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Abstract. Wireless traffic is surging due to the prevalence of smart de-
vices, rising demand for multimedia content and the advent of the “In-
ternet of Things”. Network operators are deploying Small Cells alongside
existing Macro Cells in order to satisfy demand during this era of ex-
ponential growth. Such Heterogeneous Networks (HetNets) are highly
spectrally efficient because both cell tiers transmit using the same scarce
and expensive bandwidth. However, load balancing and cross-tier inter-
ference issues constrain cell-edge rates in co-channel operation. Capac-
ity can be increased by intelligently configuring Small Cell powers and
biases, and the muting cycles of Macro Cells. This paper presents a cus-
tomised Genetic Algorithm (GA) for reconfiguring HetNets. The GA
converges within minutes so tailored settings can be pushed to cells in
real time. The proposed GA lifts cell-edge (2.5th percentile) rates by 32%
over a non-adaptive baseline that is used in practice. HetNets are highly
dynamic environments. However, customers tend to cluster in hotspots
which arise at predictable locations over the course of a typical day. An
explicit memory of previously evolved solutions is maintained and used
to seed fresh runs. System level simulations show that the 2.5th percentile
rates are boosted to 36% over baseline when prior knowledge is utilised.

1 Introduction

Conventional wireless communications networks are served by high-powered and
long-range antennas called Macro Cells (MCs). However, MC deployments are
struggling to satisfy demand during an era of exponentially rising mobile traffic
[1]. Small Cells (SCs) have been proposed as a scalable and cost-effective tech-
nology for boosting the capacity of MC deployments. SCs are lower-powered
antennas that can be deployed in traffic hotspots to supplement the existing
MC tier. When operating jointly, SCs and MCs constitute a so-called Hetero-
geneous Network or ‘HetNet’. Network operators like Verizon Communications
Inc. and AT&T Inc. are aggressively densifying with SCs. Densification is eco-
nomically sensible because both cell tiers transmit across the same bandwidth,
which is scarce and sells for billions of Euro at auction.



The term ‘User Equipment’ (UE) refers to any device (e.g. a smartphone)
that attaches to a cell. Now, UEs at cell edges experience low channel quality
(and hence low downlink rates) due to severe cross-tier interference from MCs
and other nearby SCs. Low rates may result in packet losses and poor customer
satisfaction. UEs that are closer to cell centres can liberate resources without
noticing a degraded quality of service. This paper proposes a customised Genetic
Algorithm (GA) for configuring the cells of a HetNet so that resources are fairly
distributed among all UEs.

Wireless networks are highly dynamic environments, since channel condi-
tions fluctuate dramatically on a millisecond timescale [23], and demand from
a single device varies constantly [13]. However, it is not feasible to reconfigure
cells more frequently than every ten minutes or so. Insensitive manipulation of
the network configuration will cause unwanted ping-pong handovers resulting
in latency or dropped calls. Nonetheless, gradual changes in the traffic pattern,
such as hotspots moving around or dissipating, can be tracked by an adaptive
evolutionary algorithm. This paper develops a customised GA that converges on
approximately the same timescale as these changes occur.

Fresh runs are seeded with individuals from an explicit memory that stores
previously evolved solutions. It is hypothesised that the GA will converge to
better solutions more quickly by incorporating knowledge from prior scenarios
[17,3,8]. Hence, the proposed approach tailors the network configuration to the
current transient conditions, but by also tapping longer term trends.

The paper is organised as follows. Section 2 introduces two paradigms for
managing HetNets before formalising the optimisation problem. Previous work
is reviewed in Section 3. Section 4 describes a customised GA that is adapted
for this instance of a dynamic environment. The simulation environment and
experiments are described in Section 5. A discussion of the results follows in
Section 6. The paper concludes with directions for future work in Section 7.

2 Problem Definition

Two factors limit the capacity of channel sharing HetNets. Firstly, the SC tier
is typically underutilised because low-powered SCs struggle to offload UEs from
stronger MCs. Secondly, poor channel conditions manifest at the edges of SCs
due to severe cross-tier interference. A standards body called the 3rd Genera-
tion Partnership Project (3GPP)1 has proposed mechanisms for load balancing
and interference mitigation in HetNets. This section specifies the optimisation
problems that arise in HetNets which implement the 3GPP standard.

2.1 Load Balancing

Figure 1.1 depicts a single SC s′ ∈ S embedded within a MC sector m′ ∈ M,
where S andM denote the sets of SCs and MCs respectively. Twelve UEs attach
1 3GPP (December 2010, http://www.3gpp.org/)



to m′ so that |Am′ | = 12, where Ac is the set of UEs attached to cell c ∈ S ∪M.
However, only |As′ | = 3 UEs attach to s′, so m′ is congested relative to s′. High
congestion on any cell c is undesirable because the limited bandwidth must be
shared among Ac. Range expansion can be employed in this context to offload
more UEs onto s′.

UE u attaches to, and hence receives data from, cell k ∈ S ∪M:

k := arg max
c

(Signalu,c + βc) = arg max
c

(gu,c + Pc + βc), ∀c ∈M∪ S, (1)

where, the signal strength Signalu,c experienced by u from c is given by adding
the gain gu,c [dB] from c to u, to the transmitting power Pc [dBm] of c. The
variable βc is the Cell Selection Bias used by c, where βs ≥ 0 [dB] , ∀s ∈ S
and βm := 0 [dB] , ∀m ∈ M (since MCs are rarely underutilised). Hence, the
underutilised SC s′ of Figure 1.1 could absorb UEs from the adjacent hotspot
by increasing Ps′ , or artificially, by broadcasting a positive Cell Selection Bias
βs′ . Figure 1.2 illustrates the expanded region that forms at the edge of s′ when
βs′ > 0. UEs in the expanded region attach to s′ despite receiving a stronger
signal fromm′. Range expansion reduces the load imbalance from |Am′ |−|As′ | =
(12− 3) = 9 in Figure 1.1, to just |As′ | − |Am′ | = (9− 6) = 3 in Figure 1.2.
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Fig. 1: Toy network containing one MC with an embedded SC.

2.2 Time Domain Interference Mitigation

Channel conditions can be very poor in the expanded regions of SCs due to
severe interference from MCs (which transmit using the same bandwidth). An
enhanced Inter-cell Interference Coordination (eICIC) paradigm has been pro-
posed to mitigate cell-edge interference [15]. HetNets implementing eICIC mute
MCs periodically so that SCs can transmit with dramatically reduced interfer-
ence. On the other hand, u ∈ Am receive no data when m mutes. For instance,
in Figure 1, m′ should be muted regularly enough to protect u ∈ As′ , but m′
should transmit sufficiently often to provide an acceptable quality of service for
u ∈ Am′ .



Both MCs and SCs send individual packets during 1 millisecond intervals
called subframes. There are 40 subframes in a ‘frame’ Ft, where t ∈ N is the
timestep. At the end of each frame, UEs report measurements of the channel
conditions that they experienced in the preceding 40 milliseconds. When a MC
mutes for some f ∈ Ft we say that it executes an ‘Almost Blank Subframe’
(ABS) during f . Table 1 displays the seven ABS patterns that a MC can use.
The feasible ABS patterns for a MC m are specified by the ABS ratio for m,
or ABSr,m. For instance, if ABSr,m = 4 then m will mute in 20 subframes out
of 40. Furthermore, ABSr,m = 4 implies that m will adopt the muting pattern
in row 4 of Table 1, where ‘0’ in position f indicates an ABS (muted) subframe
and ‘1’ implies that the MC transmits during f . Lower ABS ratios suggest more
aggressive muting.

ABS Ratio Subframe (f)
1... ...40

ABSr,m = 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
ABSr,m = 2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
ABSr,m = 3 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1
ABSr,m = 4 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
ABSr,m = 5 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1
ABSr,m = 6 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1
ABSr,m = 7 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

Table 1: Possible ABS Patterns for Ft (time increases left to right).

In summary, cell range expansion enables efficient offloading from the MC tier
onto SCs. Prohibitive interference at SC edges is then mitigated by periodically
muting MCs in the time domain. The notions of range expansion and eICIC are
formalised in [15].

2.3 Multi-layer Optimisation of HetNets
Let C denote the ‘configuration’ of a HetNet with |M| MCs and |S| SCs:

C←
[
ABSr,1, . . . ,ABSr,|M|, P1, . . . , P|S|, β1, . . . , β|S|

]
, (2)

where, ABSr,m is an integer from [1, . . . , 7], Ps takes a real value in the interval
[23.0 [dBm] , 35.0 [dBm]], and βs is a real value in [0.0 [dB] , 15.0 [dB]]. Recall
that MCs do not use bias (so βm := 0.0 [dB]) and Pm := 43.3 [dBm] is invariant
∀m ∈M during non-ABS subframes, but Pm = 0.0 [dBm] when m mutes. This
paper presents a customised GA for optimising C.

A solution C is evaluated with a fairness-based utility of downlink rates. Con-
sider UE u attached to cell k ∈ S ∪M. Denote the channel quality experienced
by u in subframe f of frame Ft by Qu,f = log2(1 + SINRu,f ), where SINRu,f is
the signal to interference and noise ratio experienced by u during f :

SINRu,f =
Signalu,k,f [Watts]∑

c∈S∪M\k
Signalu,c,f [Watts] + Noise(= 4× 10−16) [Watts] . (3)



Shannon’s formula [20] then gives the (instantaneous) downlink rate for u in f ,

Ru,f = 20 MHz
|Ac| − νc,f

×Qu,f , (4)

where, 20 MHz is the fixed bandwidth, and |Ac| − νc,f is the total number of
UEs that receive data from u’s serving cell in f . The term νc,f is the number
of UEs attached to c that cannot be scheduled in f because Qu,f is too low
(νc,f = | {u|u ∈ Ac,SINRu,f ≤ −5.0 [dB]} |). Intuitively, Ru,f is high if channel
conditions are favourable for u in f and if u shares the bandwidth with few UEs.
The arithmetic mean of Ru,f over Ft yields the ‘downlink rate’ (Ru) for u over
that frame. Notice that Ru depends on C through Ac, νc,f and Qu,f , each of
which depend on the state of all cells in the network (wireless signals do not
recognise cell boundaries).

Finally, the fitness of C over frame Ft is adapted from the industry standard
sum-log-rates metric for evaluating HetNet control algorithms [7]:

fitnessFt

C ←
∑
u∈U

(
logeRu

)
, (5)

where, U is the set of users receiving data from the HetNet during Ft. The loga-
rithm is sensitive to changes in the lowest values of Ru. Thus, cell configurations
C that increase cell-edge rates will receive high fitness.

Our goal is to discover synergistic settings at the SC power and bias, and
MC ABS layers of HetNets with a customised GA. This problem is non-trivial
due to inter-layer and intra-layer coupling. For instance, if the SC of Figure 1
uses a large bias then the MC should mute often to protect interfered UEs in its
expanded region. Furthermore, the GA must converge quickly in order to keep
pace with rapidly changing traffic patterns.

3 Previous Work

3.1 Heterogeneous Network Optimisation

Techniques for eICIC are described at the conceptual level from release 10 of
3GPP, but no algorithms are specified. As such, network operators have the
freedom to interpret and implement these concepts as they see fit. The bulk
of the literature on HetNet optimisation focuses on improving the effectiveness
of eICIC. Self Organising Network (SON) algorithms have been proposed to
modulate small cell powers and biases [9,10] and eICIC parameters such as MC
ABS ratios [11]. SONs have also been designed to increase energy efficiency [22],
minimise inter-cell interference [7,16,18], and maximise fairness-based utilities
[21]. The authors in [2] presented a detailed survey of SONs in the context of
LTE.

Our goal is to maximise fairness. Auxiliary objectives, such as improving en-
ergy efficiency, are ignored because customer satisfaction takes priority in this



highly competitive industry. Deb et al. (2014) tackled the single-objective prob-
lem using non-linear programming [7]. The authors proved that optimising C is
NP-hard, even in a network with one MC and multiple SCs. Fairness was dra-
matically improved by optimising βs, ∀s ∈ S, and ABSr,m, ∀m ∈ M. However,
their algorithm did not modulate SC powers and it required inputs that may
be difficult to obtain in real networks [14]. Our framework requires only channel
gain data that are reported by UEs.

López-Pérez and Claussen (2013) proposed a method for tuning ABSr,m so
that performance targets can be specified by the operator ∀u ∈ Am. In their ap-
proach, the bias and ABS layers were configured independently. However, HetNet
layers are coupled such that, for instance, optimal MC ABS ratios depend on
the size of SC expanded regions (i.e. SC biases). The framework developed in
this paper jointly optimises the power, bias and ABS layers of a HetNet. Fur-
thermore, the proposed algorithm is easily implemented on a centralised server
and it requires inputs that are readily available in real networks.

3.2 Genetic Algorithms

GAs have enjoyed recent success in challenging real-world applications. For in-
stance, Deb and Myburgh (2016) developed a customised GA to solve a billion
variable problem [6]. Their findings are ground-breaking for two reasons:

1. firstly, the billion variable barrier is breached for the first time on a real-world
constrained optimisation problem, and,

2. secondly, the proposed approach outperformed two commercial optimisers
(glpk and CPLEX) with respect to solution quality and convergence speed.
Indeed, the GA discovers near optimal solutions in a fraction of the time.

The authors concur with the critiques levelled by Deb and Myburgh (2016)
regarding the use of customised heuristics. Their paper argues that the com-
ponents of evolutionary heuristics should be viewed as a toolbox. Researchers
should carefully select the appropriate tools for the problem at hand and avoid
blindly applying canonical settings and operators that were developed for un-
related applications or toy problems. The GA in [6] was tailored for the real
world problem at hand. It employed customised initialisation, re-combination,
and mutation operators, which guaranteed constraint satisfiability.

An extensive literature describes the applications of GAs in dynamic environ-
ments [4,8,17]. Of the approaches that incorporate memory, Branke [4] identifies
two main paradigms based on the notions of explicit and implicit memory. The
former stores genetic material from previously fit individuals in a memory cache.
The latter attempts to capture prior knowledge using degenerate genetic mate-
rial. GAs that rely on implicit memory struggle if the environment alternates
between many states [4]. On the other hand, explicit memory is beneficial when
similar conditions recur frequently, as in wireless networks. The next section
presents a customised GA that leverages explicit memory (see also [3,12,19]).



4 Customised Genetic Algorithm

4.1 Encoding and Mapping

Recall Equation 2 which expressed the configuration C of a HetNet as a mixed
type array storing the MC ABS ratios, SC powers and SC biases. Let I (for
Individual) encode the network configuration C. The first |M| elements of I

are integers which encode ABSr,m for m = 1, . . . , |M|, the next |S| elements
are real values encoding Ps for s = 1, . . . , |S|, and the remaining real-valued
elements encode βs for s = 1, . . . , |S|. I must first be mapped to C before it can
be evaluated.

Consider again the toy network of Figure 1 with a single MC m′ containing
the embedded SC s′. Let I = [11,−0.2, 4.5] encode the network configuration
C = [ABSr,m′ , Ps′ , βs′ ]. I is mapped to C as follows. The ABS ratio for m′ is
given by,

C [0] = ABSr,m′ = ABS_ratios [I [0] % 12] ,

where, ABS_ratios := [1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2] and % is the modulo operator.
Since I [0] = 11 it follows that C [0] = ABS_ratios [11%12] = ABS_ratios [11] =
2. This implementation preserves locality in the genotype to phenotype mapping
and respects the constraints on ABSr,m′ . Furthermore, I [0] can take any integer
value and still satisfy the constraints. There is a bias against aggressive MC
muting (ABSr,m′ = 1) and high activity (ABSr,m′ = 7).

I [1] encodes the power of SC s′, which is given by,

C [1] = Ps′ = 23.0 + Sigmoid(I [1])× (35.0− 23.0),

where, the sigmoid function Sigmoid(x) = 1/1 + e−x returns a value between 0
and 1, and where the minimum and maximum powers for s′ are, respectively,
23.0 dBm and 35.0 dBm. The sigmoid facilitates fine grained exploitative muta-
tions, but occasionally it allows for large explorative steps. Similarly,

C [2] = βs′ = 0.0 + Sigmoid(I [2])× (15.0− 0.0),

where, the minimum and maximum biases for s′ are, respectively, 0.0 dB and
15.0 dB. Notice that I [1] and I [2] can adopt any real value without violating the
constraints.

In summary, the individual I = [11,−0.2, 4.5] is mapped to the network
configuration C = [ABSr,m′ , Ps′ , βs′ ] ≈ [2, 28.40, 14.84].

4.2 Search Operators

Each pair of selected parents are recombined using uniform crossover to yield
two children. Elements in the parent strings are swapped with a probability
pcross = 0.5 per locus, so that approximately half of the genetic material is
interchanged between parents.



Each child undergoes Gaussian mutation applied with a probability pmut =
0.05 per element. Consider the individual I from Section 4.1. Assume for the
sake of exposition that each element is mutated. Then,

I [0]← I [0] + R×
(∣∣round

(
N
(
0, σ2

ABS

))∣∣+ 1
)
,

I [1]← I [1] +N
(
0, σ2

P,β

)
,

I [2]← I [2] +N
(
0, σ2

P,β

)
,

where, R is a random variable drawn from the set {−1,+1}, |x| =
√
x2, round(x)

maps x to the nearest integer, and N is the normal distribution parametrised
with zero mean and standard deviation σABS or σP,β . The parameters σABS and
σP,β control the severity of mutations applied to elements encoding ABS ratios,
and respectively, power and bias settings. A parameter sweep on hold out data
suggested that σABS = 1.0 and σP,β = 0.5 gives good performance. The search
parameters were not tuned exhaustively in this proof of concept study.

4.3 Fitness assignment
Wireless signals experience some path loss gain as they propagate from a trans-
mitting cell to a UE. Individuals are evaluated using simulated reports of these
channel gains, the realistic analogues of which would be available in a physical
deployment. Let gFt

u,c denote the channel gain (in [dB]) experienced by UE u
from cell c during frame Ft. These data are collected from all |U| UEs in the
network and arranged in an (|M|+ |S|) × |U| matrix GFt . Realistic values of
gFt
u,c, ∀c ∈ S ∪M, are computed by modelling the distribution buildings, water-
ways, streets and open spaces. The path loss model is described by the authors
in [5].

The fitness of a solution C is calculated using GFt as follows. First, the signals
received by UE u from each cell c are computed via,

Signalu,c = gFt
u,c + Pc,

where, Pc is the transmitting power of c (in [dBm]) as specified by C. Then, the
UE attachments are determined using Equation 1, where again, all elements of βc
are read from C. Next, SINRu,f is computed for each UE ∀f ∈ Ft using Equation
3. Finally, Shannon’s formula (Equation 4) is invoked to calculate the downlink
rates, and Equation 5 is called to yield fitnessFt

C – the fitness of individual C based
on the channel gains reported by u ∈ U during frame Ft.

Computing fitnessFt

C is computationally expensive, yet new solutions are re-
quired every ten minutes or so. In order to achieve this short run time, indi-
viduals are evaluated against only five2 channel gain matrices GFt , from five
randomly sampled recent frames. The fitness assigned to individual C is given
by the average of fitnessFt

C computed over the five GFt that currently constitute
the training set. A moving window approach is adopted whereby the training
set is replenished after every five generations with the most recent reports.
2 If pop size = 1000 and gens = 100 and runs are executed on a machine with 50 cores
operating at 2.66 GHz



4.4 Pseudocode

Algorithm 1 differs from the canonical GA in two respects. Firstly, the initial
population is seeded from an explicit memory storing previously evolved solu-
tions (line 2). Of the pop size individuals in the initial population, a total of
bpop size × (mix/100.0)c are drawn from memory and the rest are randomly ini-
tialised, where mix ∈ [0.0, 100.0]. It is hypothesized that integrating knowledge
from past scenarios should be beneficial since hotspots materialise at predictable
locations during rush hour periods. Section 6 experimentally validates the use
of explicit memory for this instance of a dynamic environment. Secondly, the
training set is updated periodically during the run as described in Section 4.3.

Algorithm 1 Genetic Algorithm(Parameters in Table 2)
1: procedure Optimise C

2: Seed mix [%] of the initial population P with individuals from memory;
3: Sample channel gain matrices GFt from 5 recent frames to form training set T ;
4: for gen = 1 to #gens do
5: if gen % 5 == 0 then
6: T ← update T with five more recent samples of GFt ;
7: Evaluate each individual in P against T as described in Section 4.3;
8: Select pop size−#elites

2 pairs of parents by tournament selection (size=5);
9: Recombine each pair of selected parents using uniform crossover;
10: Mutate both children from each crossover event;
11: Evaluate the children against T ;
12: Replace all but the #elites best individuals in P with the children;

return the fittest individual on the final T ;

Table 2 displays the evolutionary parameters. The constants were tuned via
a parameter sweep. The choice of pop size = 1000 and #gens = 100 negotiated
a satisfactory tradeoff between running time and performance for this dynamic
problem.

Parameter Value
pop size 1000
#gens 100

Initialisation Random with mix [%] seeded from memory
Selection Tournament

Tournament Size 5 (= 0.5% of pop size)
#elites 10 (= 1% of pop size)

Mutation and Crossover Section 4.2
Crossover Probability Each pair of selected parents
Mutation Probability Each child is mutated

Table 2: Evolutionary Parameters.



5 Experiments

A HetNet with |M| = 21 MCs and |S| = 63 SCs (an average 3 per MC sector)
was simulated in a 3.61 km2 region of Dublin City Centre. Tri-sector MC tow-
ers were distributed on a hexagonal grid pattern. SCs were placed at random
locations to mimic their ad-hoc deployment where hotspots tend to arise.

5.1 Traffic Model
The GA was trained on 100 samples of GFt collected over the first ten minutes
of ‘scenarios’ lasting twenty minutes. The generalisation of evolved solutions was
assessed on 100 samples of GFt from the final ten minutes of each scenario.

Sixty hotspots were simulated in a given scenario. Half of the hotspots were
placed within 10 to 20 metres of (randomly selected) SCs, and half were placed
at arbitrary locations. The number of UEs in hotspot HS during a sampled frame
Ft was drawn from N (µHS(t), σHS(t)). Parameters µHS(t) and σHS(t) denote,
respectively, the mean and standard deviation of the number of UEs in HS at
timestep t. The physical size rHS(t) of HS were also varied over the 20 simulated
minutes from t = 0 to t = 200. Table 3 displays the minimum and maximum
values that the parameters of the traffic model can take. Parameters µHS , σHS
and rHS were initialised to random values in their allowed ranges at timestep
t = 0. These values were adjusted linearly3 until the end of the train/test period
at t = 200. The term δHS controlled how much a parameter changed as a fraction
of its allowed range; it was selected uniformly from [−0.25, 0.25] for each HS .

µHS σHS rHS [m] δHS
min 5.0 0.5 5.0 −0.25
max 20.0 2.5 20.0 0.25

Table 3: Parameters of the traffic model.

Hotspots were populated first and then the remaining UEs were distributed
randomly until |U| = 1200 existed on the map. This ‘full buffer’ model simulates
the dynamic properties of ephemeral hotspots and the stochastic character of
wireless traffic.

5.2 Experimental Setup
The explicit memory was initialised by executing the GA with random initial
populations on 1000 different scenarios. Training and testing channel gains ma-
trices GFt were then saved from 100 unique scenarios, distinct from those used
to initialise the memory. The next section analyses convergence on training data
and assesses the generalisation of evolved solutions on test data. Finally, a case
study illustrates how complementary settings are evolved at the power, bias and
ABS layers.
3 This traffic model is adopted since localisation errors are tens of meters in real
networks. Hence, the properties of hotspots must be estimated.



6 Results and Discussion

A comprehensive statistical validation of all components of the proposed frame-
work is computationally infeasible within the scope of this proof of concept
study. Instead, the memory is initialised just once as described in Section 5.2.
The reliability of the framework is then assessed by running the GA 100 times
(with and without memory) on a single scenario, using different random seeds
for each run. However, performance may be sensitive to the peculiar distribution
of hotspots in the scenario selected for these runs. The GA’s ability to gener-
alise across many different scenarios is assessed by executing a single run for 100
distinct scenarios (in experiments with and without memory).

6.1 Training

Reliability of the GA on a Single Scenario: Figure 2 plots the average
best-of-generation fitness on a single scenario (computed over 100 runs), for
the baseline method and the GA with various choices of mix [%]. The very thin
shaded 95% confidence intervals enclosing the means implies that the GA reliably
produces fit solutions.
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The baseline implements constant settings of Ps = 35 [dBm] and βs =
10 [dB] , ∀s ∈ S, and ABSr,m = 0.5,∀m ∈M. This baseline is currently used by
network operators in practice. Notice that the baseline fitness jumps every time
the training set is refreshed.



Interestingly, the GA’s performance improves dramatically when some of
the initial population is seeded from memory. Seeded runs converge faster and
they yield statistically significantly better end-of-run solutions than unseeded
runs (GAmix=0%). Furthermore, seeded runs surpass the baseline method ear-
lier at around generation five. This result highlights the benefit of incorporating
knowledge from similar frequently encountered scenarios. Convergence profiles
are displayed for experiments with mix = 0%, 25%, 50%, 75% and 100%. Con-
vergence is similar and stable for all values of mix ≥ 25%. The best models are
evolved with mix = 50%.
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Fig. 3: The green dotted line on Ax. 1 indicates the zero level: no difference exists
in the compared quantities. The black line on Ax. 2 indicates the logarithm of
the p-values from paired t-tests with H0 : ∆SLRsmix=0% = ∆SLRsmix=50%.

Performance across Multiple Scenarios: Ax. 1 in Figure 3 indicates the
mean difference in sum-log-rates between various methods versus baseline, com-
puted over 100 scenarios, with 95% confidence intervals included. The pattern
from Figure 2 is echoed. That is, seeded runs converge to better solutions faster
(blue line) than runs with random initial populations (magenta line). Seeded runs
outperform the baseline after just 3 generations, compared to 13 generations for
unseeded runs. The black curve on Ax. 1 indicates the difference between the blue
and magenta lines. It never crosses the zero level of Ax. 1 (dotted green line).
Thus, the seeded GA achieves higher mean sum-log-rates across the 100 scenar-
ios throughout. Furthermore, the differences at each generation are significant
(at α = 0.05) based on two-sample paired t-tests (black line on Ax. 2).



6.2 Benchmarking on Test Data

The proposed GA was benchmarked against an algorithm adapted from [14].
The benchmark works by first hill climbing in the SC power and bias spaces,
and then using the method from [14] to establish MC ABS ratios (the lone
parameter α is tuned on validation data). Initially, cells are configured using the
baseline settings, such that, Ps := 35 [dBm] and βs := 10 [dB] , ∀s ∈ S, and
ABSr,m := 4, ∀m ∈M. Then the following steps are iterated fivefold:

– P1 (the power of SC 1) is incremented from 23 [dBm] to 35 [dBm] in steps
of 1 [dBm]. Equation 5 is evaluated at each step, and hence P1 is set to the
value that maximises the sum-log-rates. The process is repeated for P2 (after
P1 has been updated), and so on until all SC powers have been updated.

– Similarly, SC biases are updated by incrementing βs, ∀s ∈ S, from 0 [dB] to
15 [dB] in steps of 1 [dB] - selecting the setting at each SC that maximises
Equation 5.

– Finally, the rule from [14] is executed to update ABSr,m, ∀m ∈M.

Note that the training set is refreshed after every five iterations of the preceding
steps, as described in Section 4.3.
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Fig. 4: Evolved settings boost cell-edge rates VS a static baseline by over 36%
and outperform the benchmark scheme. The number of function evaluations
required are indicated.

Figure 4 compares percentiles of the downlink rates received by #scenarios×
#frames ×#UEs = 25× 100× 1200 UEs simulated during the test intervals of



25 different scenarios. Ax. 1 represents the percentage change of downlink rates
versus baseline (dotted red line). Ax. 2 plots the downlink rates in [Mbps] for
the baseline (solid red line).

The unseeded GA (cyan line) increases cell-edge rates (LHS of the plot) by
around 32% versus baseline. These gains are achieved by sacrificing the highest-
rate cell-centre UEs (RHS of the plot) by only ≈ 20%. Thus, edge UEs experience
greatly improved quality of service at negligible cost to their cell-centre counter-
parts. Seeding boosts the 2.5th percentile performance by a further 4% (black
line). Clearly, the GA dramatically outperforms the benchmark scheme (green
line) described above.

Two-sample Kolmogorov–Smirnov tests indicate that the distributions of
downlink rates for all methods are significantly (p− values� 0.05) different to
that of the baseline. The following distributions are also mutually significantly
different: GAmix=50% v.GAmix=0%, and GAmix=50% v. Benchmark.

6.3 Multi-layer Interactions

Figure 5 depicts a 0.05 km2 region of the simulated network, where an umbrella
MC with an embedded SC is visible. The GA was executed for; scenario 1 (LHS)
where a hotspot containing 30 UEs is adjacent to SC 1, and scenario 2 (RHS)
where the hotspot is beyond the reach of SC 1.

MC	1	

Hotspot	
Inside	SC	

SC	1	

Scenario	1	

MC	1	SC	1	

Hotspot	
Outside	SC	

Scenario	2	

Fig. 5: Complementary settings are evolved at each layer.

The GA converged on P1 ← 33.0 [dBm], β1 ← 11.6 [dB] and ABSr,1 ← 1 for
scenario 1. Thus, the SC employs a large bias to absorb UEs from the adjacent
hotspot. SC 1 also transmits at near maximum power so the absorbed UEs
receive high channel quality. Finally, MC 1 mutes for 35 out of 40 subframes to
mitigate cross-tier interference in the expanded region of SC 1.

In contrast, P1 ← 23.2 [dBm], β1 ← 1.8 [dB] and ABSr,1 ← 6 for scenario
2. Here, SC 1 cannot offload the distant hotspot from the MC tier so it uses a
small bias. In addition, P1 is reduced to mitigate small-to-macro interference.
MC 1 transmits often to satisfy its attached UEs. However, ABSr,1 ← 6 < 7 to



protect distant SCs. Thus, the optimal settings at a particular cell depend on
conditions at remote cells. In summary, the GA evolves synergistic settings at
the ABS, power and bias layers in this region of the HetNet.

7 Future Work and Conclusions

HetNets must be reconfigured every few minutes to keep pace with changing traf-
fic patterns. Such a timescale is on par with the running time of an evolutionary
algorithm. This paper presented a customised GA for configuring multi-layer
HetNets in real time. Cell-edge capacity was significantly increased over indus-
try standard baselines in system level simulations. The experiments revealed
that fitter solutions are evolved more rapidly when runs are seeded from an ex-
plicit memory. Smarter mechanisms for adapting the memory over time could
be developed in a follow-up study.

A state of the art benchmark was significantly surpassed by the GA. The in-
ferior performance of the greedy benchmark is unsurprising in this domain given
that HetNet reconfiguration is an NP-hard problem. However, the benchmark
significantly outperformed baseline settings that are currently used in practice.
This result motivates future work to further explore the tradeoff between per-
formance and running time of greedy versus non-greedy methods. Finally, this
paper addressed a real-world dynamic optimisation problem that could serve as
a test bed for designing novel adaptive heuristics in dynamic environments.
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