An investigation into automatically defined function
representations in Grammatical Evolution

Erik Hemberg, Michael O’Neill, Anthony Brabazon
Natural Computing Research & Applications Group, Uniuvgr§iollege Dublin, Ireland
eri k. henberg@icd.i e, moneill @cd.ie, anthony. brabazon@ucd.ie

Abstract

Automatically defined functions are a fundamental tool a€djin Genetic Programming to allow problem decomposition
and leverage modules in order to improve scalability to éargroblems. We examine a number of function representation
using a grammar-based form of Genetic Programming, GrarwalaEvolution. The problem instances include variants
of the ant trail, static and dynamic Symbolic Regressioteimses. On the problems examined we find that irrespective
of the function representation, the presence of automiftidefined functions alone is sufficient to significantly iove
performance on problems that are complex enough to jusidy tise.

Grammatical evolution, meta grammars, modularity

1 Introduction

In many examples of problem solving humans use a divideemmdiuer approach through the construction of sub-
solutions, which may be reused and combined in a hierarcfdshion to solve the problem as a whole. Similarly
Genetic Programming (GP) [5] provides the ability to auttoadly create, modify and delete modules, which can be
used in a hierarchical fashion.

This study investigates the adoption of the principles dbmatically capturing modularity from GP, and to couple
these to an adaptive representation. The contributiomiexkension of this approach to grammatical GP systems hyg usi
dynamic definition of modules with fixed module signatureartlker, this paper also introduces a novel meta grammar
approach to modularity and compares this approach to othenrgar based approaches.

The paper begins with a brief introduction to Grammaticabldtion (GE) in Sec. 2, followed by a discussion on
automatically defined function representations in Sec. Experiments, results and discussion are presented in3Sec.
and in Sec. 4 conclusions and future work can be found.

2 Grammatical Evolution

Grammar formalism in Evolutionary computation was introgld by Hicklin [4], Grammatical Evolution [9] is a grammar-
based form of GP which marries principles from moleculatdgy to an underlying grammatical representation. Rather
than exclusively manipulating tree structures as in steth@d, an abstract genotype that contains the instructiohew
to build a sentence or structure in a target language asfigokiti the grammar. In GE the genetic search operators are
traditionally applied to the genotypic binary or integeirgjs. A codon in GE is the value used to select the production
from the current rule. in order to get a valid choice the codalne is divided by the number of productions in the rule
and the remainder is used to select which production is chose

In this paper we turn our attention towards the structurspassible for modularity in GP, namely, automatically
defined functions (ADFs). We introduce a variant of GE whigblees the input grammar itself as this will be one of
the ADF representations examined later in this study. Thgs@ach is referred to 4% F)?, Grammatical Evolution by
Grammatical Evolution [10], or meta-Grammar GE.

2.1 Meta Grammars in Grammatical Evolution

(GE)?, is based on the GE algorithm. This is a meta grammar EvaiatioAlgorithm in which the input grammar is used
to specify the construction of another syntactically corgrammar. The generated grammar is then used in a mapping
process to construct a solution. In Fig. 1 a meta-grammais@isplayed.

In order to allow evolution of a grammd(:E)?, we must provide a grammar to specify the form a grammar can
take. See [9] for further examples of what can be represemitbcrammars and [12, 13, 1] for an alternative approach
to grammar evolution. By allowing an Evolutionary Algorithto adapt its representation (here through the evolution of

Universal
_ +
Meta—grammar Chromosome Grammar

l ,,,,,,,,

Solution -
+
Grammar Solution Chromosome

l

Candidate
Solution

Figure 1: An overview of the meta-grammar approach to GE.

the grammar) it is possible to automatically incorporatesbs into the search process. In this case we can &lld)2
evolve and automatically define a number of functions.

n (GE)? the meta grammar dictates the construction of the solutiemgnar. In this study two separate, variable-
length, genotypic binary chromosomes were used, the firsiohsome to generate the solution grammar from the meta
grammar and the second chromosome generates the solsgdin i€rossover operates between homologous chromo-
somes, that is, the solution grammar chromosome from thtepfrent recombines with the solution grammar chromo-
some from the second parent, with the same occurring forahgisn chromosomes. For evolution to be successful it
must simultaneously evolve the meta grammar and the staiofisolutions based on the evolved meta grammar, and as
such the search space is larger than in standard GE.

There have been a number of studies of a meta-grammar aprom@& [10, 7, 2]. The original study [10] investigated
the feasibility of this approach and demonstrated its &ffeness in dynamic environments. In the mGGA [7] the meta-
grammar approach was shown as an effective method as anatiter binary string Genetic Algorithm through the
provision of a mechanism to achieve modularity. An obsémvatf some of the solutions and solution grammars evolved
by meta-grammar GE has exposed a tendency of generatingrgnanthat did not have the possibility to produce many
different strings [7, 2].

2.2 Automatically Defined Functions in GE

There has been a large body of research on modularity in GRféexts on its scalability (e.g., [6, 11]). Some previous
work with GE [8, 3] has also been undertaken, but none useoh#éta-grammar approach. In [3] functions were dynam-
ically created using a dynamic grammar approach that alespecification of multiple functions and a variable number
of arguments for each function. The newly created ADFs wgrethically appended onto the core grammar in such
a manner that it was possible to invoke them from the maintfanc The meta-grammar approach also allows this but
separates the input genomes that create and use functitms separate chromosomes.

The meta-grammar generates the content of the ADFs the muhB®Fs that the solution grammar can use. Wrap-
ping is used on both chromosomes, if the mapping is still imglete the individual is invalid and is assigned the worst
possible fithess. Below is an example meta-grammar usetidoknt trails.

adf _mg - A nmeta-grammar that can evol ve grammars.

<g> ..=
<def _fun_u>
" <prog> = public Test() { while(get_Energy_Left()) { <code>} } "
"<code> = <line> | <code> <line>"
"<line> ;1= <condition> | <op>"
"<condition> ::=if (food_ahead()==1) { <line>1} else { <I ine>}"
" <op> = left(); | right(); | nove(); | adfx();

<def _fun_u>
<def _fun_s>

<def _fun_s> | <def_fun_u> <def_fun_s>
"public void adf*() {" <adfcode> "}"

<adf code> = <adfline> | <adfcode> <adfline>

<adfl i ne> = <adfcondi tion> | <adfop>

<adfcondition> ::= if (food_ahead()==1) { <adfline>} else { <adfline>}
<adf op> =left(); | right(); | nove();

adf = () is a function call to a defined function, where a codon is usesktect which function is called. In the above
example quotes are used to escape symbols, e.g. not expartdrminals in the meta-grammar, instead expand them
in the solution grammar. In a solution grammar with multigiefined ADFs are post-proceed to make each function
signature unique.

3 Experiments & Results

In this study we wish to determine if one of the three ADF repreations for GE have a performance advantage across a
range of benchmark problems.

The meta grammau(lf_mg) approach is compared to a standard GE gramatd),(a GE grammar with the ability
to define one method:{f) and a GE grammar that can define any number of methatisdyn). None of the grammars

Fixed chromosome size 100, (200 for normal GE)

Initialisation Random
Selection operation Tournament
Tournament size 3
Replacement Generational
Max wraps 1
Generations 50
Population Size 500

Elite Size 2

Crossover probability meta | 0.9

Crossover probability solution 0.9

Mutation probability meta 0.05

Mutation probability solution | 0.05, (0.05 for normal GE

Table 1: Parameters for the GE algorithm

allow ADFs to call ADFs. Unless noted 30 runs were made andgitp@ficance of the results is tested by a t-test with
p-value=0.05.

The settings in the experiments were used to investigaterdifces between the approaches of using automatically
defined functions. The experimental settings in Table 1 wdmpted. The chromosomes were variable-length vectors of
integers (4 byte integers) and had the same initial lengife-@int crossover where the same crossover point is used fo
both parents and integer mutation where a new value was magdthosen are used.

Ant trails

Three Ant trails, the Santa Fe Ant trail, Los Altos Trail frgf] and San Mateo Trail [6], are tested. None of the ADF
functions for the ant trails take any arguments. See 2.zhionteta grammar used.

std - The standard GE grammar

<pr og> = <code>

<code> = <line> | <code> <l|ine>

<l'ine> = <condi tion> | <op>

<condition> ::= if(food_ahead()==1) {<code>} el se {<code>}
<op> = left(); | right(); | nove()

adf - CGE grammar with only one ADF
<prog> ;= "public Ant() { while(get_Energy() > 0) {"<code>"}} "
"public void adfO() {"<adfcode>"}"

<code> = <line> | <code> <line>

<l'ine> = <condition> | <op>

<condi ti on> = if (food_ahead()==1) {<line>} else {<line>}

<op> = left(); | right(); | nove(); | adfO();

<adf code> = <adfline> | <adfcode> <adfline>

<adfl i ne> ;1= <adfcondition> | <adfop>

<adfcondition> ::= if (food_ahead()==1) {<adfline>} else {<adfline>}
<adf op> = left(); | right(); | nove();

adf _dyn - The grammar which allows nultiple function definition is shown
bel ow. adf*() is expanded to enunerate all the allowed functions

<pr og> i= "public Ant() { while(get_Energy() > 0) {"<code>"} }"<adfs>
<adf s> : <adf _def> | <adf_def> <adfs>

<adf _def > " public void adf*() {"<adfcode>"}"

<code> <line> | <code> <line>

<line> = <condition> | <op>

<condi tion> = "if(food_ahead()==1) {"<line>"} else {"<line>"}"

<op> = adf*() ;

<adf code> = <adfline> | <adfcode> <adfline>

<adfl i ne> ;1= <adfcondition> | <adfop>

<adfcondition> ::= "if (food_ahead()==1) {"<adfline>"} else {"<adfline>"}"
<adf op> =left(); | right(); | nove();

Results - Ant trails

A plot of the Santa Fe Ant trail is shown in Figure2(a) The ager best fitness of the last generationtigé = 37.9,

adf = 20.33, adf _dyn = 18.63 andadf_mg = 24.57 A t-test on the last generation confirms that ADFs are siganifiy
better. For the Los Altos Ant trail a plot is shown in FigurdPThe average best fithess of the last generation for the
Los Altos trail isstd = 33.46, adf = 12.38, adf _dyn = 16.47 andadf_mg = 17.57 When performing a t-test it shows
that runs with ADFs are performing significantly better bg thst generation compared to the ones with no ADFs. For
the San Mateo trail 2(c) the average best fitness of the lastrgtion isstd = 90.9, adf = 82.23, adf _dyn = 82.67 and

sta

Gxkt

-

+ adf

i adly voxect
T ading o

g
Ty THEriiid
P e

JLLLTLLT

T
i

10 20 20 a0 50 10 20 20 a0 50

Figure 2: Plot with error bars over the generations for the Atios and San Mateo ant trail. A t-test confirms, that the
fitness differs significantly between standard GE and therglammars on all problems at the final generation.

adf -mg = 83.67 Also for this trail with slightly different behaviour it isignificantly better by the last generation to use
ADFs. For all the Ant trails it seems like it is beneficial teeu&DFs.

Symbolic Regression

A number of fithess functions for symbolic regression weraneixed, they were inspired by [6]. The statically defined
grammars takes one argument, while the meta grammar appatiaws the defined methods to take a variable number of
argumentsz+a22+23 424 +2°(0), v+ 22+ 2® + 2t + 2P + S+ 27+ 28+ 2%+ 210(1) ande 42?4 28 4+ 2t + 20 + 20 +27(2).

To create dynamic problems two Symbolic Regression probtlat change periodically are created. In the first the derio
is every 10 periods (0) switches between (1). In the secoollg@m every 10 generations a polynomial on degree higher
then the currently highest is added in @)z) = =, fi(z) = fi_1(2) + xdeoreelfir @)+ 0 < ¢ < generatiopiperiod.

The general random constant generates 1000 samples imtiee+8000 to 1.000. All symbolic regression grammars use
a naive protected division operator (d), 0.0 was returnéteifdivisor equalled 0.

The meta-grammar approach for the symbolic regressiongmsballows creation of any number of functions with
variable number of function arguments. TABFPARAM and ADFUSE in the grammar indicates where the grammar
inserts and uses function argumeradf » (ADFARG) is expanded when the meta grammar is processed to incogporat
the defined number of functions and their arguments.

std - For the standard GE grammar

<expr> ::= (<op> <expr> <expr>) | <var>
<op> 1i= 4| -] *|d

<var > = x| (Gener al RandonTConst ant)

adf - The GE grammar can define one function with one argunent.

<pr og> = <expr> ")) (define adf0 (lanbda (x) ("<adfexpri>")))"

<expr > = (<op> <expr> <expr>) | <var> | (adfO <expr>)

<op> =+ -|*|d

<var > ;= x| (Gener al RandonConst ant)

<adf expr1> ::= <op> <adf expr> <adf expr>

<adf expr> = (<op> <adf expr> <adfexpr>) | <adfvar>

<adf var > = x| (Gener al RandontConst ant)

adf _dyn - The GE grammar for creating any nunber of functions expands adf* to

denote each generated function. Each function takes one argunent.

<pr og> = <expr> ")) "<adfs>

<expr > = (<op> <expr> <expr>) | <var> | (adf* <expr>)
<op> =+ -|*|d

<var > = x| (Gener al RandontConst ant)

<adf s> = <adf _def> | <adf_def> <adfs>

<adf _def > = "(define adf*(lanmbda (x) ("<adfexpri>")))"
<adf expr1> ::= <op> <adf expr> <adf expr>

<adf expr > = (<op> <adfexpr> <adfexpr>) | <adfvar>

<adf var > = x| (Gener al RandonConst ant)

adf _nmg - meta- GE granmar nultiple paraneters

<g> ::=
" <prog> = <expr>))"
<adf s>
" <expr > = (<op> <expr> <expr>) | <var> | adf* (ADFARG"
"<adfarg> ::= (<op> <expr> <expr>) | <var>"
" <op> = |- *]d"
"<var> = x| (Gener al RandonConst ant) "
<adf s> ::= <adf _def >split<adfs> | <adf_def>
<adf _def > "(define adf* (lanbda ("<adfparane") ("<adfexpril>")))"

<adf paranm> ::
<adf expr1> ::
<adf expr>
<adf var >

<adf op>

ADFPARAM <adf par anm> | ADFPARAM

<adf op> <adf expr> <adf expr>

(<adf op> <adf expr> <adfexpr>) | <adfvar>
ADFUSE]| (Gener al RandonConst ant)

+-[*d

Results - Symbolic Regression

For the symbolic regression problems none seemed to berwfitADFs. First a plot of symbolic regression problem
(0) is shown in Figure3. For some problems 1000 runs were rimatizad of 30. Also the number of generations where
increased to 500 3(b) to watch how the problem behaved afterger run. The average best fitness of the last generation

(a) 50 Generations, 1000 runs (b) 500 Generations

Figure 3: Plot with error bars over generations for (0). >tconfirms that the standard GE is significantly better aver
1000 runs and 50 generations and for 30 runs and 500 gemeyatio

is for 50 generationstd = 0.67, adf = 1.06, adf _dyn = 1.13 andadf_mg = 2.00 and for 500 generationsd = 0.008,
adf = 0.015, adf_dyn = 0.018 andadf_mg = 0.019 The standard GE performs significantly better for the longer
runs 3(b) and nothing else is discovered with a larger sample

A plot of (1) is shown in Figure4 The average best fitness oflaise generation is for 50 generatiosisl = 2.11,

pesosschene, -y AstagPNE S e S cReessonShee, -2, #1100,y P10 A, 1y

<88

Rk

00

(a) 50 Generations, 1000 runs (b) 500 Generations

Figure 4: Plot with error bars over generations for (1). Agttconfirms, p-value=0.05 that the standard GE is significan
better over a 1000 runs and 50 generations and for 30 runsGihgemerations, except for one adf for 500 generations.

adf = 2.47, adf _dyn = 2.94 andadf _mg = 5.4 and for 500 generationsd = 0.046, adf = 0.053, adf_dyn = 0.07
andadf_mg = 0.098 Standard GE is significantly better over a 1000 runs and 5@rgéons and for 30 runs and 500
generations, except for one adf for 500 generations.

Plots of dynamic problems, switching between (0) and (1) awdeasing the polynomial by one term every 10
generations (2) is shown in Figure5. The average best fifetbe last generation is when switching between (0) and

ko4

(a) (0) and (1) switching (b)(2)

Figure 5: Plot with error bars over generations for dynamitctions with a period of 10. Left periodic switching betwee
(0) and (1) and right (2). A t-test confirms, that the standakdis significantly better then Meta Grammar

(1) std = 3.31, adf = 3.23, adf dyn = 4.57 andadf_mg = 11.25. Only adf myg differs significantly fromstd. The
average best fitness of the last generation fos{@)= 0.273, adf = 0.49, adf _dyn = 0.28 andadf_mg = 0.82, here

there are no significant differences. Symbolic Regresst@s thot show up any clear benefits from the incorporation of
ADFs.

The performance for the grammars differs on all the probjetrseems like both the type as well as the size of the
problem is very influential. In [3] it was argued that the mgtammar approach would benefit from structure preserving
operators.

4 Conclusion & Future work

On the problems examined we find that irrespective of theasagrtation, the presence of automatically defined fungtion
alone is sufficient to significantly improve performance omsg problems. In some instances we observe an additional
overhead with the adoption of a meta-grammar form of fumctepresentation.

After noting the quite different behaviours it would be irgsting to investigate more problems. Especially testh wit
problems that use a variable number of arguments to furgti@more thorough study on when the problem warrants use
of ADF could be very helpful. Further the problems where ARFsused with more advantage the quantity and structure
of the ADFs could help guide further improvements. The grarmean be investigated further by allowing the ADFs to
recursively call itself or other ADFs to certain depth migktp the expressiveness of the ADF.

5 Acknowledgement

This research is based upon works supported by the Scienrel&tion Ireland under Grant No. 06/RFP/CMS042.

References

[1] R.M.A. Azad, C. Ryan, T. Yu, R.L. Riolo, and B. Worzel. Axx&mination of Simultaneous Evolution of Grammars.
Genetic Programming Theory and Practi¢il }, 9:141-158.

[2] | Dempsey.Grammatical Evolution in Dynamic Environmenihd thesis, University College Dublin, 2007.

[3] RobinHarperand Alan Blair. Dynamically defined funetgin grammatical evolution. IGEC 2006 pp 9188-9188,
2006.

[4] J.F. Hicklin. Application of the genetic algorithm to automatic prograengration University of Idaho, 1986.

[5] John R. KozaGenetic Programming: On the Programming of Computers byrided Natural Selection (Complex
Adaptive SystemsThe MIT Press, 1992.

[6] John R. KozaGenetic Programming Il: Automatic Discovery of Reusablegfams MIT Press, 1994.

[7] Michael O’Neill and Anthony Brabazon. mGGA: The metagmmar genetic algorithm. In Maarten Keijzer, et al,
eds,EuroGP 2005volume 3447 oLNCS pp 311-320, 2005.

[8] Michael O’'Neill and Conor Ryan. Grammar based functiefinition in grammatical evolution. In Darrell Whitley,
et al, edsGECCO-2000pp 485-490, 2000

[9] Michael O’'Neill and Conor RyanGrammatical Evolution: Evolutionary Automatic Programmgiin an Arbitrary
Language Kluwer, USA, 2003.

[10] Michael O'Neill and Conor Ryan. Grammatical evolutioyngrammatical evolution: The evolution of grammar and
genetic code. In Maarten Keijzer, et al, eBsirogp2004volume 3003 oL NCS pp 138-149, 2004.

[11] Riccardo Poli, William B. Langdon, and Nicholas FregjtdcPhee. A field guide to genetic programming
http://ww. gp-fiel d-gui de. or g. uk, 2008.

[12] Yin Shan, Robert I. McKay, Rohan Baxter, Hussein Abbd3aryl Essam, and Nguyen Xuan Hoai. Grammar
model-based program evolution. GEC2004 pp 478-485, 2004.

[13] Peter Alexander WhighantGrammatical Bias for Evolutionary Learning’hD thesis, School of Computer Science,
University College, University of New South Wales, Canbeustralia, 14 October 1996.

