
Genetic Programming and Evolvable Machines

(2010) 11:339-363
DOI: 10.1007/s10710-010-9113-2

Open Issues in Genetic Programming

Michael O’Neill∗ · Leonardo Vanneschi ·

Steven Gustafson · Wolfgang Banzhaf

Received: 23 November 2009/Revised: 21 April 2010/Published online: 14 May 2010
c©Springer Science+Business Media, LLC 2010

Abstract It is approximately fifty years since the first computational experiments

were conducted in what has become known today as the field of Genetic Programming

(GP), twenty years since John Koza named and popularised the method, and ten

years since the first issue appeared of the Genetic Programming & Evolvable Machines

journal. In particular, during the past two decades there has been a significant range

and volume of development in the theory and application of GP, and in recent years the

field has become increasingly applied. There remain a number of significant open issues

despite the successful application of GP to a number of challenging real-world problem

domains and progress in the development of a theory explaining the behavior and

dynamics of GP. These issues must be addressed for GP to realise its full potential and

to become a trusted mainstream member of the computational problem solving toolkit.

In this paper we outline some of the challenges and open issues that face researchers and

practitioners of GP. We hope this overview will stimulate debate, focus the direction

of future research to deepen our understanding of GP, and further the development of

more powerful problem solving algorithms.

1 Introduction

The term “Genetic Programming” (GP) has become shorthand for the generation

of programs, code, algorithms and structures in general through the application of

M. O’Neill (∗Corresponding author)
Complex & Adaptive Systems Lab, School of Computer Science & Informatics, University
College Dublin, Ireland.
E-mail: m.oneill@ucd.ie

L. Vanneschi, University of Milano-Bicocca, Milan, Italy. E-mail: vanneschi@disco.unimib.it

S. Gustafson, GE Global Research, Niskayuna, NY, USA. E-mail:
steven.gustafson@research.ge.com

W. Banzhaf, Memorial University of Newfoundland, St. John’s, NL, Canada. E-mail:
banzhaf@mun.ca



2

variation and selection, as motivated by biological evolution [22]. It is a subfield of the

area of Automatic Programming, though usually more closely associated with Machine

Learning (ML), with applications in classification, control and regression. The origins of

GP go back at least to the 1950’s (see, e.g., Friedberg’s 1958 and 1959 papers [35,36]),

and Turing and others had thought about the evolution of algorithms [31]. While the

history of GP remains to be written, notable contributions have been made by Smith

and Cramer in the 1980’s [18,120] before, in 1989, John Koza proposed the method

that subsequently became known as standard GP [62,64–67]. GP has since grown [30,

9,75] and now encompasses a large collection of techniques to evolve programs (recently

discussed in [104]).

GP is concerned with the behavior and evolution of software or algorithmic enti-

ties [6], and even the physical embodiment of these entities, such as the case may be

in robots or electronic circuits. GP thus concerns itself with active entities that pro-

duce results, rather than passive ones being optimised. As a model induction method

it is capable of uncovering both the structure and content of a model, performing an

optimisation on both.

Since its early years, GP has been employed to solve many practical problems, both

in industry and academia. In spite of its success in applications, and a considerable

amount of theory that has been developed, GP has not yet reached the popularity of

other ML methods. At the current time, GP does not seem to be universally recognized

as a mainstream and trusted problem solving strategy, despite the fact that in the last

decade GP has been shown to outperform some of these methods in many important

applications (see for instance [56,80,32,28,78,148,150,4,13]). The resistance in the ML

community to embrace GP might have to do with its roots in Darwinian thinking. To

this day, there is widespread skepticism about evolutionary thought in many quarters,

stalling ideas based on evolution from being adopted widely. Science in general as well as

Engineering are not immune to these tendencies, and it can be safely assumed that part

of the motivation behind the disregard for GP is caused by the unsettling consequences

of accepting non-intentional mechanisms into the fold of ML. In the meantime, however,

helping to bridge this gap GP has been integrated into MatLab [119] and is now part

of Mathematica too [61], and a number of public-domain and commercial packages are

available that offer GP, at least as part of the toolkit (e.g., [79,33,37,83]).

There are very good reasons for our community to be optimistic. As our field

matures, we are continuously making significant advances in a theory of GP. GP is

solving challenging real-world problems, demonstrating routine, human-competitive

performance, and in our universities GP is being integrated into undergraduate and

postgraduate courses. By effective communication of these successes through the ed-

ucation of future generations of researchers and industry leaders, and publication in

popular science and media outlets, the message of GP is spreading out into the wider

community. We are now starting to benefit from this as anecdotal evidence, and indeed

personal experience of some of the authors of this paper, suggests that GP is increas-

ingly being adopted in a diverse array of commercial settings including design and

engineering, telecommunications and networks, gaming and finance. The number and

variety of recent patent applications which adopt GP also provides tangible evidence

of its increased adoption and recognition [95].

Of course we still have a lot to learn about GP and how to improve this powerful

method. The primary motivation for this article is to highlight and draw attention to

several open issues that are in need of study and clarification. As well as identifying

these open issues, we will discuss previous and related work, point out areas of potential



3

and limitations, and suggest ideas for future research. We are deeply optimistic about

the future of GP and we believe we are entering an exciting new phase in our field of

study. This optimism is due to the increased visibility and adoption of GP in industry

and the wider community and, for example, arising from continued advances in GP

theory and the increasing ease of access to parallelism through multi-cores etc., which

can be readily exploited by GP. We hope that this overview, which originates from a

number of perspective panel discussions at the EuroGP series of conferences, which

started in Paris in 1998 [10] will help researchers to focus on further improving the

method and on broadening its appeal.

2 Open Issues

In this section, we outline some of the significant open issues in the field of GP. The

ordering of the issues presented does not reflect an order of importance. For the high-

lighted issues, we discuss related published material and we point out limitations, if

any, and in some cases suggest ways to overcome them. While much valuable research

has been and continues to be undertaken in the field, at present there is a rush to appli-

cations without a proper acknowledgement that we still have a lot to do to understand

GP sufficiently to tackle real-world problems in a more principled manner.

2.1 Identifying Appropriate Representations for GP

Issue: Identifying appropriate representations, ideally based on some measure of qual-

ity that captures the relationship between the fitness landscape and the search process.

Difficulty: Hard to impossible to identify an optimal representation, but given a bet-

ter understanding of the relationship between representation and search, differentiation

between alternatives may be possible.

From the very earliest experiments in the automatic generation of executable struc-

tures [30] a variety of representations have been explored including binary string ma-

chine code [35], finite state automata [31], generative grammatical encodings [143,142,

97,25] and the dominant tree-based form popularised by Koza [62]. Numerous alterna-

tive representations have also been proposed, including graph [128], strongly-typed [86],

linear [14], linear-tree [52], and linear-graph [53]. Not surprisingly given our knowledge

of No Free Lunch [145] that no one search algorithm will be the best for all problems,

different representations have demonstrated varying degrees of prowess depending on

the problems to which they are applied. Generally comparisons between representa-

tions are limited to performance metrics such as the mean best fitness obtained and/or

the number of runs that successfully find the ideal solution on a series of classic GP

benchmark problems. As a field we are exposed to the danger of proposing infinite novel

variations of representations without approaching this fundamental issue in a rigorous

and principled manner. In general, we cannot currently answer questions like: What is

the best representation for my current problem of interest? To answer such questions

we need to undertake a formal analysis of representations that currently exist. In this

manner we might determine their relative strengths and weaknesses, for example, in

terms of their ability to facilitate navigation through the search space, their ability



4

to automatically identify and manipulate modularity in a hierarchical manner, or in

terms of their sufficiency to represent the necessary computational structures to tackle

general programming problems.

One notable source of inspiration that the GP community can take is from the

research that Rothlauf has undertaken into representations, albeit largely from a more

traditional Genetic Algorithm (GA) perspective [113]. This analysis of representation

has focused on issues such as locality, redundancy, and scaling, and Rothlauf and Oetzel

have recently started applying these techniques to GP [114]. Given that fixed-length

representations adopted by more traditional Evolutionary Algorithms such as GA’s

are a limited special case of their variable-length counterparts, the field of GP has the

potential to generate substantial contributions to our understanding of representation

in the broader field of Evolutionary Computation.

An an interesting angle that is perhaps unique to the GP method, is that it is ca-

pable of evolving structures and therefore aspects of its own representation. Examples

of this include Langdon’s research on evolving data structures [71] to Spector’s inves-

tigations on “autoconstructive evolution” with Pushpop GP [124], which co-evolve the

search operators in addition to the individuals. Exploring the space of alternative al-

gorithms and representations is exemplified by recent research on GP Hyperheuristics.

Just as there are infinite programs in an unbounded GP search space, there are an

infinite number of potential algorithms to search this space of programs. To say that

searching such a space is a significant challenge might be an understatement, however, it

may be that the GP method itself holds the key to discovering appropriate representa-

tions hand in hand with the algorithms themselves. Hyperheuristics are demonstrating

early potential to outperform classic GP, and in an exciting twist, theoretical analysis

suggests that a Free Lunch may be possible through their adoption [101,102].

A great deal of literature now exists in GP on the issue of syntax, and grammatical

approaches to GP have highlighted some of the benefits that these “syntax-aware”

forms of GP can gain. Indeed, another article in this Special Issue provides a review

of this very topic [81]. Until quite recently the issue of semantics had been overlooked,

and there is much promise in this early research to the development of a Semantic-

Aware form of GP [39,12,72,82,11,91,90]. This approach tries to develop operators

that respect the semantics of programs or solutions as well as providing better search

with higher-level constructs that have more complex semantics like loops and recursion.

Grammars themselves have also been used to encode semantic information in addition

to the syntactic rules of the structure language [17,57]. We predict that the most

efficient forms of GP will combine awareness of both syntax and semantics.

2.2 Fitness Landscapes and Problem Difficulty in GP

Issue: Identifying how hard a particular problem, or problem instance, will be for some

GP system, enabling a practitioner to make informed choices before and during appli-

cation.

Difficulty: Hard. Problem difficulty relates not only to the issue of representation, but

also to the choice of genetic operators and fitness functions.

What do practitioners currently do to understand if GP (or better, a given GP

configuration) is the right method to solve their problem? The common practice is to



5

test some GP configurations by performing simulations. Depending on the complexity

of the application, this testing process may be very time consuming and interpreting

the results of this simulation phase can be difficult, given the non-deterministic nature

of GP. Under this perspective, having well defined and reliable indicators of the ability

of (a given) GP (configuration) to solve a problem would be outstandingly important.

Even though elements like the presence or absence of particular structures in the

population undoubtedly affect the ability of GP of solving problems more than what

happens for GAs or for other optimization heuristics [20,21], since the early studies of

problem difficulty in GP (that date back to the work of Kinnear [59] with the study of

the fitness auto-correlation function) it looked clear that reliable indicators of problem

hardness must be based on the concept of fitness landscape [126].

The fitness landscape metaphor [147] can be helpful to understand the difficulty

of a problem, i.e. the ability of a searcher to find the optimal solution for that prob-

lem. Nevertheless, in general fitness landscapes cannot be drawn because of the huge

dimension of the search space and because of the generally complicated structure of

GP neighbourhoods. For this reason, it is important to define measures able to capture

some important features of fitness landscapes that possibly have a direct relationship

with the difficulty of the problem. Probably the two most interesting measures of

problem hardness for GP, based on the concept of fitness landscape, that have been

introduced so far are: fitness-distance correlation (FDC) [130,129] and negative slope

coefficient (NSC) [136].

FDC is based on the concept that what makes a problem easy or hard for a search-

ing strategy is the relationship between fitness and distance to the goal. It is a reliable

indicator of problem hardness for GP, but it has the obvious drawback of not be-

ing predictive, in the sense that the genotype of the global optimum must be known

beforehand to be able to calculate it.

NSC is based on the idea that difficulty (or more precisely evolvability) depends

on the relationship between the fitness of the various individuals and the one of their

neighbours in the topological space induced the transformation operators used by the

searching strategy (this relationship is often represented by so called fitness clouds).

The NSC succeeds in correctly quantifying the difficulty of some GP benchmarks and

also real-life problems, but has a number of known and well defined problems that

prevent it from being widely diffused.

These two measures are also discussed in another article published in this special

issue [109]. Besides the fact that both of them are based on samples of the search space

(this problem is discussed in detail in [130]), one of the most serious problems of these

two measures is that they do not model many of the characteristics that are typical of

the GP process, and in particular they do not simulate the behaviour of the crossover

operator. In order to fill this gap, a measure of similarity/dissimilarity between indi-

viduals bound to GP crossover has recently been defined [41,134,42]. Operator-bound

distance measures typically work by counting the minimum number of applications of

the operator needed to transform an individual into the other. While this is a reason-

able task for GP mutation (the most common being some variations on the Levenshtein

edit distance [40] and the structural distance [27]), this can be hard to obtain for GP

crossover, because it would imply considering all the necessary next populations or,

at least, to approximate them. For this reason, the similarity/dissimilarity measure

defined in [41,134,42] works by calculating the probability of correctly applying the

operator once. This measure was shown to have reasonable computational complex-

ity, and thus to be usable in practice. Furthermore, this measure was successful in



6

studying the trend of fitness distance correlation of populations during the evolution,

in implementing fitness sharing and in quantifying population diversity. Finally, it has

recently been successfully used to improve GP generalization ability by means of the

introduction of population repulsors [133]. The definition of this measure opens an

interesting number of research challenges for GP. For instance, it would be interesting

to investigate adaptive controls for population size, operator application and selection

pressure based on this notion of operator-based similarity.

The road to define reliable and really useful hardness indicators for GP is still long,

and much research is still to be performed. Furthermore, a dynamic modification of

the GP algorithm “on the fly”, i.e., of the fitness function, the genetic operators or

the representation. represents one of the most challenging open issues in GP. A first

attempt in this direction has recently been presented in [140].

2.3 Static vs Dynamic Problems

Issue: How does GP perform in dynamic problem environments? Should dynamic en-

vironments be adopted as standard?

Difficulty: Medium to hard. The diversity of possible dynamic environments that might

exist, given the degree and frequency of changes that can occur (ranging from stochastic

changes to the opposite end of the spectrum with fully deterministic changes), makes

a general statement about performance or utility difficult. It may be possible to make

stronger statements about certain categories of dynamic environments.

Dynamic environments abound in many application domains where they offer par-

ticular challenges for all optimisation and problem solving methods. A well-known

strategy for survival in dynamic environments is to adopt a population-based ap-

proach [15,89,25], where rather than maintaining a single candidate solution, a popu-

lation of candidate solutions is employed. This allows a diversity of potential solutions

to be maintained, which increases the likelihood that a sufficient solution exists at

any point in time to ensure the survival of the population in the long term. Dynamic

environments can exhibit changes in many different ways including the frequency and

degree/size of change. The types of changes might range from relatively small smooth

transitions to substantial perturbations in all aspects of the domain [25,89,15].

Given the power of the biological process of evolution to adapt to ever changing en-

vironments, it is surprising that the number of studies applying and explicitly studying

their artificial counterpart of GP in dynamic environments have been small [25]. De-

spite the existence of a recent special issue in the Genetic Programming and Evolvable

Machines Journal on Dynamic environments [149], none of the four articles actually

dealt with GP directly. While some applications in dynamic environments have been

undertaken (e.g., [139,43,50]), there has been little analysis of the behaviour of GP in

these environments. Examples have examined bloat [76], constant generation [25], and

variable size populations for dynamic optimization [132,48]. Nevertheless, many of the

theoretical tools used to formalize EAs, like schema theory or Markov chains, seem to

naturally adapt to dynamic environments, and thus can be used in the future for more

rigorous analysis on how and why GP works in those environments, as also suggested

in the article [109].



7

A key issue to consider here is the suitability of a problem for GP. We must remem-

ber that the natural biological process of evolution results in populations of individuals

that have a great capacity to adapt, and therefore, a robustness that enables their

survival. From a problem solving perspective why should we expect evolution to be

successful at producing optimal solutions to problems when the consequence of such a

process is to produce entities that have a single objective, to survive? This means that

the kinds of solutions produced are good enough to ensure survival relative to com-

petitors and do not need to be the best possible solution at that point in time. When

tackling real-world dynamic problems we must therefore shift our mindset from one of

optimisation to one of survival, and it is problems with these dynamic characteristics

that we should be applying GP to as these are the problems at which we might expect

an evolutionary-inspired search process to truly excel above other methods.

Given this perspective, are we missing the boat by focusing on static problems

where there is a single target? It may be that GP (amongst other Evolutionary Al-

gorithms) is especially suited to dynamic environments. Recent experiments in evolu-

tionary biology simulations, what has been termed computational evolution [7], suggest

that EC/evolution could work efficiently “because” of dynamic environments and not

“despite of” them [55], and that modularity can spontaneously arise, promoting hier-

archical decomposition of a problem, because the environment is dynamically changing

over time [47]. Explicit studies with GP are required to determine if GP can actually

reap benefits from these domains.

2.4 The Influence of Biology on GP

Issue: How much detail is necessary to adopt from the biological paradigm of natural

evolution? How much simplification and abstraction of processes is necessary?

Difficulty: Medium to hard. An analysis of the impact of simplification or complexifi-

cation of the algorithms on improvement of behaviour is necessary. It might be difficult

to clearly discern causes and effects.

Do we use a “sufficient” set of features from biological evolution to embody its full

potential in our artificial evolutionary process? The question can be answered with a

resounding “no”. While it is true that we shall always only be approaching biological

evolution with computational systems, the early and crude forms of evolutionary pro-

cesses gleaned from nature and put to use in Genetic and Evolutionary Computation

are in no way sufficient to harvest the power demonstrated by natural evolution.

We thus need to go back frequently to the natural example of biological evolution

and study what else can be learned, similar to biologists who for the most part are still

learning about the complexities and intricacies of the evolutionary process in nature.

We are not forced to copy or mimic as much as possible, but we should also not refrain

from taking up more ideas from biology if they are useful, either.

In a 2006 paper one of the authors has argued together with others that there might

be an entire new field of research developing at the intersection between biological

evolution and computing which was termed “Computational Evolution” [7]. In that

paper a whole spectrum of biological phenomena has been exposed which deserves the

attention of computer scientists.



8

A couple of topics are worth discussion in the particular context of GP. One of

the main issues of GP is scalability, i.e. the ability to provide algorithmic solutions to

problems that are of substantial size/dimensionality, maybe requiring code of thousands

of lines (or equivalent, in other representations).1 We know that this is difficult today,

as the GP process always tends to compromise between the goals set by a fitness

function and the complexity of the program. This is indeed one of the strengths of GP,

as it provides a natural engine for generalization. But in connection with a difficult

task it produces obstacles, which can be overcome only with recipes for modularity

and scalability in place.

Biological evolution teaches us that there was a key event in the history of life when

multi-cellularity was invented. Multi-cellularity and the accompanying modularity of

function at a high level are related to the “invention” of eukaryotic cell organization

(with a cell kernel holding genetic information, and an outer area of cell function). It

was with eukaryotic cell organization only that development, or the growth of multi-

cellular organisms out of single-celled zygotes (fertilized eggs) was possible. In GP,

development is high on the research agenda, and it is hoped that “generative systems”

as they are called will provide a natural solution to the problem of modularity and

scalability.

Development in Nature, however, does come with more complex hereditary pro-

cesses, since multi-cellular organisms need a way to provide inheritance on the cellular

level. A mechanism is needed that should be orthogonal to the process of genetic in-

heritance through DNA copying. This process is now called epigenetic inheritance, and

is one of the main ingredients to developmental processes in nature. Epigenetic inheri-

tance [49] works by switching on and off whole batteries of genes, which is useful during

the growth phase of a multi-cellular organism, and can be used as well to provide inter-

mediate adaptivity (with time-scales of 1-3 generations) for response to environmental

trends. This additional way to confer information from generation to generation of

individuals can be argued to be a side-effect of the invention of the eukaryotic genome

and the subsequent reorganization of the cellular machinery.

So it can be safely predicted that epigenetic effects will be important if GP will

adopt development as a scalability mechanism. Essentially that would entail that pro-

grams will need to have additional control mechanisms that will allow the turning on

and off of particular functions, based on environmental and developmental signals.

The genotype-phenotype map has been the subject of continued interest in GP

since approximately two decades. Often, developmental processes have been considered

as part of this area. While we do not want to dispute that it makes sense to lump

developmental processes together with more basic features of the genotype-phenotype

map, development is not the only issue that needs to be addressed when studying

genotype-phenotype maps. Closer to the issue is the problem of (sometimes called

a contradiction between) robustness and evolvability. How can a system be robust to

random changes (fluctuations in the environment, random impact of mutations, chance

encounters) yet at the same time respond adaptively to trends and opportunities?

Biological systems face this challenge every day, and a consensus seems to emerge

among biologists that the genotype-phenotype relation is a key ingredient in mediating

this tension [138,60]. Speaking in abstract terms, genotype-phenotype maps need the

feature of being able to filter out random variations that happen on the genotypic level

1 Note that this is not scalability in a more narrow sense discussed in Section 2.8. Rather it
refers to a metalevel of characterization here.



9

and only allow “productive” changes to reach the phenotype. It is as if it would need

to dampen out higher frequencies / chaotic changes of the underlying genetic system

and transform these changes into adaptations.

The general message of Biology to EC is that complexification of our algorithms

is a key ingredient to closing the gap between Biology and EC. Recent investigations

in this direction show considerable promise [88,92]. This has the potential to provide

answers to other questions, too, that come under the heading of open-ended evolution.

2.5 Open-Ended Evolution in GP

Issue: Design an evolutionary system capable of continuously adapting and searching.

Difficulty: Medium to Hard. There is difficulty in defining clear criterion for measur-

ing success, and whether or not open-ended evolution is required by GP practitioners.

Can we achieve open-ended evolution with GP, where, for example, a GP system

forms the core part of a financial trading system required to continuously learn without

being switched off? Would it be possible that that same system can adapt over time

to a completely different problem?

Notions of computational evolution can again provide a bridge between biology and

EC, as exemplified by recent work of Moore and co-workers [87]. Essential ingredients of

open-ended evolution are (i) a dynamically changing fitness landscape, (ii) availability

of co-evolutionary processes, (iii) search with continuously injected randomness.

The latter point is important. How can a GP system be open to randomness and

at the same time stabilize its best adapted solutions? Tiered systems whose basic layer

consist of random solutions that are being promoted to higher layers based on their

performance seems to be a feasible way to achieve this goal. Systems based on fitness

layers or on age layers have shown considerable success in this context [46,45].

2.6 Generalization in GP

Issue: Defining the nature of generalization in GP to allow the community to deal with

generalization more often and more rigorously, as in other ML fields and statistical

analysis.

Difficulty: Medium. The hardness of defining generalization in a reliable and rigorous

way is common with other ML paradigms. The lack of generalization in a GP system

is often due to lack of prior planning by the practitioner.

How to ensure that we evolve solutions with good properties of generalization,

i.e. that do not overfit training data? Generalization is one of the most important

performance evaluation criteria for artificial learning systems [85]. A large amount of

literature and of well established results exist concerning the issue of generalization for

many non-evolutionary ML strategies. It is the case, for instance, of Artificial Neural

Networks (see, among the many other references, [117]), or Support Vector Machines

(see for instance [121]). On the other hand, this issue in GP has not received the

attention it deserves and only few papers dealing with the problem of generalization



10

have appeared [68,26]. A survey of the main contributions on generalization in GP has

been done some years ago by Kushchu in [68]. In [34] the authors use what they called

the “Compiling GP System” to compare its generalization ability with that of other

ML paradigms and show in [8] the positive effect of an extensive use of the mutation

operator on generalization in GP with sparse data sets. In [19], Da Costa and Landry

have recently proposed a new GP model called Relaxed GP, showing its generalization

ability. In [38], Gagné and coworkers have recently investigated two methods to improve

generalization in GP-based learning: 1) the selection of the best-of-run individuals using

a three data sets methodology, and 2) the application of parsimony pressure to reduce

the complexity of the solutions.

A common agreement of many researchers is the so called minimum description

length principle (see for instance [111]), which states that the best model is the one

that minimizes the amount of information needed to encode it. In this perspective,

preference for simpler solutions and overfitting avoidance seem to be closely related,

given that it should be more likely that a complex solution incorporates specific infor-

mation from the training set, thus overfitting it, compared to a simpler solution. But,

as mentioned in [100], this argument should be taken with care as too much emphasis

on minimizing complexity can prevent the discovery of more complex yet more accu-

rate solutions. In fact, if considered at a superficial level, it may seem to suggest that

overfitting is related to bloat in GP. Recent contributions clearly show, however, that

GP systems can be defined that bloat and do not overfit and viceversa [118,?]. Thus,

bloat and overfitting seem two independent phenomena.

Overfitting seems more related to the functional complexity of the proposed so-

lutions [137,131] rather than to their size. Of course, many different definitions of

functional complexity can be considered, each of them having advantages as well as

questionable aspects. This is the case, for instance, for concepts such as curvature, re-

silience or the degree of the approximating polynomial, like in [137]. It is possible that

each one of these concepts has a different and interesting relationship to overfitting.

In this perspective, multi-optimization is becoming more and more popular to coun-

teract overfitting in GP, where different expressions of the functional complexity of the

solution or other criteria are used as further objectives [137,135,38]. This research,

even though promising, is clearly preliminary and represents a noteworthy open issue

in GP. Some theoretical aspects of generalization in GP and hints for future research

along these lines are also discussed in the article [109].

The nature of generalization in GP also needs a very careful look. For instance,

solving the 5-parity problem is not so general as solving for n-parity, with n being

1,2,3,... This truely requires generalization, and not just filling in (interpolation) for

unseen data. This more ambitious type of generalization has not been tackled widely

in the ML community, but it provides enormous potential for GP. We think that it is

worth pointing out that these concepts apply to other artificial learning systems, too,

and not just to GP.

2.7 GP Benchmarks

Issue: Is it possible to define a set of test problems that can be rigorously evaluated

by the scientific community and then accepted as a more or less agreed upon set of

benchmarks for experimental studies in GP?



11

Difficulty: Medium to high. Benchmark problems serve as a common language for

a community when developing algorithms, and therefore a certain amount of inertia

to not adopt better ones exists. Also, since GP is already a fairly complex algorithm,

adopting overly simple benchmark problems enables overall lower complexity in the sys-

tem, albeit at the expense of the significance of results.

Other fields of Evolutionary Computation, like GAs or PSO, have a wide set of

generally studied and agreed open benchmark functions. For instance, GAs’ experi-

mental comparisons often use a mix of synthetic benchmarks, standard test problems

and provably difficult ones, like those presented in [23,84,1,108]. Furthermore, in more

recent literature several real-parameter function optimization problems have been pro-

posed as standard benchmark functions, like Sphere, Schwefel, Rosenbrock, Rastrigin,

etc. In [127] 25 benchmark functions have been selected, to provide a fair comparison

between optimization algorithms. This benchmark suite contains, respectively, 5 uni-

modal and 20 multimodal functions, further divided into basic, expanded and hybrid

composition functions. Twenty-two of these functions are non-separable, two are com-

pletely separable, and one is separable near the global optimum. This benchmark suite

has been accepted as a more or less agreed-upon standard for testing real-parameter

optimization algorithms.

In the early years, GP benchmarks have been limited to the set of problems pre-

sented by Koza in his book [63]: k-even parity problem, h-multiplexer, various forms of

symbolic regression, the artificial ant on the Santa Fe trail and the intertwined spirals

problem. More recently, the GP community has begun to use a larger set of test func-

tions, for instance, the suite of UCI repository datasets (recently updated) [5]. Among

them are trivial problems, like the IRIS dataset, but also more interesting ones, like

the thyroid cancer datasets and many others. More recently GP experimental studies

have appeared using classification of network intrusion (see for instance [122,99]), etc.

Overall, we would classify currently used test functions in GP into three broad

categories: regression, classification and design. For regression, several different kinds

of functions have been used, e.g. sinus, polynomials, Mexican hat, Mackey-Glass time

series, etc. For classification, one may quote the UCI examples, the intertwined spi-

rals, the parity problems, the multiplexer, protein localization, etc. For design: Adder,

multiplier, several other circuits, trusses, tables and other structures are the most used

examples.

While it is true that these problems cover a set of different possible applications,

this set of benchmarks is still restricted compared to other fields of Evolutionary com-

putation, and, more importantly, lacks a rigorous evaluation. Some attempts of defining

new and tunably difficult test problems for GP have been made in [110] with the intro-

duction of Royal Trees and in [130,129] where Goldberg’s trap functions are extended

to GP.

But still the goal of having a large set of benchmark functions of different na-

ture, like the ones presented in [127] for real-values parameter optimization is not

yet achieved. This is probably due to the larger complexity of GP compared to GAs

or other methods for parameters optimization. For instance, the function set in cur-

rent benchmarks is composed of functions of a similar nature which does not reflect the

huge variety of possibilities offered by GP. A case in point is program evolution through

patches recently becoming more prominent through works like [141]. This aspect of the

potential of GP is not yet represented in benchmarks, as they are not typical for other

machine learning approaches.



12

2.8 GP and Modularity

Issue: Define a clear measure of success for what it means to achieve Scalable GP, as

well as Modularity.

Difficulty: Medium. Adopting practices from other computer science methods may be

one source of tools. Other insights could be gleaned from Biology.

How well does GP scale to problems of increasing complexity/difficulty? How can

we improve scalability of GP? What is scalability for GP in the first place? Given that

representations can evolve (see for example systems like PAM-DGP [144]), and the

complexity of solutions can evolve as well, what is scalability in GP?

Individuals in classical GP are usually constructed from a primitive set which con-

sists of a function set and a terminal set. An extension to this approach is the ability

to define modules, which are in turn tree-based representations defined in terms of the

primitives. This is a very important issue to improve GP expressiveness, code reusabil-

ity and performance. The most well known of these methods is Koza’s Automatically

Defined Functions (ADFs) [63]. There have been a large number of studies focusing

on modularity in GP, and we give a flavour of some of these here before going on to

highlight important open issues which still remain despite this body of work.

The first step towards a theoretically motivated study of ADFs is probably repre-

sented by [112], where an algorithm for the automatic discovery of building blocks in

GP called adaptive representation through learning is proposed. In the same year, Spec-

tor [123] introduced techniques to evolve collections of automatically defined macros

and showed how they can be used to produce new control structures during the evo-

lution of programs and Seront [116] extended the concept of code reuse in GP to the

concept of generalization, showing how programs (or “concepts”, using Seront’s ter-

minology) synthesised by GP to solve a problem can be reused to solve other ones.

This aim is achieved by the creation of a concepts library. These concepts can then be

injected in a new population in order to solve a problem that needs them.

Linear GP [14] has other ways to evolve modularity. By reusing contents of regis-

ters, memory in LGP can be considered a substitute for ADFs in tree-based GP. This

functionality comes essentially for free, and provides a means to evolve more compact

solutions that would be possible in classical GP. Further, in both of these represen-

tations, evolution clearly makes reuse a virtue. If one looks closely one can discover

numerous pieces of code being repeatedly used in various places in the programs [73,

70].

For tree-based GP, Woodward [146] showed that for a given problem, the minimum

number of nodes in the main tree plus the nodes in any modules is independent of the

primitive set (up to an additive constant) and depends only on the function being

expressed. This reduces the number of user defined parameters in the run and makes

the inclusion of a hypothesis in the search space independent of the primitive set.

Altenberg offers a critical analysis of modularity in evolution in [2], stating that the

evolutionary advantages that have been attributed to modularity do not derive from

modularity “per se”. Rather, they require that there be an “alignment” between the

spaces of phenotypic variation, and the selection gradients that are available to the

organism. Modularity in the genotype-phenotype map may make such an alignment

more readily attained, but it is not sufficient; the appropriate phenotype-fitness map in

conjunction with the genotype-phenotype map is also necessary for evolvability. This



13

contribution is interesting and stimulating, but its applicability to GP remains an open

question. In [51] the concept of ADFs is extended by using graph-based data mining to

identify common aspects of highly fit individuals and modularising them by creating

functions out of the subprograms identified. In [44] the authors state that the ability

of GP to scale to problems of increasing difficulty operates on the premise that it is

possible to capture regularities that exist in a problem environment by decomposition

of the problem into a hierarchy of modules. Thus, they present a comparison of two

modular Genetic Algorithms, one of which is a Grammatical GP algorithm, the meta-

Grammar Genetic Algorithm (mGGA), which generates binary string sentences instead

of traditional GP trees. The presented results demonstrate some limitations of the

modular GA (MGA) representation and how the mGGA can overcome these.

Finally, what about emergent phenomena like “neutral code” [93] and repeated code

[74]? Do they provide natural ways of organising modularity and re-use in GP? In a

recent paper by Kashtan et al [54] naturally emerging modules have been demonstrated

in the context of a GA in coherently changing environments. This particular feature of

the environment was key to the ability of the algorithm to develop modules. So while

the former emergent phenomena can be said to be the result of genetic operators (like

crossover), the latter is a reflection of the environment. Yet both are important aspects

of any GP system, and should deserve further investigation.

As can be seen there is a large and varied literature related to modularity in GP,

however, our work is by no means finished, in fact we argue that the most interesting

aspects of this work have yet to be explored. Although the use of modularity in GP

has helped solving some problems that straight GP couldn’t in a fixed number of runs

(or solved them more efficiently) and helped provide new data/control abstractions, for

instance in the form of ADFs, some issues remain open. Are ADFs necessary/sufficient

as a formalism to help solve grand-challenge problems i.e. to provide scalability? And

even more ambitiously: Can we achieve modularity, hierarchy and reuse in a more con-

trolled and principled manner? Can Software Engineering provide insights and metrics

on how to achieve this? In order to be able to get a deeper insight of the real usefulness

of modularity and code-reuse in GP, more theoretical studies are needed. For instance,

given the strong relationship between the concepts of ADFs and building blocks (al-

ready pointed out by Rosca in [112]), one may try to develop a framework based on

schema theory [77] in order to formalize the effects of the use of ADFs in GP.

2.9 The Complexity of GP

Issue: What is the best way to setup GP to tackle a problem? Can we define a universal

measure of complexity for GP? How does one handle the structural complexity of GP?

Difficulty: Medium. Factoring in the special cases of evolving code, which may be com-

piled and interpreted could be challenging, as well as the considerations in evolutionary

search.

Like all Evolutionary Algorithms, GP is a complex system. Rather than this sub-

section being about a single open issue there are multiple issues that arise due to this

complexity. In this section we touch on some of these issues.

For example, understanding the interplay of the suite of available search operators

and their rates, coupled with initialisation, selection and replacement strategies, which



14

might be employed in any one application is non-trivial. This complexity increases

when one introduces the use of a genotype-phenotype map, which may or may not be

itself modulated by a feedback loop to the environmental state. The ability to predict

the behaviour of such a system, and thus the choice of the optimal set of algorithm

components is next to impossible with current analytic techniques. These questions

have given rise to the search for better GP algorithms using GP, i.e., meta-GP (e.g., [94,

103,16]). A relatively new departure in the field, meta-GP has exhibited potential to

find better GP algorithms to solve a class of problems (e.g. Travelling Salesman [58]),

and some recent theoretical analysis suggests that the normal rules of the No Free

Lunch theory may not apply to meta-search [101].

All of the above overlooks one of the most challenging aspects of the GP rep-

resentation, its structural complexity. Unlike fixed-length Genetic Algorithms, out of

necessity GP adopts variable-length individuals as the structure of the solution must

be uncovered in parallel with the combinatorial search of the symbols which make up

any one structure. How best to search this variable-length structure space is an open

issue within GP.

Given the structural complexity of the GP representation, it follows that fixed-

length structures adopted by most of the other forms of Evolutionary Computation

are a special case of their variable-length cousins. GP might be considered a superset

of EC in terms of representation. As such, there is the possibility that theoretical

advances made in the field of GP will apply more widely to EC, and through research

in GP theory may provide a unified theory of EC.

2.10 Miscellaneous Issues

In the above we have highlighted and discussed some of the more significant open issues

that in our opinions currently exist in the field of GP. The order of their presentation

suggests no ranking of their relative importance, and the list is not meant to be ex-

haustive. To discuss all open issues facing our community would require a book, so

to give as much breadth to our coverage as possible we present a list of additional

miscellaneous open issues that were considered, and which also must be addressed by

our community.

– The Halting Problem: Part of the standard toolkit in GP is the use of program

constructs such as iterations, loops, functions (including the use of recursion), and

memory. Their use can be problematic, especially when all aspects of their use are

open to the mechanism of evolutionary search, as they can give rise to the creation

of programs which do not stop executing. How to handle the halting problem is

a practical problem faced by users of GP, and a number of strategies have been

employed to prevent or at least detect non-halting programs in some limit. This is

still an area open to investigation.

– Domain Knowledge: How much domain knowledge should we inject into our GP

algorithms? What is an appropriate AI ratio? Koza introduced the notion of an AI

ratio [67] to highlight the fact that for a minimum amount of domain knowledge

supplied by the user (the intelligence) a high-return (the artificial) can be achieved

by GP. He also notes that one of the aims of the fields of artificial intelligence

and machine learning are to achieve human-competitive results automatically, and

that this can be partly measured by the existence of a high AI ratio. In terms of



15

how much domain knowledge to incorporate the answer, at least in part, is that

it depends on the problem. For some problems it can be useful to throw away the

rulebook and let evolution find alternative solutions. For example, in conceptual

architectural design [98,96] the architect may want to exploit the stochastic nature

of evolutionary search so as to explore an unbiased diversity of form, whose con-

struction is not dictated to by traditional rules or even the preconceptions of the

architect. On the other hand, another architect may want to explore form which

is grounded in these rules and domain knowledge. In the worst cases, by incorpo-

rating domain knowledge unfavourable bias may be introduced making search for

solutions difficult or impacting solution generalisation.

– GP usefulness for Biology: Can GP inform behaviour of Biological Evolution?

While we don’t attempt to perfectly model biology, the adoption of increasingly

realistic processes may cast light upon the inner workings of biological systems.

– Constants in GP: Koza might be quoted about constants in GP “...the finding

of numerical constants is a skeleton in the GP closet...[and an] area of research

that requires more investigation...” [29]. Ephemeral Random Constants (ERCs)

are the standard approach to constants in GP, and a number of variations on the

ERC approach have been proposed to overcome their limitations (e.g.,[125,3,115]),

however this is still an open area of investigation (e.g., [24]).

– GP Theory: The development of an exact and general schema theory for GP [105–

107,77] undoubtably represents a very significant result. A difficulty for some re-

searchers and practitioners is how best to use findings such as these. What, if

anything else, does a theory of GP need to tell us precisely to bridge this divide?

What is the potential for GP theory to inform a general theory of EC?

– Distributed models of GP: Open questions in this area that deserve attention

include how to decide upon an appropriate rate of migration (with respect to the

number of individuals allowed to migrate and how often a migration event occurs)

in order to maintain a balance between the diversity afforded by separate islands

and an appropriate level of information transfer between the populations? What

is an appropriate topology by which connections (migration pathways) between

populations are structured? What’s the best way to exploit multi-core and GPU

hardware (e.g., see [69])?

– Usability of GP: Practitioners need an easily digestible form of GP. There are

so many parameters, function and terminal set membership, fitness function au-

thoring and design, choice of representations and operators, general evolutionary

parameter settings. Design and development of easier to use and more intuitive

software implementations deserve attention, such as ”one button” GP [33].

3 Conclusions

In this article we stress a number of open issues in the field of Genetic Programming

in order to provide a spotlight for discussion. We hope that this document stimulates

a conversation on what issues are most significant and what if any are missing, and as

such help to steer future research in our community to provide a deeper understanding,

and thereby strengthen the Genetic Programming method.



16

Acknowledgements

The impetus for this article arose out of the EuroGP 2008 debate on Grand Challenges

of Genetic Programming which took place on 27 March 2008 at the Evo* event in

Naples, Italy. In particular we thank the two other panel members, Nic McPhee and

Riccardo Poli, and also the many members of the audience who participated in the

debate. Many of these issues have been raised on multiple occasions at previous (and

subsequent) EuroGP debates so this inspired us to put these ideas on paper to open

the debate to a wider audience. MO’N acknowledges support of Science Foundation

Ireland under Grant No. 08/IN.1/I1868. WB acknowledges support from the Canadian

National Science and Engineering Research Council (NSERC) under discovery grant

RGPIN 283304-07.

References

1. Altenberg, L. NK fitness landscapes. In Section B2.7.2 in Handbook of Evolutionary
Computation (1997), T. Back et al., Ed., IOP Publishing Ltd and Oxford University
Press, pp. B2.7:5 – B2.7:10.

2. Altenberg, L. Modularity in evolution: Some low-level questions. In Modularity: Un-
derstanding the Development and Evolution of Complex Natural Systems, D. Rasskin-
Gutman and W. Callebaut, Eds. MIT Press, Cambridge, MA, USA, 2004. In press.

3. Angeline, P. J. Two self-adaptive crossover operators for genetic programming. In
Advances in Genetic Programming 2, P. J. Angeline and K. E. Kinnear, Jr., Eds. MIT
Press, Cambridge, MA, USA, 1996, ch. 5, pp. 89–110.

4. Archetti, F., Lanzeni, S., Messina, E., and Vanneschi, L. Genetic programming
for computational pharmacokinetics in drug discovery and development. Genetic Pro-
gramming and Evolvable Machines 8, 4 (Dec. 2007), 413–432. special issue on medical
applications of Genetic and Evolutionary Computation.

5. Asuncion, A., and Newman, D. UCI machine learning repository, 2007.

6. Banzhaf, W. Editorial introduction to the first issue. Genetic Programming and Evolv-
able Machines 1 (2000), 5 – 6.

7. Banzhaf, W., Beslon, G., Christensen, S., Foster, J., Képès, F., Lefort, V.,

Miller, J., Radman, M., and Ramsden, J. From artificial evolution to computational
evolution: a research agenda. Nature Reviews Genetics 7, 9 (2006), 729–735.

8. Banzhaf, W., Francone, F. D., and Nordin, P. The effect of extensive use of the
mutation operator on generalization in genetic programming using sparse data sets. In
4th Int. Conf. on Parallel Problem Solving from Nature (PPSN96) (1996), W. Ebeling
et al, Ed., Springer, Berlin, pp. 300–309.

9. Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. Genetic Program-
ming – An Introduction; On the Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann, San Francisco, CA, USA, Jan. 1998.

10. Banzhaf, W., Poli, R., Schoenauer, M., and Fogarty, T., Eds. Proceedings of Ge-
netic Programming, First European Workshop, EuroGP’98, Paris,France, April 14-15,
1998 (Berlin, 1998), vol. 1391 of LNCS, Springer.

11. Beadle, L., and Johnson, C. Semantically driven crossover in genetic programming. In
Proceedings of the IEEE World Congress on Computational Intelligence (Hong Kong,
1-6 June 2008), J. Wang, Ed., IEEE Computational Intelligence Society, IEEE Press,
pp. 111–116.

12. Bhattacharyya, S., Pictet, O., and Zumbach, G. Representational semantics for
genetic programming based learning in high-frequency financial data. In Genetic Pro-
gramming 1998: Proceedings of the Third Annual Conference (University of Wisconsin,
Madison, Wisconsin, USA, 22-25 July 1998), J. R. Koza, W. Banzhaf, K. Chellapilla,
K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo,
Eds., Morgan Kaufmann, pp. 11–16.



17

13. Bianco, S., Gasparini, F., Schettini, R., and Vanneschi, L. An evolutionary frame-
work for colorimetric characterization of scanners. In International Workshop on Evolu-
tionary Computation in Image Analysis and Signal Processing, EvoIASP 2008. Proceed-
ings of Applications of Evolutionary Computing, EvoWorkshops 2008 (2008), M. Gia-
cobini et al., Ed., vol. 4974/2008 of Lecture Notes in Computer Science, LNCS, Springer,
Berlin, Heidelberg, New York, pp. 245–254.

14. Brameier, M., and Banzhaf, W. Linear Genetic Programming. No. XVI in Genetic
and Evolutionary Computation. Springer, 2007.

15. Branke, J. Evolutionary Optimization in Dynamic Environments. Kluwer Academic
Publishers, 2001.

16. Burke, E. K., Hyde, M. R., and Kendall, G. Evolving bin packing heuristics with
genetic programming. In Parallel Problem Solving from Nature - PPSN IX (Reykjavik,
Iceland, 9-13 Sept. 2006), T. P. Runarsson, H.-G. Beyer, E. Burke, J. J. Merelo-Guervos,
L. D. Whitley, and X. Yao, Eds., vol. 4193 of LNCS, Springer-Verlag, pp. 860–869.

17. Cleary, R., and O’Neill, M. An attribute grammar decoder for the 01 multiconstrained
knapsack problem. In Evolutionary Computation in Combinatorial Optimization – Evo-
COP 2005 (Lausanne, Switzerland, 30 Mar.-1 Apr. 2005), G. R. Raidl and J. Gottlieb,
Eds., vol. 3448 of LNCS, Springer Verlag, pp. 34–45.

18. Cramer, N. L. A representation for the adaptive generation of simple sequential pro-
grams. In Proceedings of the International Conference on Genetic Algorithms and Their
Applications (Carnegie-Mellon University, Pittsburgh, PA, July 1985), J. J. Grefenstette,
Ed., pp. 183–187.

19. Da Costa, L. E., and Landry, J.-A. Relaxed genetic programming. In GECCO 2006:
Proceedings of the 8th annual conference on Genetic and evolutionary computation (Seat-
tle, Washington, USA, 8-12 July 2006), M. Keijzer et al., Ed., vol. 1, ACM Press, pp. 937–
938.

20. Daida, J. M., Bertram, R., Stanhope, S., Khoo, J., Chaudhary, S., and Chaudhary,

O. What makes a problem GP-hard? analysis of a tunably difficult problem in genetic
programming. Genetic Programming and Evolvable Machines 2 (2001), 165–191.

21. Daida, J. M., Li, H., Tang, R., and Hilss, A. M. What makes a problem GP-hard?
validating a hypothesis of structural causes. In Genetic and Evolutionary Computation
– GECCO-2003 (2003), E. C.-P. et. al., Ed., vol. 2724 of LNCS, Springer-Verlag, Berlin,
pp. 1665–1677.

22. Darwin, C. On the Origins of the Species by Means of Natural Selection, or the Preser-
vation of Favoured Races in the Struggle for Life. 1859.

23. Deb, K., Horn, J., and Goldberg, D. Multimodal deceptive functions. Complex
Systems 7 (1993), 131–153.

24. Dempsey, I., O’Neill, M., and Brabazon, A. Constant creation with grammatical
evolution. International Journal of Innovative Computing and Applications 1, 1 (2007),
23–38.

25. Dempsey, I., O’Neill, M., and Brabazon, A. Foundations in Grammatical Evolution
for Dynamic Environments, vol. 194 of Studies in Computational Intelligence. Springer,
Apr. 2009.

26. Eiben, A. E., and Jelasity, M. A critical note on experimental research methodology
in EC. In Congress on Evolutionary Computation (CEC’02) (Honolulu, Hawaii, USA,
2002), IEEE Press, Piscataway, NJ, pp. 582–587.

27. Ekárt, A., and Németh, S. Z. Maintaining the diversity of genetic programs. In Genetic
Programming, Proceedings of the 5th European Conference, EuroGP 2002 (Kinsale, Ire-
land, 3-5 Apr. 2002), J. A. Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B. Tettamanzi,
Eds., vol. 2278 of LNCS, Springer-Verlag, pp. 162–171.

28. Eklund, S. E. Time series forecasting using massively parallel genetic programming. In
Proceedings of Parallel and Distributed Processing International Symposium (22-26 Apr.
2003), pp. 143–147.

29. Evett, M., and Fernandez, T. Numeric mutation improves the discovery of numeric
constants in genetic programming. In Genetic Programming 1998: Proceedings of the
Third Annual Conference (University of Wisconsin, Madison, Wisconsin, USA, 22-25
July 1998), J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel,
M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, Eds., Morgan Kaufmann, pp. 66–
71.

30. Fogel, D. Evolving computer programs. In Evolutionary Computation: The Fossil
Record, D. Fogel, Ed. MIT Press, 1998, ch. 5, pp. 143–144.



18

31. Fogel, L., Owens, A., and Walsh, M. Artificial Intelligence through Simulated Evolu-
tion. John Wiley, 1966.

32. Fonlupt, C. Solving the ocean color problem using a genetic programming approach.
Applied Soft Computing 1, 1 (June 2001), 63–72.

33. Francone, F. The discipulus owner’s manual. URL:
http://www.rmltech.com/technology overview.htm, 2004.

34. Francone, F. D., Nordin, P., and Banzhaf, W. Benchmarking the generalization
capabilities of a compiling genetic programming system using sparse data sets. In Genetic
Programming: Proceedings of the first annual conference (1996), J. R. Koza et al., Ed.,
MIT Press, Cambridge, pp. 72–80.

35. Friedberg, R. A learning machine: Part 1. IBM J. Research and Development Vol. 2:1
(1958), 2–13.

36. Friedberg, R., Dunham, B., and North, J. A learning machine: Part 2. IBM J.
Research and Development (1959), 282–287.

37. Gagne, C. Open beagle. URL: http://beagle.gel.ulaval.ca, 11 2007.
38. Gagné, C., Schoenauer, M., Parizeau, M., and Tomassini, M. Genetic programming,

validation sets, and parsimony pressure. In Genetic Programming, 9th European Con-
ference, EuroGP2006 (2006), P. Collet et al., Ed., Lecture Notes in Computer Science,
LNCS 3905, Springer, Berlin, Heidelberg, New York, pp. 109–120.

39. Goldberg, D. E., and O’Reilly, U.-M. Where does the good stuff go, and why?
how contextual semantics influence program structure in simple genetic programming.
In Proceedings of the First European Workshop on Genetic Programming (Paris, 14-15
Apr. 1998), W. Banzhaf, R. Poli, M. Schoenauer, and T. C. Fogarty, Eds., vol. 1391 of
LNCS, Springer-Verlag, pp. 16–36.

40. Gustafson, S. An Analysis of Diversity in Genetic Programming. PhD thesis, School of
Computer Science and Information Technology, University of Nottingham, Nottingham,
England, Feb. 2004.

41. Gustafson, S., and Vanneschi, L. Operator-based distance for genetic programming:
Subtree crossover distance. In Genetic Programming, 8th European Conference, Eu-
roGP2005 (2005), Keijzer, M., et al., Ed., Lecture Notes in Computer Science, LNCS
3447, Springer, Berlin, Heidelberg, New York, pp. 178–189.

42. Gustafson, S., and Vanneschi, L. Operator-based tree distance in genetic program-
ming. IEEE Transactions on Evolutionary Computation 12 (2008), 4.

43. Hansen, J., Lowry, P., Meservy, R., and McDonald, D. Genetic programming for
prevention of cyberterrorism through dynamic and evolving intrusion detection. Decision
Support Systems 43, 4 (2006), 1362–1374.

44. Hemberg, E., Gilligan, C., O’Neill, M., and Brabazon, A. A grammatical genetic
programming approach to modularity in genetic algorithms. In Proceedings of the 10th
European Conference on Genetic Programming (Valencia, Spain, 11 - 13 Apr. 2007),
M. Ebner, M. O’Neill, A. Ekárt, L. Vanneschi, and A. I. Esparcia-Alcázar, Eds., vol. 4445
of Lecture Notes in Computer Science, Springer, pp. 1–11.

45. Hornby, G. ALPS: the age-layered population structure for reducing the problem of
premature convergence. In Proceedings of the 8th annual conference on Genetic and
evolutionary computation (2006), ACM New York, NY, USA, pp. 815–822.

46. Hu, J., Goodman, E., Seo, K., Fan, Z., and Rosenberg, R. The hierarchical fair com-
petition (hfc) framework for sustainable evolutionary algorithms. Evolutionary Compu-
tation 13, 2 (2005), 241–277.

47. Hu, T., and Banzhaf, W. Neutrality and variability: two sides of evolvability in linear
genetic programming. In GECCO ’09: Proceedings of the 11th Annual conference on
Genetic and evolutionary computation (Montreal, 8-12 July 2009), G. Raidl, F. Rothlauf,
G. Squillero, R. Drechsler, T. Stuetzle, M. Birattari, C. B. Congdon, M. Middendorf,
C. Blum, C. Cotta, P. Bosman, J. Grahl, J. Knowles, D. Corne, H.-G. Beyer, K. Stanley,
J. F. Miller, J. van Hemert, T. Lenaerts, M. Ebner, J. Bacardit, M. O’Neill, M. Di Penta,
B. Doerr, T. Jansen, R. Poli, and E. Alba, Eds., ACM, pp. 963–970.

48. Hu, T., and Banzhaf, W. The role of population size in rate of evolution in genetic
programming. In Proceedings of the 12th European Conference on Genetic Programming,
EuroGP 2009 (Tuebingen, Apr. 15-17 2009), L. Vanneschi, S. Gustafson, A. Moraglio,
I. De Falco, and M. Ebner, Eds., vol. 5481 of LNCS, Springer, pp. 85–96.

49. Jablonka, E., and Lamb, M. Evolution in four dimensions: Genetic, epigenetic, behav-
ioral, and symbolic variation in the history of life. MIT Press, 2005.



19

50. Jakobović, D., and Budin, L. Dynamic scheduling with genetic programming. In Pro-
ceedings of the 9th European Conference on Genetic Programming (Budapest, Hungary,
10 - 12 Apr. 2006), P. Collet, M. Tomassini, M. Ebner, S. Gustafson, and A. Ekárt, Eds.,
vol. 3905 of Lecture Notes in Computer Science, Springer, pp. 73–84.

51. Jonyer, I., and Himes, A. Improving modularity in genetic programming using graph-
based data mining. In Proceedings of the Nineteenth International Florida Artificial
Intelligence Research Society Conference (Melbourne Beach, Florida, USA, May 11-13
2006), G. C. J. Sutcliffe and R. G. Goebel, Eds., American Association for Artificial
Intelligence, pp. 556–561.

52. Kantschik, W., and Banzhaf, W. Linear-tree GP and its comparison with other GP
structures. In Genetic Programming, Proceedings of EuroGP’2001 (Lake Como, Italy,
18-20 Apr. 2001), J. F. Miller, M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B. Tettamanzi,
and W. B. Langdon, Eds., vol. 2038 of LNCS, Springer-Verlag, pp. 302–312.

53. Kantschik, W., and Banzhaf, W. Linear-graph GP—A new GP structure. In Genetic
Programming, Proceedings of the 5th European Conference, EuroGP 2002 (Kinsale, Ire-
land, 3-5 Apr. 2002), J. A. Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B. Tettamanzi,
Eds., vol. 2278 of LNCS, Springer-Verlag, pp. 83–92.

54. Kashtan, N., and Alon, U. Spontaneous evolution of modularity and network motifs.
Proceedings of the National Academy of Sciences 102, 39 (Sept. 27 2005), 13773–13778.

55. Kashtan, N., Noor, E., and Alon, U. Varying environments can speed up evolution.
Proceedings of the National Academy of Sciences 104, 34 (August 21 2007), 13711–13716.

56. Katirai, H. Filtering junk E-mail: A performance comparison between genetic program-
ming and naive bayes. 4A Year student project, 10 Sept. 1999.

57. Keijzer, M., Babovic, V., Ryan, C., O’Neill, M., and Cattolico, M. Adaptive logic
programming. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001) (San Francisco, California, USA, 7-11 July 2001), L. Spector, E. D.
Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk,
M. H. Garzon, and E. Burke, Eds., Morgan Kaufmann, pp. 42–49.

58. Keller, R. E., and Poli, R. Toward subheuristic search. In In Proceedings of 2008
IEEE Congress on Evolutionary Computation (2008), IEEE Press, pp. 3147–3154.

59. Kinnear Jr., K. E. Fitness landscapes and difficulty in genetic programming. In Pro-
ceedings of the First IEEEConference on Evolutionary Computing (1994), IEEE Press,
Piscataway, NY, pp. 142–147.

60. Kirschner, M., Gerhart, J., and Norton, J. The plausibility of life: Resolving Dar-
win’s dilemma. Yale Univ Pr, 2006.

61. Kotanchek, M. The data modeler add-on package for mathematica. see
http://www.evolved-analytics.com/datamodeler, 72 2009.

62. Koza, J. R. Hierarchical genetic algorithms operating on populations of computer pro-
grams. In Proceedings of the Eleventh International Joint Conference on Artificial In-
telligence IJCAI-89 (Detroit, MI, USA, 20-25 Aug. 1989), N. S. Sridharan, Ed., vol. 1,
Morgan Kaufmann, pp. 768–774.

63. Koza, J. R. A genetic approach to the truck backer upper problem and the inter-twined
spiral problem. In Proceedings of IJCNN International Joint Conference on Neural
Networks (1992), vol. IV, IEEE Press, pp. 310–318.

64. Koza, J. R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

65. Koza, J. R. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press, Cambridge Massachusetts, May 1994.

66. Koza, J. R., Andre, D., Bennett III, F. H., and Keane, M. Genetic Programming 3:
Darwinian Invention and Problem Solving. Morgan Kaufman, Apr. 1999.

67. Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., and Lanza, G.

Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer
Academic Publishers, 2003.

68. Kushchu, I. An evaluation of evolutionary generalization in genetic programming. Ar-
tificial Intelligence Review 18, 1 (2002), 3–14.

69. Langdon, W. A many threaded cuda interpreter for genetic programming. In Proceed-
ings of the 13th European Conference on Genetic Programming (2010), A. I. Esparcia-
Alcázar, A. Ekárt, S. Silva, S. Dignum, and A. Uyar, Eds., vol. LNCS 6021, Springer,
pp. 146–158.

70. Langdon, W., and Banzhaf, W. Repeated patterns in genetic programming. Natural
Computing 7, 4 (2008), 589–613.



20

71. Langdon, W. B. Genetic Programming and Data Structures: Genetic Programming +
Data Structures = Automatic Programming!, vol. 1 of Genetic Programming. Kluwer,
Boston, 24 Apr. 1998.

72. Langdon, W. B., and Banzhaf, W. Genetic programming bloat without semantics. In
Parallel Problem Solving from Nature - PPSN VI 6th International Conference (Paris,
France, 16-20 Sept. 2000), M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J.
Merelo, and H.-P. Schwefel, Eds., vol. 1917 of LNCS, Springer Verlag, pp. 201–210.

73. Langdon, W. B., and Banzhaf, W. Repeated sequences in linear genetic programming
genomes. Complex Systems 15, 4 (2005), 285–306.

74. Langdon, W. B., and Banzhaf, W. Repeated patterns in genetic programming. Natural
Computing 7, 4 (Dec. 2008), 589–613.

75. Langdon, W. B., Gustafson, S., and Koza, J. R. GP Bibliography.
http://www.cs.bham.ac.uk/ wbl/biblio/gp-bib-info.html, 2008.

76. Langdon, W. B., and Poli, R. Genetic programming bloat with dynamic fitness. In
Proceedings of the First European Workshop on Genetic Programming (Paris, 14-15 Apr.
1998), W. Banzhaf, R. Poli, M. Schoenauer, and T. C. Fogarty, Eds., vol. 1391 of LNCS,
Springer-Verlag, pp. 96–112.

77. Langdon, W. B., and Poli, R. Foundations of Genetic Programming. Springer-Verlag,
2002.

78. Lee, W.-C. Genetic programming decision tree for bankruptcy prediction. In Proceedings
of the 2006 Joint Conference on Information Sciences, JCIS 2006 (Kaohsiung, Taiwan,
ROC, Oct. 8-11 2006), Atlantis Press.

79. Luke, S. ECJ. URL: http://cs.gmu.edu/ eclab/projects/ecj/, 2010.
80. McConaghy, T., Leung, H., and Varadan, V. Functional reconstruction of dynamical

systems from time series using genetic programming. In 26th Annual Conference of the
IEEE Industrial Electronics Society, IECON 2000 (Nagoya, 22-28 Oct. 2000), vol. 3,
IEEE, pp. 2031–2034.

81. McKay, R. I. B., Hoai, N. X., Whigham, P. A., Shan, Y., and O’Neill, M. Grammar-
based genetic programming a survey. Genetic Programming and Evolvable Machines (this
issue) (2010).

82. McPhee, N. F., Ohs, B., and Hutchison, T. Semantic building blocks in genetic
programming. In Proceedings of the 11th European Conference on Genetic Programming,
EuroGP 2008 (Naples, 26-28 Mar. 2008), M. O’Neill, L. Vanneschi, S. Gustafson, A. I.
Esparcia Alcazar, I. De Falco, A. Della Cioppa, and E. Tarantino, Eds., vol. 4971 of
Lecture Notes in Computer Science, Springer, pp. 134–145.

83. Merelo, J., Keijzer, M., and Schoenauer, M. Eo evolutionary computation frame-
work. URL: http://eodev.sourceforge.net/, 2006.

84. Mitchell, M., Forrest, S., and Holland, J. The royal road for genetic algorithms:
fitness landscapes and ga performance. In Toward a Practice of Autonomous Systems,
Proceedings of the First European Conference on Artificial Life (1992), F. J. Varela and
P. Bourgine, Eds., The MIT Press, pp. 245–254.

85. Mitchell, T. Machine Learning. McGraw Hill, New York, 1996.
86. Montana, D. J. Strongly typed genetic programming. Evolutionary Computation 3, 2

(1995), 199–230.
87. Moore, J., Andrews, P., Barney, N., and White, B. Development and evaluation of

an open-ended computational evolution system for the genetic analysis of susceptibility
to common human diseases. Lecture Notes in Computer Science 4973 (2008), 129–140.

88. Moore, J., Greene, C., Andrews, P., and White, B. Does Complexity Matter? Artifi-
cial Evolution, Computational Evolution and the Genetic Analysis of Epistasis in common
human Diseases. Genetic Programming Theory and Practice VI (2008), 125.

89. Morrison, R. Designing Evolutionary Algorithms for Dynamic Environments. Springer,
2004.

90. Nguyen, Q. U., Nguyen, T. H., Nguyen, X. H., and O’Neill, M. Improving the
generalisation ability of genetic programming with semantic similarity based crossover.
A. I. Esparcia-Alcázar, A. Ekárt, S. Silva, S. Dignum, and A. Uyar, Eds., vol. LNCS
6021, Springer, pp. 184–195.

91. Nguyen, Q. U., O’Neill, M., Nguyen, X. H., McKay, B., and Lopez, E. G. Semantic
similarity based crossover in GP: The case for real-valued function regression. In Evolution
Artificielle, 9th International Conference (26-28 Oct. 2009), P. Collet, Ed., Lecture Notes
in Computer Science, pp. 13–24.



21

92. Nicolau, M., Schoenauer, M., and Banzhaf, W. Evolving genes to balance a pole.
A. I. Esparcia-Alcázar, A. Ekárt, S. Silva, S. Dignum, and A. Uyar, Eds., vol. LNCS
6021, Springer, pp. 196–207.

93. Nordin, P., Banzhaf, W., and Francone, F. D. Introns in nature and in simulated
structure evolution. In Bio-Computation and Emergent Computation (Skovde, Sweden,
1-2 Sept. 1997), D. Lundh, B. Olsson, and A. Narayanan, Eds., World Scientific Publish-
ing.

94. Oltean, M. Evolving evolutionary algorithms using linear genetic programming. Evo-
lutionary Computation 13, 3 (Fall 2005), 387–410.

95. O’Neill, M., and Brabazon, A. Recent patents in genetic programming. Recent Patents
in Computer Science 2, 1 (2009), 43–49.

96. O’Neill, M., McDermott, J., Swafford, J. M., Byrne, J., Hemberg, E., Shotton,

E., McNally, C., Brabazon, A., and Hemberg, M. Evolutionary design using gram-
matical evolution and shape grammars: Designing a shelter. International Journal of
Design Engineering 3 (2010).

97. O’Neill, M., and Ryan, C. Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language, vol. 4 of Genetic programming. Kluwer Academic Pub-
lishers, 2003.

98. O’Reilly, U.-M., and Hemberg, M. Integrating generative growth and evolutionary
computation for form exploration. Genetic Programming and Evolvable Machines 8, 2
(June 2007), 163–186. Special issue on developmental systems.

99. Orfila, A., Estevez-Tapiador, J. M., and Ribagorda, A. Evolving high-speed,
easy-to-understand network intrusion detection rules with genetic programming. In
Applications of Evolutionary Computing, EvoWorkshops2009: EvoCOMNET, EvoEN-
VIRONMENT, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoINTERACTION, Evo-
MUSART, EvoNUM, EvoPhD, EvoSTOC, EvoTRANSLOG (Tubingen, Germany, 15-17
Apr. 2009), M. Giacobini, I. De Falco, and M. Ebner, Eds., LNCS, Springer Verlag.

100. P.Domingos. The role of Occam’s razor in knowledge discovery. Data Mining and
Knowledge Discovery 3, 4 (1999), 409–425.

101. Poli, R., and Graff, M. There is a free lunch for hyper-heuristics, genetic programming
and computer scientists. In Proceedings of the 12th European Conference on Genetic
Programming, EuroGP 2009 (Tuebingen, Apr. 15-17 2009), L. Vanneschi, S. Gustafson,
A. Moraglio, I. De Falco, and M. Ebner, Eds., vol. 5481 of LNCS, Springer, pp. 195–207.

102. Poli, R., Graff, M., and McPhee, N. F. Free lunches for function and program induc-
tion. In FOGA ’09: Proceedings of the tenth ACM SIGEVO workshop on Foundations
of genetic algorithms (Orlando, Florida, USA, 9-11 Jan. 2009), ACM, pp. 183–194.

103. Poli, R., Langdon, W. B., and Holland, O. Extending particle swarm optimisation
via genetic programming. In Proceedings of the 8th European Conference on Genetic
Programming (Lausanne, Switzerland, 30 Mar. - 1 Apr. 2005), M. Keijzer, A. Tetta-
manzi, P. Collet, J. I. van Hemert, and M. Tomassini, Eds., vol. 3447 of Lecture Notes
in Computer Science, Springer, pp. 291–300.

104. Poli, R., Langdon, W. B., and McPhee, N. F. A field guide to ge-
netic programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).

105. Poli, R., and McPhee, N. F. Exact schema theorems for GP with one-point and
standard crossover operating on linear structures and their application to the study of
the evolution of size. In Genetic Programming, Proceedings of EuroGP’2001 (2001),
J. Miller, M. Tomassini, P. L. Lanzi, C. Ryan, A. Tettamanzi, and W. Langdon, Eds.,
vol. 2038 of LNCS, Springer-Verlag, pp. 126–142.

106. Poli, R., and McPhee, N. F. General schema theory for genetic programming with
subtree swapping crossover: Part I. Evolutionary Computation 11, 1 (2003), 53–66.

107. Poli, R., and McPhee, N. F. General schema theory for genetic programming with
subtree swapping crossover: Part II. Evolutionary Computation 11, 2 (2003), 169–206.

108. Poli, R., and Vanneschi, L. Fitness-proportional negative slope coefficient as a hardness
measure for genetic algorithms. In Genetic and Evolutionary Computation Conference,
GECCO’07 (2007), D. Thierens et al., Ed., ACM Press, pp. 1335–1342.

109. Poli, R., Vanneschi, L., Langdon, W. B., and McPhee, N. F. Theoretical results in
genetic programming: The next ten years? Genetic Programming and Evolvable Machines
(this issue) (2010).



22

110. Punch, B., Zongker, D., and Goodman, E. The royal tree problem, a benchmark
for single and multiple population genetic programming. In Advances in Genetic Pro-
gramming 2 (Cambridge, MA, 1996), P. Angeline and K. Kinnear, Eds., The MIT Press,
pp. 299–316.

111. Rissanen, J. Modeling by shortest data description. Automatica 14 (1978), 465–471.
112. Rosca, J. P. Towards automatic discovery of building blocks in genetic programming.

In Working Notes for the AAAI Symposium on Genetic Programming (1995), AAAI,
pp. 78–85.

113. Rothlauf, F. Representations for genetic and evolutionary algorithms, second ed.
Springer-Verlag, pub-SV:adr, 2006. First published 2002, 2nd edition available electron-
ically.

114. Rothlauf, F., and Oetzel, M. On the locality of grammatical evolution. In Proceedings
of the 9th European Conference on Genetic Programming (Budapest, Hungary, 10 - 12
Apr. 2006), P. Collet, M. Tomassini, M. Ebner, S. Gustafson, and A. Ekárt, Eds., vol. 3905
of Lecture Notes in Computer Science, Springer, pp. 320–330.

115. Ryan, C., and Keijzer, M. An analysis of diversity of constants of genetic program-
ming. In Genetic Programming, Proceedings of EuroGP’2003 (Essex, 14-16 Apr. 2003),
C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa, Eds., vol. 2610 of LNCS,
Springer-Verlag, pp. 404–413.

116. Seront, G. External concepts reuse in genetic programming. In Working Notes for the
AAAI Symposium on Genetic Programming (MIT, Cambridge, MA, USA, 10–12 Nov.
1995), E. V. Siegel and J. R. Koza, Eds., AAAI, pp. 94–98.

117. Shekhar, S., and Amin, M. B. Generalization by neural networks. IEEE Trans. on
Knowledge and Data Eng 4 (1992).

118. Silva, S., and Vanneschi, L. Operator equalisation, bloat and overfitting: a study
on human oral bioavailability prediction. In GECCO ’09: Proceedings of the 11th An-
nual conference on Genetic and evolutionary computation (Montreal, 8-12 July 2009),
G. Raidl, F. Rothlauf, G. Squillero, R. Drechsler, T. Stuetzle, M. Birattari, C. B. Con-
gdon, M. Middendorf, C. Blum, C. Cotta, P. Bosman, J. Grahl, J. Knowles, D. Corne,
H.-G. Beyer, K. Stanley, J. F. Miller, J. van Hemert, T. Lenaerts, M. Ebner, J. Bac-
ardit, M. O’Neill, M. Di Penta, B. Doerr, T. Jansen, R. Poli, and E. Alba, Eds., ACM,
pp. 1115–1122.

119. Silva, S. G. O. GPLab. A Genetic Programming Toolbox for MATLAB, 2008. See
http://gplab.sourceforge.net.

120. Smith, S. A learning system based on genetic adaptive algorithms.
121. Smola A. J. and B. Scholkopf. A Tutorial on Support Vector Regression. Tech. Rep.

Technical Report Series - NC2-TR-1998-030, NeuroCOLT2, 1999.
122. Song, D., Heywood, M. I., and Zincir-Heywood, A. N. A linear genetic programming

approach to intrusion detection. In Genetic and Evolutionary Computation – GECCO-
2003 (Chicago, 12-16 July 2003), E. Cantú-Paz, J. A. Foster, K. Deb, D. Davis, R. Roy,
U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener,
D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska, and J. Miller, Eds.,
vol. 2724 of LNCS, Springer-Verlag, pp. 2325–2336.

123. Spector, L. Evolving control structures with automatically defined macros. In Working
Notes for the AAAI Symposium on Genetic Programming (MIT, Cambridge, MA, USA,
10–12 Nov. 1995), E. V. Siegel and J. R. Koza, Eds., AAAI, pp. 99–105.

124. Spector, L., and Robinson, A. Genetic programming and autoconstructive evolution
with the push programming language. Genetic Programming and Evolvable Machines 3,
1 (Mar. 2002), 7–40.

125. Spencer, G. F. Automatic generation of programs for crawling and walking. In Advances
in Genetic Programming, K. E. Kinnear, Jr., Ed. MIT Press, 1994, ch. 15, pp. 335–353.

126. Stadler, P. F. Fitness landscapes. In Biological Evolution and Statistical Physics
(Heidelberg, 2002), M. Lässig and Valleriani, Eds., vol. 585 of Lecture Notes Physics,
Springer-Verlag, pp. 187–207.

127. Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., and Tiwari,

S. Problem definitions and evaluation criteria for the cec 2005 special session on real-
parameter optimization. Tech. Rep. Technical Report Number 2005005, Nanyang Tech-
nological University, 2005.

128. Teller, A., and Veloso, M. PADO: A new learning architecture for object recognition.
In Symbolic Visual Learning, K. Ikeuchi and M. Veloso, Eds. Oxford University Press,
1996, pp. 81–116.



23

129. Tomassini, M., Vanneschi, L., Collard, P., and Clergue, M. A study of fitness
distance correlation as a difficulty measure in genetic programming. Evolutionary Com-
putation 13, 2 (Summer 2005), 213–239.

130. Vanneschi, L. Theory and Practice for Efficient Genetic Programming. PhD thesis,
Faculty of Sciences, University of Lausanne, Switzerland, 2004.

131. Vanneschi, L., Castelli, M., and Silva, S. Measuring bloat, overfitting and functional
complexity in genetic programming. In GECCO ’10: Proceedings of the 12th Annual
conference on Genetic and evolutionary computation (2010), J. Branke, Ed.

132. Vanneschi, L., and Cuccu, G. Variable size population for dynamic optimization with
genetic programming. In GECCO ’09: Proceedings of the 11th Annual conference on
Genetic and evolutionary computation (Montreal, 8-12 July 2009), G. Raidl, F. Rothlauf,
G. Squillero, R. Drechsler, T. Stuetzle, M. Birattari, C. B. Congdon, M. Middendorf,
C. Blum, C. Cotta, P. Bosman, J. Grahl, J. Knowles, D. Corne, H.-G. Beyer, K. Stanley,
J. F. Miller, J. van Hemert, T. Lenaerts, M. Ebner, J. Bacardit, M. O’Neill, M. Di Penta,
B. Doerr, T. Jansen, R. Poli, and E. Alba, Eds., ACM, pp. 1895–1896.

133. Vanneschi, L., and Gustafson, S. Using crossover based similarity measure to improve
genetic programming generalization ability. In GECCO ’09: Proceedings of the 11th
Annual conference on Genetic and evolutionary computation (New York, NY, USA,
2009), ACM, pp. 1139–1146.

134. Vanneschi, L., Gustafson, S., and Mauri, G. Using subtree crossover distance to in-
vestigate genetic programming dynamics. In Genetic Programming, 9th European Con-
ference, EuroGP2006 (2006), Collet, P., et al., Ed., Lecture Notes in Computer Science,
LNCS 3905, Springer, Berlin, Heidelberg, New York, pp. 238–249.

135. Vanneschi, L., Rochat, D., and Tomassini, M. Multi-optimization improves genetic
programming generalization ability. In GECCO ’07: Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation (London, 7-11 July 2007), D. Thierens,
H.-G. Beyer, J. Bongard, J. Branke, J. A. Clark, D. Cliff, C. B. Congdon, K. Deb, B. Do-
err, T. Kovacs, S. Kumar, J. F. Miller, J. Moore, F. Neumann, M. Pelikan, R. Poli,
K. Sastry, K. O. Stanley, T. Stutzle, R. A. Watson, and I. Wegener, Eds., vol. 2, ACM
Press, pp. 1759–1759.

136. Vanneschi, L., Tomassini, M., Collard, P., and Vérel, S. Negative slope coefficient.
A measure to characterize genetic programming. In Proceedings of the 9th European
Conference on Genetic Programming (Budapest, Hungary, 10 - 12 Apr. 2006), P. Collet,
M. Tomassini, M. Ebner, S. Gustafson, and A. Ekárt, Eds., vol. 3905 of Lecture Notes in
Computer Science, Springer, pp. 178–189.

137. Vladislavleva, E. J., Smits, G. F., and den Hertog, D. Order of nonlinearity as
a complexity measure for models generated by symbolic regression via pareto genetic
programming. IEEE Transactions on Evolutionary Computation 13, 2 (Apr. 2009), 333–
349.

138. Wagner, A. Robustness and evolvability in living systems. Princeton University Press
Princeton, NJ, 2005.

139. Wagner, N., Michalewicz, Z., Khouja, M., and McGregor, R. Time series forecast-
ing for dynamic environments: The dyfor genetic program model. IEEE Transactions on
Evolutionary Computation 11, 4 (2006), 433–452.

140. Wedge, D. C., and Kell, D. B. Rapid prediction of optimum population size in genetic
programming using a novel genotype - fitness correlation. In GECCO ’08: Proceedings
of the 10th annual conference on Genetic and evolutionary computation (Atlanta, GA,
USA, 12-16 July 2008), M. Keijzer, G. Antoniol, C. B. Congdon, K. Deb, B. Doerr,
N. Hansen, J. H. Holmes, G. S. Hornby, D. Howard, J. Kennedy, S. Kumar, F. G. Lobo,
J. F. Miller, J. Moore, F. Neumann, M. Pelikan, J. Pollack, K. Sastry, K. Stanley, A. Sto-
ica, E.-G. Talbi, and I. Wegener, Eds., ACM, pp. 1315–1322.

141. Weimer, W., Nguyen, T., Le Gues, C., and Forrest, S. Automatically finding
patches using Genetic Programming. In International Conference on Software Engi-
neering (ICSE) 2009 (2009), ACM New York, NY, USA, pp. 364–374.

142. Whigham, P. A. Grammatical Bias for Evolutionary Learning. PhD thesis, School
of Computer Science, University College, University of New South Wales, Australian
Defence Force Academy, Canberra, Australia, 14 October 1996.

143. Whigham, P. A. Grammatically-based genetic programming. In Proceedings of the
Workshop on Genetic Programming: From Theory to Real-World Applications (Tahoe
City, California, USA, 9 July 1995), J. P. Rosca, Ed., pp. 33–41.



24

144. Wilson, G., and Heywood, M. Introducing probabilistic adaptive mapping developmen-
tal genetic programming with redundant mappings. Genetic Programming and Evolvable
Machines 8, 2 (June 2007), 187–220. Special issue on developmental systems.

145. Wolpert, D. H., and Macready, W. G. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1, 1 (1997), 67–82.

146. Woodward, J. R. Modularity in genetic programming. In Genetic Programming, Pro-
ceedings of EuroGP’2003 (Essex, 14-16 Apr. 2003), C. Ryan, T. Soule, M. Keijzer,
E. Tsang, R. Poli, and E. Costa, Eds., vol. 2610 of LNCS, Springer-Verlag, pp. 254–
263.

147. Wright, S. The roles of mutation, inbreeding, crossbreeding, and selection in evolution.
In Proceedings of the Sixth International Congress on Genetics (1932), D. Jones, Ed.,
vol. 1, pp. 355–366.

148. Xie, H., Zhang, M., and Andreae, P. Genetic programming for automatic stress detec-
tion in spoken english. In Applications of Evolutionary Computing, EvoWorkshops2006:
EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoInteraction, EvoMUSART, EvoSTOC
(Budapest, 10-12 Apr. 2006), F. Rothlauf, J. Branke, S. Cagnoni, E. Costa, C. Cotta,
R. Drechsler, E. Lutton, P. Machado, J. H. Moore, J. Romero, G. D. Smith, G. Squillero,
and H. Takagi, Eds., vol. 3907 of LNCS, Springer Verlag, pp. 460–471.

149. Yang, S., Ong, Y.-S., and Jin, Y. Special issue on evolutionary computation in dynamic
and uncertain environments. Genetic Programming and Evolvable Machines 7, 4 (2006).

150. Zhang, M., Bhowan, U., and Ny, B. Genetic programming for object detection: A
two-phase approach with an improved fitness function. Electronic Letters on Computer
Vision and Image Analysis 6, 1 (2006), 27–43.


