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ABSTRACT
Learning has been shown to be beneficial to an evolutionary process

through the Baldwin Effect. Moreover, learning can be classified

into two categories: asocial learning, e.g. trial-and-error; and social
learning, e.g. imitation learning. A learning strategy, or learning
rule – a combination of individual and social learning – has been

suggested by recent research can be more adaptive than both social

and individual learning alone. However, this also leaves open an

important question as to how best to combine these forms of learn-

ing in different environments. This paper investigates this question

under a dynamic rugged landscape (i.e. dynamic NK-landscape).

Experimental results show that a learning strategy is able to pro-

mote an evolving population better, resulting in higher average

fitness, over a series of changing environments than asocial learn-

ing alone. The results also show that the population of strategic

learners maintains a higher proportion of plasticity – the ability to

change the phenotype in response to environmental challenges –

than the population of individual learners alone.
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1 INTRODUCTION
Learning is an important characteristic to enable an organism to

adapt its phenotype to the local environment during its own life-

time, and prepare an individual organism for future circumstances.

By expressing behavioural plasticity, learning can play a more sig-

nificant role when the environment becomes dynamic...and so dy-

namic that the slower evolutionary process cannot encode enough

environmental information required for the survival of the species.

Interestingly, evolution and learning can complement each other

through the phenomenon called the Baldwin Effect [2, 6, 12, 17],

whichwas first demonstrated computationally byHinton andNowlan

∗
Corresponding Author: Nam Le is with Natural Computing Research & Applications

Group, University College Dublin, Dublin, A94-XF34, Ireland.

Email: namlehai90@gmail.com. Tel: +353 83 320 1501.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00

https://doi.org/10.1145/3321707.3321741

(henceforth H&N) [7]. Following this success, there have been quite

a few important studies on the interaction between learning and

evolution, notably in Artificial Life [1], Evolutionary Robotics [21],

Evolving Autonomous Artificial General Intelligence [12], and in

the NK-Landscape [3, 19]. Apart from some recent papers [13, 17],

the influence of learning on evolution has subsequently been little

investigated in the field of Evolutionary Computation (EC), despite

the fact that many problem domains addressed by EC are inherently

dynamic.

Generally, lifetime learning can be classified into two types,

namely Asocial (or individual) learning (IL) – learning by oneself

through direct interaction with the environment, e.g., trial-and-

error, and social learning (SL) – learning from others, e.g., imitation.

SL is considered a form of ‘information-parasitism’ since an indi-

vidual can only learn socially from information produced by others.

A key open question arising here is how to use SL more effectively.

Too much SL can reduce the performance of the whole evolving

population [15, 23]. It has been suggested that a learning strategy –

a combination of both IL and SL – can show more adaptive evolu-

tionary consequences than either form of learning alone [15, 17, 23].

This paper focuses on studying the effect that different forms

of learning strategies may have on the evolutionary process when

dealing with dynamic environments. We propose a form of dynamic

environment based on the tunably rugged fitness landscape called

the NK-landscape [9]. We also propose an algorithm combining

evolution with learning strategies to test how the combination of

social and asocial learning performs. In the remainder of this paper,

we present some background concepts relating to social learning,

then some prior research on learning and evolution. We also remind

the reader of some the basics of the NK-landscape in the background

section. We then present our experimental design, including our

proposed dynamic problem and algorithms. Finally, some future

directions are indicated.

2 BACKGROUND
2.1 Social Learning
Social learning can be understood as learning that is influenced

by the observation of, or the interaction with another organism

or its products [5, 8]. Social learning research could be considered

a rapidly growing subfield of animal behaviour studies as well as

human cultural evolution [22]. Social learning has been observed

in organisms as diverse as primates, birds, fruit flies, and especially

humans [23]. Although the use of social learning is widespread,

understanding when and how individuals learn from others is a

significant challenge [23]. Generally, social learning mechanisms

include imitation, stimulus and local enhancement, observational

conditioning; and amongst them imitation learning has been said a

unique ability of highly intelligent animals, including humans [8,

22]. In imitation learning, the observer directly copies the behavior

of the observed animal in order to complete a novel task.
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SL, at first glance, seems to be a low-cost, adaptive, mechanism

as individual agents can acquire information from others without

incurring the cost of trial-and-error learning. Thus, it is plausible

to think that SL will result in more effective learning outcomes.

Contrary to this belief, it has been found that agents should not

learn socially all the time [11, 15, 25]. It is argued that individual

learners produce new information about the environment, though

at a cost. In contrast, social learners avoid this cost by copying the

existing behaviors of others, but do not themselves generate any

new information about the environment. Therefore, it is highly

likely that social learners will copy outdated information when the

environment changes, reducing the average fitness of the popula-

tion.

Several theoretical models have been proposed to investigate

how to use SL effectively [4, 11, 26]. It is said that social learning

should be combined with individual learning in a strategic way in

order to produce an adaptive advantage. Social learning strategies

consist of rules specifying the way an individual relies on social

learning by answering three questions:

i. When an individual should learn?

ii. From whom they should learn?

iii. What information should be learned?

The question of when to copy covers the decision as to when

to seek social information.Whom to copy may depend on factors

such as the social structure of the population and the ability of the

individual to recognise whether other individuals are obtaining

higher payoffs. Possibilities include the copying of the most suc-

cessful individual, copying of kin, or adherence to a social norm by

copying the majority. What to copy considers which behavior or

more specifically what part of that behavior to copy.

There can be three modes of information transmission through

social learning [22, 24]. The first is vertical transmission - transmis-

sion from parents to their children. The second is oblique transmis-
sion in which cultural traits will be passed to an individual from

another individual learner, not its parent, but from the previous

generation. The last is horizontal transmission - an observer will

learn from a demonstrator in its current generation. In the scope

of this paper, we design an algorithm modeling social learning

through oblique transmission, which will be described later.

2.2 Learning and Evolution
In 1987, the Cognitive Scientist Geoffrey Hinton and his colleague

Kevin Nowlan at CMU presented a classic paper [7] to demonstrate

an instance of the Baldwin effect in the computer. It was shown

that learning in the form of random search can speed up and guide
evolution to solve a haystack problem.

The model developed by Hinton and Nowlan, though simple, is

interesting, opening up the trend followed by a number of stud-

ies investigating the interaction between learning and evolution,

including [1], [21], [19], [12], [16].

However, most research papers on this topic only study fixed

environment, and the relationship between asocial learning and

the evolutionary process. We think that it is first worth investi-

gating more about the effect learning might have on evolution in

dealing with dynamic environments. Second, we should take social

Figure 1: An example of an NK Model when N = 5 and K = 2.
(a) shows how the fitness contribution of each bit depends
on K consecutive bits. Therefore there are 2

k+1 possible al-
lele combinations, each of which is assigned a random fit-
ness in a lookup table as shown in (b). Each bit has such a
table created for it. Total fitness of a given sequence is the
normalized sum of these values.

learning [8, 16] into consideration, and see how social learning can

contribute to the effect that learning may have on evolution.

We give a brief introduction of the NK-model as well as some

notable research on learning and evolution in the NK-model in the

following section.

2.3 The NK-Landscape
NK-landscape is a tunably rugged fitness landscape which is of-

ten studied in theoretical biology and evolutionary computation

theory research [9, 10]. In an NK-landscape, there are two land-

scape parameters, namely N and K . N is the length of each string

(genotype) in the landscape. For each string of length N , the fitness

of the whole string is the sum of the fitness of each bit (locus) in

the string. The fitness of each bit (locus) is called the fitness com-

ponent for the whole string (genome). Parameter K specifies for

one specific bit (locus), how many bits (loci) in its neighborhood

contribute to its fitness. These K bits can be chosen randomly, or

can be consecutive K bits (in circular fashion). Therefore, this forms

the interaction between bits (loci) in a string (genome), creating

the ruggedness of the landscape [10]. This is why NK-landscape is

called tunably rugged because the ruggedness of the landscape can

be tuned by changing the interaction graph through parameter K .
Figure 1 shows an example of a NK model. Please refer to [9, 10]

for more details of the NK Landscape.

The NK-landscape has also been used to investigate the Baldwin

Effect, concerning the interaction between evolution and asocial

learning. Several notable studies of the Baldwin effect in the NK-

model include works by Giles Mayley [19, 20], and some others [3].

Their results, again, demonstrated that the Baldwin effect does occur

and the allowance for lifetime learning, in the form of individual
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learning, helps evolutionary search overcome the difficulty of a

rugged fitness landscape.

As mentioned earlier, most research on evolution and learning

in NK-landscape are concerned with a fixed environment: There is

no variability in the structure and the difficulty of the landscape.

Therefore, in this paper we explore the effect that learning strategies

might have on evolution when dealing with dynamic NK-landscape.

We also combine both asocial and social learning, to see how that

interaction can affect the evolutionary process. Experimental design

is presented in the following section.

3 EXPERIMENTAL DESIGN
3.1 The Dynamic NK-Landscape
We propose a dynamic version of the NK-model by varying the

parameter K – the ruggedness of the landscape over generations.

There is a parameter called frequency of change, which controls

after howmany generations the landscape will change. We initialise

a list of Ks and let the algorithm choose K based on some frequency

of change. K can be chosen randomly from the list, yet in our

experiment we choose K based on a deterministic procedure. We

slide through the list of Ks to set the K for the landscape. We allow

circular sliding through the list of K, which means that if we reach

the last K of the list, the list will start again from the first K. For

example, assume the list of K is 0, 2, 4 and initially K is 0. If the

frequency of change is 10, at generation 10 K will be 2, at generation

20 K will be 4, at generation 30 K will come back to 0 again, and so

on.

By varying K like before, we are imposing some dynamics on the

NK-landscape, with increasing and/or decreasing the ruggedness

of the landscape over time. The optimal value of the landscape will

be changed when the K is changed.

3.2 Experimental Setup
To explore the impact that a learning strategy might have on an

evolving population in a dynamic environment we adopt four exper-

imental setups. The first two setups are controls. The first control

adopts an evolving population in the absence of any learning (i.e.,

no asocial or social learning process is present), and the second

control is identical to the first control with the addition that an ora-

cle triggers a restart from an randomised population at each point

when the environment changes. The third and fourth setups com-

bine evolution with asocial learning, and evolution with a learning

strategy respectively. Further details are provided below.

3.2.1 Experimental Setup I: Evolution alone.

The first setup evolves a population of individuals without any

form of learning. This is the canonical Genetic Algorithms. Every

individual has the genome of 20 bits randomly initialised, with

only two alleles 0s and 1s. The genotype-phenotype mapping is

one-to-one. The fitness of an individual is calculated as the fit-

ness value of the corresponding bit-string in the NK-landscape.

At each generation, two individuals are selected, based on fitness-

proportionate selection scheme, to produce one child by one-point

crossover. Mutation is not used in our experiment and there is no

elitism permitted.

3.2.2 Experimental Setup II: Evolution + Restart strategy.

The second setup only differs from the first setup in that we

restart the population initialisation at the generation of change.

Though this is an handcrafted strategy, we implement this for a

special purpose as follows: As the environment changes, the evo-

lutionary process is supposed to lose information about the envi-

ronment, and may not be able to proceed. We would like to see

how evolution with and without restart proceeds through dynamic

environments, in order to see if the evolutionary process itself em-

beds useful information, to ascertain that if learning in combination

with evolution adds performance value over evolution process on

its own.

The first two experimental setups are served as controls in our

experiment. The later two presented below will be concerned with

the main hypothesis of this paper.

3.2.3 Experimental Setup III: Evolution + Asocial Learning.

In the third setup, we evolve a population of learning individuals.

In this simulation, we also allow lifetime learning in the form of

asocial learning, in addition to evolutionary algorithm, to update

the phenotype of the individual. To allow for lifetime learning we

used the same encoding scheme as in [7, 15, 17]: Instead of being

fully specified, the genotype now is composed of three alleles ‘0’,

‘1’, and ‘?’. The allele ‘?’ allows for lifetime learning (or plasticity).

Each agent will have 100 rounds of learning during its lifetime. On

each round, an individual agent is allowed to do individual learning

by changing its allele ‘?’ to either ‘0’ or ‘1’ as the expressed value.

Thus, the behaviour of an individual agent is partly specified by its

genetic composition, and partly by what it learns in the course of

its lifetime.

The evolutionary process is implemented as an evolutionary

algorithm similar to the previous experimental setup. At each gen-

eration, two individuals are selected from the population as parents

to produce one child. The newly-born child is then added into a

new population. This process repeats until the new population is

completed upon which it replaces the old population of parents, i.e.,

the process consists of generational replacement without elitism.

When an individual learns, it updates its phenotypic behaviour,

and hence its fitness. However, instead of being implemented as

a blind random search as in previous work [3, 17], we devise a

new learning algorithm as a hill-climbing process. The learning

algorithm adopted by every individual is presented as Algorithm 1

below.

The above algorithm is relatively self-explanatory. When an

individual expresses a new phenotypic behaviour, it checks whether

the new behaviour is more adaptive than the current before deciding

whether the current phenotype is replaced by the new one. This

process helps each agent keep its best behaviour as its current

phenotype. Fitness of a phenotype is computed by assigning the

fitness value of the corresponding point (a bit-string) in the NK-

Landscape.

After lifetime learning, the population goes through the evolu-

tionary process as follows. At each generation, two individuals are

selected from the population as parents to produce one child. This

process repeats until the new population is filled up and replaces the
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Algorithm 1 Learning

1: function Learning(ind)
2: best_f itness = ind . f itness
3: best_phenotype = ind .phenotype
4: while ind .learninд_attempts < max_attempts do
5: ind .learninд_attempts+ = 1

6: Flip all question marks to get a new phenotype

7: best_f itness = compute_f itness(ind .phenotype)
8: if best_f itness > ind . f itness then
9: ind . f itness = best_f itness
10: best_phenotype = ind .phenotype
11: end if
12: end while
13: ind .phenotype = best_phenotype
14: end function

old population of parents. No mutation is employed in the current

work as in previous studies [15, 17].

3.2.4 Experimental Setup IV: Evolution + Learning Strategy.

In the last setup, we evolve populations of strategic individuals

- individuals that can perform both SL and IL based on a learning

rule. In order to implement social learning, first we propose the imi-

tation procedure, with pseudo-code described in algorithm 2 below.

This presents the process by which an individual observer imitates

the phenotype of its demonstrator. The imitative process starts by

extracting the positions of question marks in the phenotype of the

observer. For each question mark position, the observer will copy

exactly the trait from the demonstrator.

Algorithm 2 IMITATION

1: function Imitation(observer ,demon)
2: questions = [] comment: question mark array

3: for position i ∈ observer .pheno do
4: if i =? then
5: questions .add(i)
6: observer.learning_attempt += 1

7: end if
8: end for
9: for i ∈ questions do
10: observer .pheno(i) = demon.pheno(i)
11: end for
12: end function

The population now has just one type of individual - strategic

individuals that can learn both asocial and socially. We specify the

learning strategy for every individual agent as follows: At each gen-

eration, an agent first observes and learns socially from its demon-

strator, then learns asocially on its own until the maximum learning

attempt is reached. This scenario can be interpreted as a novice

first copies from an expert, then sharpens what it has learned to

further its own quality. In the scope of this study, we adopt oblique
transmission – the individual agent learns from one individual in

the previous generation. This also means that there is no social

learning at the initial generation. In our current study, all the in-

dividuals at each generation have the same demonstrator – the

best individual agent in terms of fitness belonging to the previous

generation. After the lifetime learning process for each agent, the

population goes through selection and reproduction as in EVO+IL.

We use 5 values for K with increasing ruggedness (0, 2, 5, 10, 19).

Starting fromK = 0 (no ruggedness), each value of K is consecutively

chosen after a few generations specified by the frequency of change

parameter. We run our experiments through 4 different frequency
of change. It can be understood that the lower the frequency value,

the faster the target will change. The environment becomes more

dynamic by faster changing, and vice versa. All the parameter

settings used in our experiments are described in Table 1 below.

Table 1: Parameter setting

Parameter Value

N 20

K 0, 2, 5, 10, 19

Genome length 20

Replacement Generational

Generations 200

Elitism No

Population size 100

Selection Fitness-Proportionate selection

Reproduction Sexual reproduction

Fitness function Computed in the NK-landscape

Max learning attempts 100

Frequency 5, 10, 20, 40

Please note that we loop through the list of K over 200 gen-

erations, the ruggedness of the NK landscape is increased (more

difficult) and then decreased (less difficult) depending on the fre-

quency of change and how many times we slide the whole K list.

4 RESULTS, ANALYSIS, AND EXPLANATION
In this section we present comparative analysis of how each of the

experimental setups above performs. All the results are averaged

over 30 independent runs. The fitness values presented in all the

figures below are normalised before analysing, measured by the

real fitness of an agent (computed by the NK model) divided by the

optimal fitness in the whole NK landscape. Importantly, it should

be kindly noted that we do not alter the original fitness value
(computed by the NKmodel) during the whole course of evo-
lution in all setups. All individual agents undergo the evolutionary

process by their original fitness (computed by the NK model). This

fitness normalisation is only for figure presentation, to allow a fair

comparative analysis across dynamic landscapes since the optimal

target changes as we vary the K parameter. When the NK landscape

changes, we have to reinitialise the landscape and the fitness in

the lookup table. Thereby we compute the optimal fitness value by

exhaustive search just for final statistics.

Themain point of ourwork is to see how our learning strategy (in

EVO+Strategy) promotes evolution compared to asocial learning

(in EVO+IL). As controls we have also run evolution alone and
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Figure 2: Average Fitness Comparison.

evolution + restart setups with the reason described above. We

shortly present the comparison between the EVO, EVO+Restart and

EVO+IL populations below.

It can be seen in Figure 2 and 3 that the EVO+IL population

outperforms the controls [EVO and EVO+restart] in terms of both

best and average fitness. In the restart control we observe that for

changes to the less challenging landscapes (i.e. those with lower

K) the restart shortly appears to gain a small advantage over the

continuously evolving population. But as K increase this advantage

disappears. In general, however, our controls behave as expected

with both clearly outperformed by the setups that include a learning

process.

Conversely, in EVO+IL individual agents are equipped with the

ability to learn. It is this learning ability that helps gain more in-

formation about the changing landscape. This is why the EVO+IL

outperforms both EVO and EVO+Restart populations. Learning is

shown to present a clear effect on the foundational evolutionary

process.

Focusing on the main point of this study, given the effect of

learning on evolution as the NK landscape changes as we have

seen, the key and interesting question here is what type of learning

can promote an evolving population better, and if so how and why

the effect arises?

Overall, it can be seen in Figure 2 and 3 that there is a shared be-

haviour in the two populations, that when the environment changes

there is a drop in performance. Generally, the performance is higher

when the ruggedness of the landscape is lower, and vice versa. This

is understandable since at the generation of change, the information

gained in the previous generations can become incorrect, reduc-

ing the fitness of the population. Moreover, when the landscape

becomes more rugged (i.e. higher K), it is harder to find the way to

the solution because of the increase in epistasis, hence the number

of peaks in the landscape.
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Figure 3: Best Fitness Comparison.

More specifically, it would be more interesting to see how asocial

learning and a learning strategy can effect the whole evolving

population. By looking at the average fitness over generations, we

observe that EVO+Strategy outperforms EVO+IL in all settings and

the difference between EVO+IL and EVO+Strategy becomes clearer

over generations. Especially, even when the K is higher (higher

epistasis), the EVO+Strategy demonstrates the ability to promote

the evolving population more than EVO+IL.

Some more interesting questions that requires a deeper expla-

nation arise here as to why EVO+Strategy shows a stronger effect

when compared to EVO+IL? What is the theoretical mechanism

that drives this? Remember that in EVO+Strategy, we have designed

a strategy for each each individual agent that first learns socially,

then learns individually on its own. Is that the impact of learning

socially before learning individually on evolution that triggers the

better ability to deal with the changing NK landscape?

All of these observations here can be explained by the fact that,

the individual learning process still does its job – upgrading the

current phenotype of an agent towards the target step-by-step

through a hill-climbing process. The impact of individual learning

on evolution has been shown before. It is reasonable here to think

that if an individual agent has a better foundation for individual

learning, the agent would get better behaviour at the end of the

day.

Remember the nature of our learning strategy mentioned above.

Each strategic agent, after birth, first imitates behaviour from the

best individual in the preceding generation, then updates its be-

haviour itself through individual learning. This can be understood

in casual language as follows: A novice copies a good enough skill

from a professional, then makes its own effort to upgrade and

sharpen that skill itself. For our problem, this also means that each

learning agent is potential to have better phenotypic base before

individual learning takes place. Thus, strategic agents – those that
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can learn from others and on their own - have more advantage over

agents that can only learn individually.

One key idea to be noticed here is that agents in EVO+IL learn

asocially based on the genetic basis provided by evolution – this

is individual learning to update innate foundation. More interest-

ingly, agents in EVO+Strategy learn individually to update what has

been learned, or found, individually by other agents from previous

generations. This creates a form of cumulative learning process

– updating information and knowledge based on what has been

found so far in the history.

Therefore, in earlier generations when the evolutionary process

plus individual learning alone would need more time to find the

best solution, copying from the best seems to give some initial

advantage. This is because the imitation process provides a better

base for individual learning, compared to individual learning from

innate information only when the environmental information is

not encoded enough. Over generations, however, when the environ-

ment slightly changes and becomes a little bit harder (i.e. a small

increase in K), the landscape is not changed to a large degree, all

the individual agents in EVO+IL still have a chance to move closer

and closer to the target (the solution). There is no huge benefit to

copy from any expert (the demonstrator). This is why adding social

learning before asocial learning does not bring much benefit in

these scenarios.

When the environment becomes more difficult to cope with (i.e.

higher K), the landscape is changed at a sufficient level of rugged-

ness and the number of peaks, the individual learning process still

updates the phenotypic information to search over the increasingly

more complex environment. However, the evolutionary process

looses more information over generations (as shown before). There-

fore, learning from others, or more precisely, learning from what

others have found previously by individual learning is more advan-

tageous than learning from innate information on one’s own. This

is why EVO+Strategy shows better performance in terms of the

average fitness in all cases.

The explanation presented above is still valid in explaining why

the best fitness of EVO+Strategy is better than that of EVO+IL in

all cases (as shown in Figure 3. Learning from others can provide

a better substrate for individual learning to take place. Therefore

strategic agents have more chance to move closer to the optimal

point compared to agents that learn individually based on innate

knowledge, hence the better best fitness (the fitness of the best

individual found compared to the optimal in the landscape). More

specifically, the EVO+Strategy still can get closer to the solution

whereas the EVO+IL cannot when the environment becomes harder

(the case when K is getting larger).

Another important thing here is learning from others demon-

strates a huge effect on the population as a whole, more than on

one single individual agent. This can be simply explained by what

has been presented so far, since our explanation for the advantage

of strategic learning applies to the whole population, increasing

the difference between the average fitness between EVO+Strategy

and EVO+IL.

Plasticity: We have equipped every learning agent with Plastic-
ity – the ability to express different phenotypic forms in response

to environmental challenges. In our encoding scheme, the ability

to learn is assigned by a plastic allele ?s which can be changed

during the lifetime of an individual. Here we hypothesise that

in EVO+Strategy there is a bigger proportion of plasticity than

in EVO+IL. Looking at Figure 4 we observe that EVO+Strategy

maintains a higher percentage of plasticity over generations in all

cases. The difference between plasticity between EVO+Strategy

and EVO+IL becomes bigger over time. This measurement helps

consolidate our explanation so far why EVO+Strategy outperforms

EVO+IL.

5 CONCLUSION, FURTHER DISCUSSION AND
FUTUREWORK

We have set out to understand the role of learning strategy (i.e. the

combination of learning socially and individually) in an evolving

population under variable rugged fitness landscape. By proposing a

simple version of dynamic NK-landscape, our experimental results

illustrate that when the NK-landscape is less rugged and less vari-

able, adding social learning does not bring much benefit to individ-

ual learning in helping an evolving population to adapt. However,

when the environment becomes harder, imitation learning shows

a clear benefit and facilitates individual learning, promoting the

adaptation of the evolving population better than is the case under

individual learning alone.

The dynamic problem used in this paper is concisely described

but captures a wide variety of dynamic settings. While an individual

study can of course only directly speak to the problem instances

tested, the results in this study are consistent with a more gen-

eral claim that a combination of social and individual learning can

strengthen the performance of evolutionary algorithms when deal-

ing with dynamic optimisation problems. The ability to learn can

help individuals to efficiently track and follow the changing target.

Indeed, the beneficial effects of social learning extend beyond their

‘first order’ impact, as an ability to usefully imitate, or learn from

others, also provides better foundations for future individual learn-

ing to subsequently further improve the socially-learnt information.

Future work will look at this aspect and also examine different

dynamic optimisation problems.

The same ideas can also be tested on different problem domains

of Evolutionary Computation, including Genetic Programming [18]

in which the idea of social learning can be employed as copying

semantic sub-trees between individuals, and Evolutionary Deep

Learning [12] which can be employed to evolve intelligent robots

[14]. As occurs in higher-order animals in the biological world, it is

plausible that combining evolution, individual and social learning

will assist in the creation of better simulated or indeed embodied

learning agents.
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