velocity of the seed, and its release height. For exam-
ple, a low terminal velocity, such as would arise with a lightweight or an aerodynamic seed
structure, will enhance dispersal distance as there is more chance of an uplift eddy with
consequent horizontal displacement during the lengthier ‘descent’ process. The model also
illustrates that the detachment mechanism from a plant is important as this determines the
minimum level of wind speed which will act on the seed when it is detached from the plant.

A shortcoming of these models is that they produce seed dispersal estimates which have
far lower maximum dispersal distances than are seen in the real world. A more realistic
model can be obtained if variable windspeeds are incorporated, with turbulent fluctuations
in the vertical velocity component. Simulations using these models produces dispersal
distributions which are more realistic, producing maximum seed dispersal distances that
are two to three orders of magnitude bigger than those produced by simple ballistic models.
These distributions can be approximated by a power law dispersal kernel [18].

At a macro level, it may be possible to model long distance wind dispersal as storms,
trade winds and high-altitude jet streams are at least partly predictable on longer time scales
in terms of direction, time of year, and typical wind speeds [7].

2.1.2. Modelling Animal Dispersal

As animals are important seed dispersal vectors, knowledge of animal movement patterns
and animal physiology could contribute to our understanding of seed dispersal distribution.
Recent years have seen the development of the new multi-disciplinary field of movement
ecology [29]. This field is concerned with empirical and theoretical study into the movement
of animals, plants or microorganisms. Areas of interest include movement phenomena
surrounding foraging and seasonal migration.

The simplest models of animal foraging movement ignore cognition and sensory inputs,
corresponding to a case where resources are randomly dispersed and cognition and sensory
capabilities are either non-existent or alternatively, too limited to effectively aid the search
process. In this case, foraging movement can be modelled as being a random walk. The
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best-known random walk models assume Brownian motion and it was long thought that
this could be used to approximate the diffusion of biological organisms. In turn, due to
the Central Limit Theorem whereby the distribution of the sum of i.i.d. random variables
with finite variance converges to a Gaussian, this would produce a normal distribution for
multi-step foraging expeditions [29].

However, the assumption of Brownian motion ignores important aspects of real-world
foraging including the ‘directional persistence’ typically exhibited by organisms. Animals
rarely undertake 180 degree turns and revisit a just-sampled site. Animals also do not
blindly move around the environment but rather stop when a resource is found, nor do they
tend to persist in searching a ‘patch’ in the environment which has been unfruitful in the
recent past.

Movements of animals might therefore be expected to display ‘fat tails’ having a greater
number of very short and very long ‘jumps’ than would be expected under a Brownian
motion assumption. When tested using empirical data from foraging organisms, the results
indicate that, particularly in cases where resources are sparsely and randomly distributed,
the foraging movements of many organisms are described as a Lévy flight, giving rise to
the Lévy flight foraging hypothesis [28]. A Lévy flight is a random walk in which the
step-lengths (jump sizes) have a power law distribution.

We may also consider a slightly move complex foraging model where resources are ran-
domly distributed in the environment and the forager is allowed to have sensory perception,
such as the ability to ‘see’ or ‘smell’ food resources and move accordingly. In this case, the
animal behaves as follows [27]:

i. if there is a resource located within a direct vision distance rv then the searcher detects
it with certain probability and moves on a straight line to the detected resource;

ii. if there is no detected resource within distance rv then the searcher chooses a direc-
tion at random and a distance lj from a probability distribution and moves incremen-
tally to the new point constantly looking for resources within a distance rv along the
way;

iii. if it does not detect any resources, it stops after traversing distance lj and chooses a
new direction and distance lj+1, otherwise it moves to the resource;

where the probability distribution for move distances is a Lévy distribution, as follows:

P (lj) ∼ l−µj (2)

Analysis in [27] suggests that in the absence of a priori knowledge of the distribution of
food resources, the optimal strategy for a forager is to choose µ ≈ 2. The study notes
that several empirical studies of foraging behaviour across a range of organisms (micro
organisms, insects, birds, mammals) have been found to follow a Lévy distribution of flight
lengths or times with µ ≈ 2.

Although the above analysis ignores a number of important issues concerning real-
world foraging movement such as personal and social learning, environments in which
resources are patchy, and local environment topology, it provides some support for a claim
that the foraging movement patterns of animals will produce a leptokurtic pattern of seed
dispersal.
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An additional physiological factor in animal-mediated dispersal is the length of time
the seed is carried by the animal before dispersal. Some animals such as birds will typically
excrete ingested seeds within a few hours of consumption, in other cases, the digestion
passage time may be considerably longer, 3-17 days in the case of some species of tortoises
[10]. Seed morality may also vary depending on the animal that ingests them, although
in the case of tortoises, less than 5% of seeds were found to be damaged whilst in transit
through the digestive tract [10].

Animal-mediated seed dispersal is a complex animal-plant interaction which can take
multiple forms, including cases where seeds commence germination whilst in the digestive
tract of an animal. Other examples include the caching of seeds by animals in areas suitable
for seed establishment and survival. Initially, thought to be infrequent, reports of such
directed dispersal by animals are increasing, as more detailed studies of the food caching
behaviours of animals are undertaken [35]. Examples include cases where animals cache
seeds in areas of suitable soil conditions for seed growth, and caching of seeds at an optimal
depth for their survival. Such synergistic interactions are plausible, as an ecology in which
both plants and animals thrive is beneficial to both.

The social environment of animals also impacts on seed dispersal. Some mammals
and birds live in groups, and hence defecate collectively at their feeding and resting sites.
In turn, this will result in more localised dispersal of seeds than would occur if the seed
consumers were solitary.

Due to the number of relevant factors, and our imperfect understanding of animal be-
haviours, is clear that developing a comprehensive model of animal movements, which
could then feed into a model of animal-mediated seed dispersal, is a non-trivial task. How-
ever, we can expect to see continued attempts to develop such models as the field of move-
ment ecology develops.

2.2. Modelling

2.2.1. Empirical Modelling

An alternative approach to the modelling of seed dispersal patterns is to concentrate on
empirical data rather than attempting to construct an explanatory model using underlying
physical mechanisms. Empirical examination of the relationship between the number of
seeds dispersed and distance from parent plant, indicates a leptokurtic distribution, dis-
playing a higher peak and a heavier tail than a Gaussian distribution, with seed numbers
decreasing monotonically with distance from the parent plant [9, 19, 34]. In attempting
to reverse engineer a seed distribution function from observed seed count data, the aim is
to uncover a probability density function p(x) which gives the probability that a dispersed
seed arrives at a distance x away from the source plant. This defines a dispersal kernel
which maps seed density to distance (one dimensional case), or seed density by unit area
to distance (two dimensional case) [18]. Typical kernels seen in the literature are Gaussian,
negative exponential, and the inverse power function. A negative exponential model will
have the general form [3]:

SD = a1 · exp(−b1 ·D) (3)
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where SD is the density of seeds at distance D from the source and a1 and b1 are constants
indicating the density of seeds falling at the source and the slope of the decline in seed
density with distance. In contrast, an inverse power model produces longer, fatter, tails:

SD = a2 · (D)−b2 (4)

Based on sample of 73 herbaceous species and 75 tree/shrub samples [33] indicates that a
negative exponential distribution provides a reasonable fit to the data, noting that the fit was
better for the part of the curve around the mode with the tail area being less well-explained
by this distribution. The study also noted that many empirical investigations stop collecting
data on seed dispersal long before the end of the right tail and hence, their results need to
be read with caution.

Differing studies have examined the seed dispersal patterns of numerous plant species
and these have have produced varying suggestions as to whether a negative exponential or
an inverse power model (negative power distribution) produces a better fit to the collected
data [26] . The relative scarcity of data on long-range dispersal of seeds can make it difficult
to distinguish between alternative model specifications.

In an attempt to better explain the tail of dispersal curves, some authors including [3]
have suggested the use of a mixed model formulation with two kernel components: with a
fat-tailed kernel for long distance dispersal, and negative-exponential component for short-
distance dispersal:

SD = a3 · exp(−b3 ·D) + (c3 ·D)−p3 (5)

As distance from the parent plant increases, the first component goes to zero and the second
component then estimates the tail.

One interesting question is whether the ‘typical’ tail shape of the dispersal curve is qual-
itatively impacted by the mode of dispersal, in other words, do certain dispersal mechanisms
produce a significantly different tail to the dispersal curve? Based on a study employing 68
different datasets, [34] indicates that there is no clear link between tail shape and dispersal
mode, suggesting that there is relatively little selection pressure for tail behaviour.

A further complicating factor is that the seeds of most plants are dispersed by multiple
mechanisms. Hence, their seed shadows are comprised of a mixture of dispersal models
[17], hence, the calibration of a seed distribution pattern to a single model is likely to be
errorful. An additional feature is that dispersal agents may engage in secondary dispersal,
i.e. from initial dispersal sites, thereby increasing the seed shadow.

2.3. Plant-inspired Algorithms

Until recently, little attention was paid to the potential utility of plant metaphors for the
design of computational algorithms. The last few years have seen increased interest in this
area, with the development of a number of plant-inspired algorithms. Broadly speaking,
these fall into three categories, namely algorithms inspired by:

i. plant propagation behaviour,

ii. light-foraging behaviour (branching algorithms), and
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iii. purported swarm behaviour of plant root networks.

In this paper we restrict attention to the first of these.

3. Plant Propagation Algorithms

Plants have a repertoire of processes by which they propagate themselves including seed
dispersal and root propagation. Effective propagation plays an important role in ensuring
the survival of plant species, and in turn this depends on the ability of the plant to propagate
itself into resource-rich areas. Hence,this process can metaphorically provide inspiration for
the design of robust optimisation algorithms and also for the design of engineering systems
[20].

Three algorithms which have been inspired by these processes, the Invasive Weed Al-
gorithm [15], the Paddy Field Algorithm [21] and the Strawberry Plant Algorithm [24] are
discussed below.

3.1. Invasive Weed Optimisation Algorithm

The invasive weed optimisation algorithm (IWO) (pseudocode provided in Algorithm 2),
based on the colonisation behaviour of weeds, was proposed by Mehrabian and Lucas in
2006 [15]. The inspiration for the algorithm arose from the observation that weeds, or more
generally, any plant, can effectively colonise a territory unless their growth is carefully
controlled. Two aspects of this colonising behaviour are that weeds thrive in fertile soil and
reproduce more effectively than their peers in less-fertile soil, and the dispersal of seeds
during plant reproduction is stochastic.

Algorithm 1: Invasive Weed Algorithm [15]

Generate pinitial seeds and disperse them randomly in the search space;
Determine the best solution in the current colony and store this location;
repeat

Each plant in the population produces a quantity of seeds depending on the quality of its location;
Disperse these new seeds spatially in the search space giving rise to new plants;
If maximum number of plants (pmax > pinitial) has been exceeded, reduce the population size to
pmax by eliminating the weakest (least fit) plants. This simulates competition for resources;
Assess the fitness of new plant locations and, if necessary, update the best location found so far;

until until terminating condition ;
Output the best location found;

The three key components of the algorithm are seeding (reproduction), seed dispersal and
competition between plants. Mehrabian and Lucas operationalised these mechanisms in the
following way in the IWO algorithm.

3.1.1. Seed Production

Each plant produces multiple seeds, based on its fitness relative to that of the other plants
in the current colony of weeds. A linear scaling system is used whereby all plants are
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Algorithm 2: Invasive Weed Algorithm

Generate pinitial seeds and disperse them randomly in the search space;
Determine the best solution in the current colony and store this location;
repeat

Each plant in the population produces a quantity of seeds depending on the quality of its location;
Disperse these new seeds spatially in the search space giving rise to new plants;
If maximum number of plants pmax > pinitial has been exceeded, reduce the population size to
pmax by eliminating the weakest (least fit) plants. This simulates competition for resources;
Assess the fitness of new plant locations and, if necessary, update the best location found so far;

until terminating condition ;
Output the best location found;

guaranteed to produce a minimum number of seeds (minseeds), and no plant can produce
more than a maximum number of seeds (maxseeds). The number of seeds produced by an
individual plant is calculated using the following:

s(x) =
f(x)− fmin

fmax − fmin
∗ (smax − smin) + smin (6)

where fmax and fmin are the maximum and minimum fitnesses in the current population
and f(x) is the fitness of the plant x.

3.1.2. Seed Dispersal

While the IWO algorithm employs the notions of fitness and reproduction, unlike the GA,
the IWO does not use genetic operators in the creation of populational diversity. Explo-
ration of the search space is obtained via a simulated seed dispersal mechanism. The seeds
associated with each plant are dispersed by generating a random displacement vector and
applying this to the location of their parent plant. The displacement vector has n elements
corresponding to the n dimensions of the search space, and is obtained by generating n nor-
mally distributed random numbers, with a mean of zero and a standard deviation calculated
using the following:

σiter =

(
itermax − iter

itermax

)n
(σmax − σmin) + σmin (7)

where iter is the current algorithm iteration number, itermax is the maximum number of
iterations, σmax and σmin are maximum and minimum allowable values for the standard
deviation, n is a non-linear modulation index, and σiter is the standard deviation used in the
current iteration in calculating the seed displacements.

The effect of this formulation is to encourage random seed dispersal around the location
of the parent plant, with decreasing variance over time. This results in greater seed dispersal
in earlier iterations of the algorithm, promoting exploration of the search space. Later, the
balance is tilted towards exploitation as the value of σiter is reduced. The incorporation of
the non-linear modulation index in (7) also tilts the balance from exploration to exploitation
as the algorithm runs.
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Depending on the scaling of the search space, the same value of σiter could be applied
when randomly drawing each element of the displacement vector. Alternatively, differing
values of σinitial and σfinal could be set for each dimension if required.

3.1.3. Competition for Resources

Competition between plants is simulated by placing a population size limit on the colony
(pmax). The plant colony starts with a population of size pinitial. The population increases
as new plants grow in subsequent generations. Once the pmax population limit is reached,
parent plants compete with their children for survival. The parent and child plants are
ranked by fitness, with only pmax plants surviving into the next generation. This mechanism
ensures that the best solution found to date cannot be lost between iterations (elitism).

3.1.4. Performance of the Algorithm

The IWO is a conceptually simple, numerical, non-gradient based, optimisation algorithm.
As yet due to its novelty, there has been limited investigation of its effectiveness, scalability
and efficiency. Mehrabian and Lucas [15] report GA and PSO competitive results from the
IWO algorithm with settings of 10-20 weeds, maximum and minimum numbers of seeds
per plant of 2 and 0 respectively, and a non-linear modulation index value of 3. Competitive
results for the IWO algorithm are also reported by [2, 16] and [38].

The algorithm requires that several problem-specific parameters are set by the mod-
eller including, the maximum and minimum number of seeds that a plant can produce, the
values for σmax, σmin and itermax, and the initial and the maximum population size. How-
ever, the determination of good values for these parameters is not necessarily a trivial task,
particularly in poorly understood problem environments.

Recent work has extended the application of IWO into clustering where each individual
seed consists of a string of up to n real-valued vectors of dimension d, corresponding to the
n cluster centre coordinates (in d dimensional space) [14]. Apart from the IWO algorithm,
a number of other algorithms which draw inspiration from seed-dispersal behaviour have
been proposed, including the Paddy Field Algorithm [21].

3.2. Paddy Field Algorithm

The paddy field algorithm was first proposed by Premaratne, Samarabandu and Sidu (2009)
[21]. This algorithm draws inspiration from aspects of the plant reproduction cycle, con-
centrating on the processes of pollination and seed dispersal.

Let the vector x = (x1, x2, . . . , xn) correspond to a location in an n dimensional space
and y = f(x) is the ‘fitness’ or ‘quality’ of that location. Each seed i therefore, has a
corresponding location xi and a corresponding fitness. The paddy field algorithm manipu-
lates a population of these ‘seeds’ in an attempt to find a good solution to the optimisation
problem of interest. The algorithm consists of five stages, sowing, selection, seeding, polli-
nation, and dispersion [21]. Each of these are described below.
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3.2.1. Sowing

An initial population of (p) seeds are (sown) at random locations in the search space.

3.2.2. Selection

The seeds are assumed to grow into plants, and each of these plants has an associated fitness
value (y) determined by the output of the underlying objective function when evaluated at
the plant’s location. The plants are ranked by fitness, and the best n plants are then selected
to produce seeds.

3.2.3. Seeding

Each plant produces a number of seeds in proportion to its fitness. The fittest plant produces
smax seeds and the other plants produces varying amounts of seeds, calculated using:

s = smax
y − yt

ymax − yt

The term ymax is the fitness of the best plant in the current population, and yt is the fitness
of the lowest ranked plant selected in the previous step. Although the algorithm describes
this step as ‘seeding’, it can more correctly be considered as the process of growth of flower
structures in order to enable pollination.

3.2.4. Pollination

Only a portion of the seeds become viable and to determine this portion, a simulated pol-
lination process is applied whereby the probability that a seed is pollinated depends on the
local density of plants around the seed’s parent plant. The higher the density, the greater the
chance of pollination. A hypersphere of radius a is defined, and two plants are considered
to be neighbours if the distance between them is less than a. The pollination factor Uj of
plant j (with 0 ≤ Uj ≤ 1) is then calculated using:

Uj = exp(vj/vmax − 1)

where vj is the number of neighbours of the plant j and vmax is the number of neighbours
of the plant with the largest number of neighbours in the population.

3.2.5. Dispersion

The pollinated seeds are then dispersed from the location of their parent plant such that the
location of the new plant (grown from the dispersed seed) is determined using N(xj , σ)
where xj is the location of the parent plant and σ is a user-selected parameter.

The above five steps are iterated until a termination condition is reached. In summary,
the fittest plants give rise to the greatest number of seeds, and search is intensified around
the better regions of the landscape uncovered thus far. Variants on the PFA include [12].
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Algorithm 3: Paddy Field Algorithm [21]

Generate an initial population of p plants each located randomly in the search space;
Choose value for maxiter and n (see below);
Set generation counter iter = 1;
repeat

Calculate fitness of each plant (yi) and store in vector N (Ni = fitness(yi : i = 1, . . . , p));
Sort N : (Ni : i = 1, . . . , p) into descending order (assuming the objective is to maximise fitness);
for i = 1 : n (top n plants) do

Generate seeds for each selected plant;
Implement pollination step;
Disperse pollinated seeds;

end
Replace old population with new plants;
iter = iter+1;

until iter = maxiter ;
Output the best location found;

3.3. Strawberry Plant Algorithm

Although many plants propagate using seeds, some employ a system of ‘runners’, or hor-
izontal stems which grow outwards from the base of the plant. At variable distances from
the parent plant, if suitable soil conditions are found, new roots will grow from the runner
and in turn produce an offspring clone of the parent plant. An example of this behaviour is
provided by modern strawberry plants which can propagate via seeds and by runners. This
has inspired the development of an optimisation algorithm based on this phenomenon [24].
The algorithm is based on the following ideas:

• healthy plants in good resource locations generate more runners,

• plants in good resource locations tend to send short runners in order to exploit local
resources,

• plants in poorer resource locations tend to send longer runners to search for better
conditions, and

• as the generation of longer runners requires more resource investment, plants gener-
ating these will create relatively few of them.

The algorithm therefore seeks to balance exploration with exploitation, with increasing
local exploration over time as plants concentrate in the locations with best conditions for
growth. Salhi and Fraga [24] report competitive results from this algorithm when applied
to a number of real-valued benchmark optimisation problems. Algorithm 4 presents an
adapted version of the algorithm based on [24].

4. Applications

Despite the relative recency of the introduction of plant propagation-inspired algo-
rithms, there have been a number of applications to a range of diverse real-world problems,
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Algorithm 4: Strawberry Propagation Algorithm (adapted from [24])

Generate an initial population of m plants pi : i = 1, . . . ,m each located randomly in the search space;
Choose values for maxgen and y (see below);
Set generation counter gen = 1;
repeat

Calculate fitness of each plant and store in vector N (Ni = fitness(pi : i = 1, . . . ,m));
Sort N : (Ni : i = 1, . . . ,m) into descending order (assuming the objective is to maximise
fitness);
for i = 1 : (m/10) (top 10% of plants) do

Generate (y/i) short runners for each plant (y is a user-defined parameter which defines the
intensity of local search around each of the fitter plants);
if any of the new locations has higher fitness than that of the parent plant then

move the parent plant to the new location with the highest fitness (ri → pi);
else

Discard the new locations and the parent plant stays at its current location;
end

end
for i = (m/10) + 1 : m (indices for remaining plants) do

Generate one long runner for each plant not in the top 10% and select the location of the
end-point ri for that runner randomly in the search space;
if the new location has higher fitness than that of the parent plant then

move the parent plant to the new location (ri → pi);
else

Discard the new location and the parent plant stays at its current location;
end

end
until gen = maxgen ;
Output the best location found;

showing promise compared to existing approaches. We mention a selection of applications
here: these applications range from recommender systems [38] to engineering problems
[39, 40]. [39] apply the Invasive Weed Optimisation algorithm to the problem of optimis-
ing radio antenna structures. They find that the Invasive Weed Optimisation is competitive
with the Particle Swarm Optimisation (PSO) algorithm, in accuracy, speed of convergence
and simplicity. [41] apply a modified (discrete) invasive weed optimization algorithm to
optimize DNA encoding sequences. Experimental results show that the proposed method is
effective and convenient for the design and selection of effective DNA sequences in silico
for controllable DNA computing.

[42] use a discrete invasive weed optimization (DIWO) algorithm for cooperative mul-
tiple task assignment of unmanned aerial vehicles (UAVs) and compare the solutions with
those of genetic algorithms (GAs). Their results show that DIWO has better performance
than GAs in both optimality of the solutions and computation time.

[40] examine the performance of their extended Strawberry Propagation Algorithm on a
range of constrained engineering optimisation problems on continuous domains, including
design of welded beam, pressure vessel, spring and speed reducer. Their results are that the
Strawberry Propagation Algorithm found either near best known solutions or optimal ones
to all problems. They compare the Strawberry Propagation Algorithm results to results
obtained with other approaches such as GAs, Fogel’s Evolutionary Programming, PSO,
variations of the Harmony Search Algorithm and Integer Programming, and find that the
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Strawberry Propagation Algorithm is superior in the majority of cases.

5. Conclusion

At a conceptual level, plant dispersal can be considered as a search process, wherein
the seed or plant is searching for good locations and therefore, inspiration from dispersal
activities of plants can plausibly serve as the design inspiration for optimisation algorithms.
In this chapter we focussed on different processes of plant dispersal, and described a number
of existing optimisation algorithms which draw inspiration from these. These were the
invasive weed optimisation algorithm, the paddy field algorithm, and the strawberry plant
algorithm.

In this work, we have noted and justified an array of plant behaviours which are exhib-
ited in the natural world. With some exceptions, little inspiration has been taken from these
mechanisms, as yet, for the design of computational algorithms. Most of the algorithms
developed thus far are relatively recent in design and further work is required in order to
assess their utility and to assess more fully whether they represent truly novel problem-
solving mechanisms or whether they are qualitatively similar to existing natural computing
algorithms. Work to date appears to indicate that they are at least competitive on the prob-
lems to which they have been applied. However, there is clearly rich potential for future
work.

We wish to stimulate interest in this exciting, and under-explored are of natural comput-
ing. Of great importance here are the investigation of additional strategies for overcoming
local optimality in complex solution spaces, and performing a robust search of a solution
space. Additional research should study the degree to which neighbourhoods are exploited
under different parameter settings governing the operation of each algorithm.

References

[1] Augspurger, C. (1986). Morphology and Dispersal Potential of Wind-dispersed
Diaspores of Neotropical Trees, American Journal of Botany, 73(3):353-363.

[2] Basak A., Pal S., Das S., Abraham A. and Snasel V. (2010). A Modified Invasive
Weed Optimization Algorithm for Time-Modulated Linear Antenna Array Syn-
thesis, in Proceedings of the IEEE World Congress on Computational Intelligence
(WCCI 2010), pp. 372-379, IEEE Press.

[3] Bullock, J. and Clarke, R. (2000). Long distance seed dispersal by wind: measur-
ing and modelling the tail of the curve, Oecologia, 124:506-521.

[4] Cain, M., Milligan, B. and Strand, A. (2000). Long-Distance Seed Dispersal in
Plant Populations, American Journal of Botany, 87(9):1217-1227.

[5] Contreras Sanchez, J., Green, D. and Quesada, M. (2011). A Field Test of Inverse
Modeling of Seed Dispersal, American Journal of Botany, 98(4):698-703.



18 Authors

[6] Dressaire, E., Santoso, J., Yamada, L. and Roper, M. (2013). Control of fluidic en-
vironments by mushrooms, Paper presented at 66th Annual Meeting of the Amer-
ican Physical Society Division of Fluid Dynamics, November 2426, 2013; Pitts-
burgh, Pennsylvania.

[7] Gillespie, R., Baldwin, B., Waters, J., Fraser, C., Nikula, R. and Roderick, G.
(2011). Long-distance dispersal: a framework for hypothesis testing, Trends in
Ecology and Evolution, 27(1):47-56.

[8] Green, D. and Johnson, E. (1989). A Model of Wind Dispersal of Winged or
Plumed Seeds, Ecology, 70(2):339–347.

[9] Howe, H. and Smallwood, J. (1982). Ecology of Seed Dispersal, Annual Review
of Ecology and Systematics, 13:201-228.

[10] Jerozolimski, A., Beatriz Ribeiro, M. and Martins, M. (2009). Are Tortoises Im-
portant Seed Dispersers in Amazonian Forests? Oecologia, 161(3):517-528.

[11] Koller, D. (2011). The Restless Plant, Harvard University Press, Cambridge, MA.

[12] Kong, X., Chen, Y-L., Xie, W. and Wu, X. (2012). A Novel Paddy Field Algo-
rithm Based on Pattern Search Method, in Proceedings of the IEEE International
Conference on Information and Automation, pp. 686-690, IEEE Press.

[13] Levey, D., Tewksbury, J. and Bolker, B. (2008). Modelling long-distance seed
dispersal in heterogeneous landscapes, Journal of Ecology, 96:599-608.

[14] Liu, R., Wang, X. and Li, Y. (2012). Multi-objective Invasive Weed Optimization
Algorithm for Clustering, in Proceedings of 2012 IEEE World Congress on Com-
putational Intelligence (WCCI 2012), pp. 1556-1563, IEEE Press.

[15] Mehrabian, A. and Lucas, C. (2006). A novel numerical optimization algorithm
inspired from weed colonization, Ecological Informatics, 1:355-366.

[16] Mehrabian, A. and Yousefi-Koma, A. (2007). Optimal positioning of piezoelec-
tric actuators on a smart fin using bio-inspired algorithms, Aerospace Science and
Technology, 11:174-182.

[17] Nathan, R. and Muller-Landau, H. (2000). Spatial patterns of seed dispersal, their
determinants and consequences for recruitment, Tree, 15(7):278-285.

[18] Nathan, R., Katul, G., Bohrer, G., Kuparinen, A., Soons, M., Thompson, S.,
Trakhtenbrot, A. and Horn, H. (2011). Mechanistic models of seed dispersal by
wind, Theoretical Ecology, 4:113-132.

[19] Niklas, K. and Spatz, H. (2012). Plant Physics, University of Chicago Press.

[20] Pandolfi, C. and Izzo, D. (2013). Biomimetics on seed dispersal: survey and
insights for space exploration, Bioinspiration and Biomimetics, 8(2):025003,
doi:10.1088/1748-3182/8/2/025003



Article Name 19

[21] Premaratne, U., Samarabandu, J. and Sidhu, T. (2009). A New Biologically In-
spired Optimization Algorithm, in Proceedings of Fourth International Conference
on Industrial and Information Systems (ICIIS 2009), pp. 279-284, IEEE Press.

[22] Rad, H. and Lucas, C. (2007). A Recommender System based on Invasive Weed
Optimization Algorithm, in Proceedings of IEEE Congress on Evolutionary Com-
putation (CEC 2007), pp. 4297–4304, IEEE Press.

[23] Roper, M., Seminara, A., Bandi, M., Cobb, A., Dillard, H. and Pringle, A. (2010).
Dispersal of fungal spores on a cooperatively generated wind, Proc Natl Acad Sci,
107(41):17474-9.

[24] Salhi, A. and Fraga, E. (2011). Nature-Inspired Optimisation Approaches and the
New Plant Propagation Algorithm, in Proceedings of 2011 International Confer-
ence on Numerical Analysis and Optimization (ICeMATH 2011), pp. K2-1:K2-8.

[25] Schupp, E. (1993). Quantity, Quality and the Effectiveness of Seed Dispersal by
Animals, Vegetatio, 107/108:15–29.

[26] Venable, D. and Brown, J. (1993). The Population-dynamic Functions of Seed
Dispersal, Vegetatio, 107/108:31-55.

[27] Viswanathan, G., Afanasyev, V., Buldyrev, S., Havlin, S., da Luz, M., Raposo,
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