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Abstract. This study examines Social Programming, that is, the construction of pro-
grams using a Social Swarm algorithm based on Particle Swarm Optimization. Each
individual particle represents choices of program construction rules, where these rules
are specified using a Backus–Naur Form grammar. This study represents the first in-

stance of a Particle Swarm Algorithm being used to generate programs. A selection of
benchmark problems from the field of Genetic Programming are tackled and perfor-
mance is compared to Grammatical Evolution. The results demonstrate that it is pos-

sible to successfully generate programs using the Grammatical Swarm technique. An
analysis of the Grammatical Swarm approach is presented on the dynamics of the
search. It is found that restricting the search to the generation of complete programs, or

with the use of a ratchet constraint forcing individuals to move only if a fitness
improvement has been found, can have detrimental consequences for the swarms per-
formance and dynamics.
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social learning, social programming

1. Introduction

One model of social learning that has attracted interest in recent years
is drawn from a swarm metaphor. Two popular variants of swarm
models exist, those inspired by studies of social insects such as ant
colonies, and those inspired by studies of the flocking behavior of
birds and fish. This study focuses on the latter. The essence of these
systems is that they exhibit flexibility, robustness and self-organization
(Bonabeau et al., 1999). Although the systems can exhibit remarkable
coordination of activities between individuals, this coordination does
not stem from a ‘center of control’ or a ‘directed’ intelligence, rather
it is self-organizing and emergent. Social swarm researchers have
emphasized the role of social learning processes in these models (Ken-
nedy and Eberhart, 1995; Kennedy et al., 2001). In essence, social
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behavior helps individuals to adapt to their environment, as it ensures
that they obtain access to more information than that captured by
their own senses.

This paper details an investigation examining the possibility of
specifying the automated construction of a program using a Particle
Swarm learning model. The results demonstrate that the performance
of this approach on a number of benchmark problems is comparable
with, and in some cases superior to, a popular grammar-based form
of Genetic Programming, namely Grammatical Evolution. In the
Grammatical Swarm (GS) methodology developed in this study, each
particle or realvalued vector, represents choices of program construc-
tion rules specified as production rules of a Backus–Naur Form gram-
mar.

GS is grounded in the linear Genetic Programming representation
adopted in Grammatical Evolution (GE) (O’Neill and Ryan, 2003),
which uses grammars to guide the construction of syntactically cor-
rect programs, specified by variable-length genotypic binary or integer
strings.

There are a number of advantages of a grammatical approach to
genetic programming, including the ability to encode multiple data
types into the solutions generated. In tree-based GP an individual is
restricted to a single type (typically real values) due to the restriction
of closure. That is, every operator within the tree must be capable of
handling all possible inputs from its subtrees. The non-terminal sym-
bols within a grammatical approach effectively allow the developing
program to contain multiple data types.

Due to the genotype–phenotype mapping involved in GE (and GS)
it is possible to conveniently encode domain knowledge into the
grammar which can be used to bias the construction of solutions.
Adopting a grammatical representation coupled to the genotype–phe-
notype mapping allows the user to easily change the language gener-
ated by simply modifying the grammar thus making such an
approach language independent. Also due to the genotype–phenotype
separation it is possible to change the search heuristic that operates
on the binary or integer strings that represent the genotype. The
search heuristic adopted with GE is a variable-length Genetic Algo-
rithm. In the GS technique presented here, a particle’s real-valued
vector is used in the same manner as the genotypic binary string in
GE. This results in a new form of automatic programming based
on social learning, which we dub Social Programming, or Swarm
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Programming. It is interesting to note that this approach is completely
devoid of any crossover operator.

The remainder of the paper is structured as follows. Before
describing the Grammatical Swarm algorithm in Section 4, introduc-
tions to the salient features of Particle Swarm Optimization (PSO)
and Grammatical Evolution (GE) are provided in Sections 2 and 3,
respectively. Section 5 details the experimental approach adopted and
results, Section 6 contains an analysis of various methods of initializa-
tion and update strategies in GS, and finally Section 7 details conclu-
sions and opportunities for future work.

2. Particle Swarm optimization

In the context of PSO, a swarm can be defined as ‘... a population of
interacting elements that is able to optimize some global objective
through collaborative search of a space.’ (Kennedy et al., 2001,
p. xxvii). The nature of the interacting elements (particles) depends on
the problem domain, in this study they represent program construc-
tion rules. These particles move (fly) in an n-dimensional search
space, in an attempt to uncover ever-better solutions to the problem
of interest.

Each of the particles has two associated properties, a current
position and a velocity. Each particle has a memory of the best
location in the search space that it has found so far (pbest), and
knows the best location found to date by all the particles in the
population (or in an alternative version of the algorithm, a neigh-
borhood around each particle) (gbest). At each step of the algo-
rithm, particles are displaced from their current position by
applying a velocity vector to them. The velocity size/direction is
influenced by the velocity in the previous iteration of the algorithm
(simulates ‘momentum’), and the location of a particle relative to
its pbest and gbest. Therefore, at each step, the size and direction of
each particle’s move is a function of its own history (experience),
and the social influence of its peer group.

A number of variants of the particle swarm algorithm (PSA) exist.
The following paragraphs provide a description of a basic continuous
version of the algorithm.
i. Initialize each particle in the population by randomly selecting val-

ues for its location and velocity vectors.
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ii. Calculate the fitness value of each particle. If the current fitness
value for a particle is greater than the best fitness value found for
the particle so far, then revise pbest.

iii. Determine the location of the particle with the highest fitness and
revise gbest if necessary.

iv. For each particle, calculate its velocity according to Equation 1.
v. Update the location of each particle according to Equation 3.
vi. Repeat steps ii–v until stopping criteria are met.

The update algorithm for particle is velocity vector vi is:

viðtþ1Þ¼ðw�viðtÞÞþðc1�R1�ðpbest�xiÞÞþðc2�R2�ðgbest�xiÞÞ
ð1Þ

where,

w ¼ wmax� ððwmax� wminÞ=itermaxÞ � iter ð2Þ

In Equation 1, pbest is the location of the best solution found to-date
by particle i, gbest is the location of the global-best solution found by
all particles to date, c1 and c2 are the weights associated with the pbest
and the gbest terms in the velocity update equation, xi is particle i�s
current location, and R1 and R2 are randomly drawn from U(0,1). w
represents a momentum coefficient which is reduced according to
Equation 2 as the algorithm iterates. In Equation 2, itermax and iter
are the total number of iterations the algorithm will run for, and the
current iteration value, respectively, and wmax and wmin set the up-
per and lower boundaries on the value of the momentum coefficient.
The velocity update on any dimension is constrained to a maximum
value of vmax. Once the velocity update for particle i is determined,
its position is updated (Equation 3), and pbest is updated if necessary
(Equations 4 and 5).

xiðtþ 1Þ ¼ xiðtÞ þ viðtþ 1Þ ð3Þ

Figure 1. An example of a genome in GE, represented as integers for ease of reading.
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yiðtþ 1Þ ¼ yiðtÞ if fðxiðtÞÞ � fðyiðtÞÞ ð4Þ

yiðtþ 1Þ ¼ xiðtÞ if fðxiðtÞÞ > fðyiðtÞÞ ð5Þ

After the location of all particles have been updated, a check is made
to determine whether gbest needs to be updated (Equation 6).

ŷ 2 ðy0; y1; . . . ; ynÞj fðŷÞ ¼ max ðfðy0Þ; fðy1Þ; . . . ; fðynÞÞ ð6Þ

3. Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm that can
evolve computer programs in any language (Ryan et al., 1998; O’Ne-
ill, 2001; O’Neill and Ryan, 2001, 2003; O’Neill et al., 2003), and rep-
resents a grammar-based genetic programming approach. Rather than
representing the programs as parse trees, as in GP (Koza, 1992, 1994;
Banzhaf et al., 1998; Koza et al., 1999, 2003), a linear genome repre-
sentation is used (Figure 1). A genotype–phenotype mapping is
employed such that each individual’s variable length binary string,
contains in its codons (groups of 8 bits) the information to select pro-
duction rules from a Backus–Naur Form (BNF) grammar (see Fig-
ure 2). Consequently, the genetic operators such as crossover and
mutation are applied to the linear genotype in a typical genetic algo-
rithm manner, unlike in a tree-based Genetic Programming approach
where they are applied directly to the phenotypic parse trees. The
grammar allows the generation of programs in an arbitrary language
that are guaranteed to be syntactically correct, and as such it is used
as a generative grammar, as opposed to the classical use of grammars
in compilers to check syntactic correctness of sentences. The user can
tailor the grammar to produce solutions that are purely syntactically
constrained, or they may incorporate domain knowledge by biasing
the grammar to produce very specific forms of sentences.

BNF is a notation that represents a language in the form of pro-
duction rules. It is comprised of a set of non-terminals that can be
mapped to elements of the set of terminals (the primitive symbols that
can be used to construct the output program), according to the pro-
duction rules. A simple example BNF grammar is given below, where
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<expr> is the start symbol from which all programs are generated.
These productions state that <expr> can be replaced with either
one of <expr><op><expr> or <var>. An <op> can
become either +, ) , or *, and a <var> can become either x, or y.

Figure 2. An example of a GE genotype–phenotype mapping, where the genotype is
used to select production rules from a grammar to produce a derivation sequence.
The derivation sequence represents the development of a program from the embry-
onic non-terminal start symbol (<e>). The derivation sequence can be represented

as a derivation tree, which can then be simplified to correspond to the parse tree
adopted in standard tree-based Genetic Programming.

<expr> :: = <expr><op><expr> (0)
| <var> (1)

<op> :: = + (0)
| ) (1)
| * (2)

<var> :: = x (0)
| y (1)
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The grammar is used in a developmental process to construct a
program by applying production rules, selected by the genome, begin-
ning from the start symbol of the grammar. In order to select a pro-
duction rule in GE, the next codon value on the genome is read,
interpreted, and placed in the following formula:

Rule ¼ c % r

where c represents the current codon value, % represents the modulus
operator, and r is the number of choices for the current non-terminal.

Given the example individual’s genome (where each 8-bit codon is
represented as an integer for ease of reading) in Figure 2, the first co-
don integer value is 220, and given that we have 2 rules to select from
for <expr> as in the above example, we get 220 % 2 = 0.
<expr> will therefore be replaced with <expr><op>
<expr>.

Beginning from the left hand side of the genome, codon integer values
are generated and used to select appropriate rules for the left most non-ter-
minal in the developing program from the BNF grammar, until one of the
following situations arise: (a) A complete program is generated. This occurs
when all the non-terminals in the expression being mapped are transformed
into elements from the terminal set of the BNF grammar. (b) The end of the
genome is reached, in which case the wrapping operator is invoked. This re-
sults in the return of the genome reading frame to the left hand side of the
genome once again. The reading of codons will then continue unless an up-
per threshold representing the maximum number of wrapping events has oc-
curred during this individuals mapping process. (c) In the event that a
threshold on the number of wrapping events has occurred and the individ-
ual is still incompletely mapped, the mapping process is halted, and the
individual assigned the lowest possible fitness value. Returning to the
example individual, the left-most <expr> in <expr><op>
<expr> is mapped by reading the next codon integer value 240 and used
in 240 % 2 = 0 to become another <expr><op> <expr>. The
developing program now looks like <expr> <op> <expr>
<op><expr>. Continuing to read subsequent codons and always map-
ping the left-most non-terminal the individual finally generates the expres-
sion y * x)x)x+x, leaving a number of unused codons at the end of the
individual, which are deemed to be introns and simply ignored. A full
description of GE can be found in O’Neill and Ryan (2003), and some more
recent applications and extensions including the use of meta-grammars
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(Grammatical Evolution by Grammatical Evolution and the meta-
Grammar Genetic Algorithm) and an alternative approach to the mapping
process (pGE) can be found in Brabazon and O’Neill (2006).

4. Grammatical Swarm

Grammatical Swarm (GS) adopts a Particle Swarm algorithm coupled
to a Grammatical Evolution (GE) genotype–phenotype mapping to
generate programs in an arbitrary language (O’Neill and Brabazon,
2004). The update equations for the particle swarm algorithm are as
described earlier, with additional constraints placed on the velocity and
particle location dimension values, such that maximum velocities vmax
are bound to ±255, and each dimension is bound to the range [0,255]
(denoted as cmin and cmax, respectively). Note that this is a continuous
swarm algorithm with real-valued particle vectors. The standard GE
mapping function is adopted, with the real-values in the particle vectors
being rounded up or down to the nearest integer value for the mapping
process. In the current implementation of GS, fixed-length vectors are
adopted, within which it is possible for a variable number of dimen-
sions to be used during the program construction genotype–phenotype
mapping process. A vector’s elements (values) may be used more than
once if wrapping occurs, and it is also possible that not all dimensions
will be used during the mapping process if a complete program is gen-
erated before reaching the end of the vector. In this latter case, the
extra dimension values are simply ignored and can be considered as in-
trons that may be switched on in subsequent iterations.

5. Proof of concept experiments and results

A diverse selection of benchmark programs from the literature on evolution-
ary automatic programming are tackled using Grammatical Swarm to
demonstrate proof of concept for the GS methodology. The parame-
ters adopted across the following experiments are c1 = c2 = 1.0,
wmax = 0.9, wmin = 0.4, cmin = 0 (minimum value a coordinate may
take), cmax = 255 (maximum value a coordinate may take). In addition, a
swarm size of 30 running for 1000 iterations using 100 dimensions is used.

The same problems are also tackled with GE in order to determine
how well GS is performing at program generation relative to the more
traditional variable-length Genetic Algorithm search engine of stan-
dard GE. In an attempt to achieve a relatively fair comparison of
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results given the differences between the search engines of Grammati-
cal Swarm and Grammatical Evolution, we have restricted each algo-
rithm in the number of individuals they process. Grammatical Swarm
running for 1000 iterations with a swarm size of 30 processes 30,000
individuals, therefore, a standard population size of 500 running for 60
generations is adopted for Grammatical Evolution. The remaining
parameters for Grammatical Evolution are roulette selection, steady
state replacement, one-point crossover with probability of 0.9, and a
bit mutation with probability of 0.01.

5.1. Santa Fe ant trail

The Santa Fe ant trail is a standard problem in the area of GP and
can be considered a deceptive planning problem with many local and
global optima (Langdon and Poli, 1998). The objective is to find a
computer program to control an artificial ant so that it can find all 89
pieces of food located on a non-continuous trail within a specified
number of time steps, the trail being located on a 32 by 32 toroidal
grid. The ant can only turn left, right, move one square forward, and
may also look ahead one square in the direction it is facing to deter-
mine if that square contains a piece of food. All actions, with the
exception of looking ahead for food, take one time step to execute.
The ant starts in the top left-hand corner of the grid facing the first
piece of food on the trail. The grammar used in this experiment is dif-
ferent to the ones used later for symbolic regression and the multi-
plexer problems in that we wish to produce a multi-line function in
this case, as opposed to a single line expression. The grammar for the
Santa Fe ant trail problem is given below.

A plot of the mean best fitness and cumulative frequency of suc-
cess for 100 runs can be seen in Figure 3. As can be seen, conver-
gence towards the best fitness occurs, and a number of runs
successfully obtain the correct solution (best fitness is achieved when
all 89 pieces of food are eaten).

<code> ::= <line> | <code> <line>
<line> ::= <condition> | <op>
<condition> ::=if(food_ahead()) { <line> }else

{ <line> }

<op> ::=left(); | right(); | move();
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5.2. Quartic symbolic regression

The target function is defined as f ðaÞ ¼ aþ a2 þ a3 þ a4, and 100
randomly generated input–output vectors are created for each call to
the target function, with values for the input variable drawn from the
range [0,1]. The fitness for this problem is given by the reciprocal of
the sum, taken over the 100 fitness cases, of the absolute error be-
tween the evolved and target functions. The grammar adopted for
this problem is as follows:

A plot of the cumulative frequency of success and the mean best
fitness over 100 runs can be seen in Figure 4. As can be seen, a num-
ber of runs successfully find the correct solution to the problem. GE
clearly outperforms GS on this instance.

Figure 3. Plot of the mean fitness on the Santa Fe ant Trail problem instance (left),
and the cumulative frequency of success (right).

<expr> ::= <expr> <op> <expr> | <var>

<op> ::= + | ) | * | /

<var> ::=a

M. O’NEILL AND A. BRABAZON452



5.3. 3 Multiplexer

An instance of a multiplexer problem is tackled in order to further
verify that it is possible to generate programs using Grammatical
Swarm. The aim with this problem is to discover a Boolean expres-
sion that behaves as a 3 Multiplexer. There are eight fitness cases for
this instance, representing all possible input–output pairs. Fitness is
the number of input cases for which the evolved expression returns
the correct output. The grammar adopted for this problem is as
follows:

Figure 4. Plot of the mean fitness on the quartic symbolic regression problem in-
stance (left), and the cumulative frequency of success (right).

<mult> ::=guess = <bexpr>;

<bexpr> ::= (<bexpr> <bilop> <bexpr>)

|<ulop> (<bexpr>)

|<input>
<bilop> ::=and |or
<ulop> ::=not
<input> ::=input0 | input1 | input2
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A plot of the mean best fitness over 100 runs can be seen in
Figure 5. As can be seen, convergence towards the best fitness occurs,
and a number of runs successfully evolve correct solutions. In this in-
stance GS is outperforming GE.

5.4. Mastermind

In this problem, the code breaker attempts to guess the correct com-
bination of colored pins in a solution. When an evolved solution to
this problem (i.e. a combination of pins) is to be evaluated, it receives
one point for each pin that has the correct color, regardless of its po-
sition. If all pins are in the correct order then an additional point is
awarded to that solution. This means that ordering information is
only presented when the correct order has been found for the whole
string of pins.

A solution therefore, is in a local optimum if it has all the correct
colors, but in the wrong positions. The difficulty of this problem is
controlled by the number of pins and the number of colors in the

Figure 5. Plot of the mean fitness on the 3 multiplexer problem instance (left), and
the cumulative frequency of success (right).
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target combination. The instance tackled here uses four colors and
eight pins with the following target values 3 2 1 3 1 3 2 0.

Results are provided in Figure 6 and the grammar adopted is as
follows.

5.5. Summary

Table 1 provides a summary and comparison of the performance of
GS and GE on each of the problem domains tackled. To ensure a fair
comparison of both approaches, typical population sizes for each
algorithm are adopted and then the same number of individuals are
processed for each algorithm by fixing the number of generations in
each case. Again, the number of generations for each algorithm is
typical of settings found in the literature for both GE and PSO. We

<pin> ::= <pin> <pin> | 0 | 1 | 2 | 3

Figure 6. Plot of the mean best and mean average fitness (left) and the cumulative
frequency of success (right) on the Mastermind problem instance using eight pins and

four colors. Fitness is defined as the points score of a solution divided by the maxi-
mum possible points score.
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measure the success of the GS approach based on the number of
times a successful solution is found out of the 100 runs conducted for
each problem. In two out of the four problems GE outperforms GS
in terms of the number of correct solutions found, and GS outper-
forms GE on the other two problem instances. Specifically, 79% of
GS runs were successful in producing a correct solution on the Multi-
plexer problem versus 56% for GE, with GS solving 18% of the time
on the Mastermind problem versus GEs 10%. Additionally, a t-test
and bootstrap (re-sampling) t-test was performed on the best fitness
values at the 95% confidence level. GE was found to outperform GS
on the Santa Fe ant and Symbolic Regression problem instances. GS
outperformed GE on the Multiplexer instance, and there was no dif-
ference between GE and GS on the Mastermind instance. The key
finding is that the results demonstrate proof of concept that GS can
successfully generate solutions to problems of interest, and represents
the first time that a Particle Swarm algorithm has been used to gener-
ate programs. In this initial study, we have not attempted parameter
optimization for either algorithm. We note that a number of strate-
gies have been suggested in the swarm literature to improve diversity
(Silva et al., 2002), and it is likely that a significant improvement
in GS performance can be obtained with the adoption of these

Table 1. A comparison of the results obtained for Grammatical Swarm and Gram-
matical Evolution across all the problems analyzed averaged over 100 runs

Mean best fitness SD Median Runs successful

Santa Fe ant

GS 75.24 16.64 88.00 43

GE 80.18 13.79 89.00 58

Multiplexer

GS 0.97 0.05 1.00 79

GE 0.95 0.06 1.00 56

Symbolic regression

GS 0.31 0.35 0.16 20

GE 0.88 0.30 1.0 85

Mastermind

GS 0.91 0.04 0.89 18

GE 0.90 0.03 0.89 10

A t-test and bootstrap (re-sampling) t-test were performed at the 95% confidence level

on the best fitness values, and where one algorithm outperforms another on the best
fitness is highlighted in bold.
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measures. Given the relative simplicity of the Swarm algorithm, the
small population sizes involved, and the complete absence of a cross-
over operator synonymous with program evolution in GP, it is
impressive that solutions to each of the benchmark problems have
been obtained.

6. Analysis of initialization and update constraints

In this set of experiments, a set of initialization and update con-
straints are examined. Performance of the standard GS algorithm is
compared to a setup where (1) all individuals in the initial population
are forced to be a valid program (that is an executable program that
is completely mapped to terminal symbols), (2) when undergoing the
update step, a particle can only move to next point in n-dimensional
space when the new position is a valid program, and (3) a ratchet
strategy is examined that constrains the update of particles by restrict-
ing their movement to positions of higher fitness. Combinations of
these three setups are also tested for completeness.

The first two of these experiments test the hypothesis that forcing
individuals to map to complete executable programs has no effect on
the performance of the GS algorithm when compared to the setup
where individuals may produce an incompletely mapped individual that
cannot be executed. The first experiment examines this issue at the ini-
tialization step, and the second experiment studies the update step. The
third experiment tests the hypothesis that there is no difference between
allowing a swarm to fly through its search space unconstrained by an
individual’s fitness, compared to the case where only fitness improve-
ments result in a particle’s movement to a new position. In a study on a
particle swarm model of Organizational Adaptation it has been demon-
strated that restricting the movement of particles in this manner can im-
prove an organization’s adaptive ability (Brabazon et al., 2005). We
wish to test if this is also the case for GS.

The benchmark problem instances adopted earlier are tackled for
all of the analysis experiments. The cumulative frequency of success
for each problem domain are presented in Figures 7 and 8, and a
summary of the results including the mean average and mean best fit-
ness values at the end of the runs are presented in Table 2.

Across all problems the Ratchet strategy on its own and in combi-
nation with Valid Initialization underperforms relative to all the other
setups. Based on a t-test and bootstrap (re-sampling) t-test comparing
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the ratchet strategies (‘‘Ratchet’’ and ‘‘Valid Init + Ratchet’’) to the
baseline GS approach, the baseline algorithm significantly outper-
formed the alternatives at the 95% confidence level on all the prob-
lems analyzed. The t-tests showed no differences in performance
between the baseline GS algorithm to any of the other variants across
all the problems analyzed (There was one exception to this where the
‘‘Valid Update + Valid Init’’ strategy was outperformed by the base-
line GS algorithm on the Mastermind problem instance.).

In general, there is no clear winner amongst the remaining strate-
gies over the standard Grammatical Swarm setup. This suggests that
constraining movement of the particles where only fitness improve-
ments are observed can have a negative impact on the performance of
the GS algorithm. There is a slight improvement in performance in
terms of the cumulative frequency of success for setups that adopted
a valid initialization either on its own or in combination with a valid
update step. This would point to future work which could investigate
the use of a sensible initialization strategy as outlined in O’Neill and
Ryan (2003) that would further improve the initialization of the pop-
ulation to ensure diversity in the structures of solutions generated.

Figure 7. Plot of the cumulative frequency of success on the Santa Fe ant Trail (left)
and on the quartic symbolic regression instance (right).
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7. Conclusions and future work

This study demonstrates the feasibility of successfully generating com-
puter programs using Grammatical Swarm through its application to
a diverse set of benchmark program-generation problems. It thus rep-
resents the first instance of a Particle Swarm Algorithm being success-
fully adopted for the generation of programs. A performance
comparison to Grammatical Evolution has shown that Grammatical
Swarm is on a par with Grammatical Evolution, and is capable of
generating solutions with much smaller populations, with a fixed-
length vector representation, an absence of any crossover, and no
concept of selection or replacement. Given the success of Grammati-
cal Swarm at generating programs using a Particle Swarm algorithm,
the relative importance of the social search metaphor warrants further
investigation in Genetic Programming.

When analyzing the results presented, it is useful to remember that
the Grammatical Evolution representation is variable-length, with
individual’s lengths restricted only by a computer’s physical storage
limitations. In the current implementation of Grammatical Swarm,
fixed-length vectors are adopted from which a variable number of

Figure 8. Plot of the cumulative frequency of success on the 3 multiplexer problem

instance (left) and the mastermind problem using eight pins and four colors (right).
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Table 2. A comparison of the results obtained for Grammatical Swarm and the vari-
ous Update and Initialization strategies across all the problems analyzed averaged
over 100 runs

Mean Best Fitness SD Median Runs Successful

Santa Fe ant

GS 75.24 16.64 88.0 43

Valid Update 74.49 17.65 88.0 42

Valid Init. 73.18 17.06 85.0 37

Valid Update + Valid Init. 75.6 16.09 88.0 44

Ratchet 56.36 22.71 46.0 17

Valid Init + Ratchet 58.48 22.48 48.50 25

Multiplexer

GS 0.97 0.05 1.00 79

Valid Update 0.97 0.05 1.00 78

Valid Init. 0.98 0.05 1.00 83

Valid Update + Valid Init. 0.98 0.05 1.00 85

Ratchet 0.89 0.05 0.88 15

Valid Init + Ratchet 0.90 0.05 0.88 21

Symbolic regression

GS 0.31 0.35 0.16 20

Valid Update 0.28 0.31 0.16 15

Valid Init. 0.34 0.36 0.17 23

Valid Update + Valid Init. 0.25 0.30 0.16 13

Ratchet 0.08 0.10 0.10 1

Valid Init + Ratchet 0.07 0.02 0.10 0

Mastermind

GS 0.91 0.04 0.89 18

Valid Update 0.90 0.04 0.89 12

Valid Init. 0.91 0.04 0.89 15

Valid Update + Valid Init. 0.90 0.03 0.89 7

Ratchet 0.90 0.00 0.89 0

Valid Init + Ratchet 0.90 0.02 0.89 2

A t-test and bootstrap (re-sampling) t-test were performed at the 95% confidence level
on the best fitness values of each strategy versus the baseline GS algorithm, with the

result that the baseline GS algorithm outperformed both of the Ratchet strategies
(‘‘Ratchet’’ and ‘‘Valid Init + Ratchet’’) at the 95% confidence level on all the
problems analyzed. None of the variants were found to be superior to the baseline GS

algorithm.
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dimensions can be generated. However, vectors have a hard-length
constraint of 100 dimensions. It is common practice in a Genetic Pro-
gramming approach such as Grammatical Evolution to allow the
search algorithm to determine both the size and content of the gener-
ated programs, as we generally do not know a priori what size the
solution program needs to be to solve the problem. We intend to
implement a variable-length version of Grammatical Swarm that will
allow the number of dimensions of a particle to increase and decrease
over simulation time to overcome this current limitation.

Analysis of the behavior of Grammatical Swarm was analyzed in
terms of the update of particles and initialization of the first popula-
tion. It was determined that there may be scope to investigate sensible
initialization strategies as there was a slight improvement in the
success rate of runs when all particles were forced to correspond to a
valid phenotype. Restricting the movement of particles to regions of
the search space that only corresponded to better phenotypes resulted
in a notable decrease in performance across all the problems
analyzed.

The results presented are very encouraging for future development
of the relatively simple Grammatical Swarm algorithm, and other po-
tential Social or Swarm Programming variants.
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