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Abstract—Small Cells are being deployed alongside
pre-existing Macro Cells in order to satisfy demand
during the current era of exponential growth in mobile
traffic. Heterogeneous networks are economical because
both cell tiers share the same scarce and expensive
spectrum. However, customers at cell edges experience
severe cross-tier interference in channel sharing Het-
Nets, resulting in poor service quality. Techniques for
improving fairness globally have been developed in pre-
vious works. In this paper, a novel method for service
differentiation at the level of individual customers is
proposed. The proposed algorithm redistributes spec-
trum on a millisecond timescale, so that premium
customers experience minimum downlink rates exceed-
ing a target threshold. System level simulations indi-
cate that downlink rate targets of at least 1 [Mbps]
are always satisfied under the proposed scheme. By
contrast, naive scheduling achieves the 1 [Mbps] target
only 83% of the time. Quality of service can be improved
for premium customers without significantly impacting
global fairness metrics. Flexible service differentiation
will be key to effectively monetizing the next generation
of 5G wireless communications networks.

I. Introduction
Mobile traffic is exploding due to the proliferation of

data-hungry User Equipments (UEs) such as smartphones
and tablets [6]. Capacity can be increased by densifying
the pre-existing Macro Cell (MC) tier with low-powered
nodes called Small Cells (SCs) [4]. SCs are installed in an
ad-hoc fashion near hotspots like transport hubs or busy
shopping districts. The resulting configuration of MCs and
SCs is known as a Heterogeneous Network or ‘HetNet’.
Cellular operators such as AT&T Inc. have embraced this
multi-tiered paradigm because MCs and SCs can share
spectrum, which is scarce and expensive. However, two
issues constrain the capacity of channel sharing HetNets.
Firstly, SCs struggle to offload UEs from much stronger
MCs resulting in underutilization of the SC tier. Secondly,
severe cross-tier interference occurs at SC edges, since
nearby high-powered MCs transmit on the same spectrum.

The 3rd Generation Partnership Project [1] has specified
mechanisms for more efficiently offloading UEs onto the
SC tier, mitigating cell-edge interference, and allocating
spectrum [12]. The task of designing controllers that
implement these protocols has been the subject of an
intensive research effort [7][8][10]. The main goal of the
cited studies is to allocate resources fairly, so that all
customers experience an acceptable Quality of Service
(QoS). Effectively managing QoS in real time is impor-
tant because channel conditions fluctuate dramatically on
short timescales. Therefore, a customer may experience
intermittent service outages, which may be unacceptable
depending on their use case. For example, occasional lulls
may not affect messaging applications, whereas smooth
service is essential for multimedia streaming.
Previous work [13] has demonstrated that fairness

is improved by scheduling cell-edge UEs to receive
more spectrum than high-performing UEs closer to cell
centres. In [13] the authors employed a technique from
Natural Computing [5] called Grammar-based Genetic
Programming (GP) [15] to automatically evolve schedulers
for MCs and SCs. However, the state of the art does not
support fine-grained service differentiation at the level of
individual customers – a core goal of the ongoing 5G
standardization [2][3]. In this paper, a novel method is
proposed for providing QoS guarantees to customers that
subscribe to a premium service plan. Schedules are first
computed using evolved models in order to fairly allocate
the spectrum. The proposed algorithm then allocates
additional spectrum to premium customers if necessary,
so that their target downlink rate is realized.
The approach is assessed by simulating a HetNet

deployment serving an urban region. The experiments
demonstrate that evolved schedulers improve cell-edge
downlink rates compared to a baseline scheme used in
practice. However, premium customers still occasionally
receive less than their target rate. QoS targets are



satisfied with high probability by adjusting the optimized
schedules using the proposed algorithm. The impact of
prioritized scheduling on global throughput and fairness
is small for moderate QoS targets. However, non-premium
customers experience significantly lower downlink rates
when the proportion of premium customers, or their target
downlink rates, become unreasonably large. Thus, a trade-
off exists between providing premium service plans for
some customers, and ensuring acceptable QoS for all
customers. This trade-off presents the operator with an
opportunity to design tailored service plans that maximize
profit.

The rest of this paper is organized as follows. In
Section II, mechanisms for load balancing, interference
mitigation, and scheduling in HetNets are outlined. This
framework motivates the paper’s main goal: achieving
fairness and fine-grained service differentiation through
intelligent scheduling. In Section III, a novel algorithm
for realizing QoS targets is presented. The simulation
environment and experiments are described in Section IV,
followed by a discussion of the results in Section V. The
paper concludes with directions for future work in Section
VI.

II. Problem Definition
Mobile traffic is growing rapidly, but wireless spectrum

is scarce and expensive. HetNets are a cost-effective means
of satisfying demand because both cell tiers can share the
same spectrum. However, low-powered SCs struggle to of-
fload UEs from high-powered MCs, and severe interference
at cell edges results in poor QoS for cell-edge UEs. In this
section, mechanisms for load balancing and interference
mitigation are outlined. The motivation for providing QoS
guarantees is then discussed.

A. Load Balancing and Interference Mitigation in HetNets
Figure 1 illustrates these load balancing and interference

issues in a toy deployment with three MCsm1,m2,m3 and
two SCs s1, s2. LetM and S denote the sets of MCs and
SCs respectively. The signal strength that UE u receives
from cell c ∈M∪ S is given by:

signalu,c ← Pc +Gu,c, (1)

where Pc is the power of cell c (in decibel milliwatts
[dBm]), and Gu,c is the signal gain from c to u (in decibels
[dB]). UE u attaches to its serving cell c′ according to the
attachment rule:

c′ = arg max
c

(signalu,c + βc), ∀ c ∈M∪ S, (2)

where βc is a cell selection bias that enables more efficient
offloading onto the SC tier, and where βs ≥ 0 [dB], ∀s ∈ S
and βm = 0 [dB], ∀m ∈M. For example, SC s1 in Figure
1a can utilize a positive selection bias in order to absorb
the two nearby UEs from MC m2. The blue region in
Figure 1b depicts the ‘expanded region’ that forms around

s1 when βs1 > 0. Herein, UEs u2 and u3 attach to s1
despite receiving a stronger signal from m2.

m2

m1
m3

1

0.4
-0.1
-0.5
-0.6
-1.3
-2.6
-3.0
-4.1

2.1
5.6
2.5
1.7
1.9
4.2
3.3
3.0

1.3
0.9
0.8
0.4
1.8
-0.4
0.5
2.2

‘4’ ‘7’ ‘2’
1.5
1.1
0.8
0.3
0.3
0.3
0.3
0.3

5.4
4.6
3.2
2.8
2.8
2.8
2.8
2.8

7.9
7.0
6.5
4.4
4.4
4.4
4.4
4.4

1
2
3
4
5
6
7
8

‘4’ ‘7’ ‘2’
UE (u)

Subfram
e

(f)

UE (u) UE (u)

Schedulet+1Model
!
stats

)
Qt
u,f

*")
Qt
u,f

*

T
T
F
F
F
F
F
F

F
T
F
F
F
T
F
F

F
F
F
F
T
F
F
T

‘4’ ‘7’ ‘2’

T
im

e

GBGP Model Mapper

H H H

Q1,1

Q1,2

Q1,3

Q1,4

Q1,5

Q1,6

Q1,7

Q1,8

Q2,1

Q2,2

Q2,3

Q2,4

Q2,5

Q2,6

Q2,7

Q2,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

T
im

e

Subfram
e

(f)

HUE (u)
‘1’ ‘2’ ‘3’

)
Qu,f

*

u1

u2
u5

1

0.4
-0.1
-0.5
-0.6
-1.3
-2.6
-3.0
-4.1

2.1
5.6
2.5
1.7
1.9
4.2
3.3
3.0

1.3
0.9
0.8
0.4
1.8
-0.4
0.5
2.2

‘4’ ‘7’ ‘2’
1.5
1.1
0.8
0.3
0.3
0.3
0.3
0.3

5.4
4.6
3.2
2.8
2.8
2.8
2.8
2.8

7.9
7.0
6.5
4.4
4.4
4.4
4.4
4.4

1
2
3
4
5
6
7
8

‘4’ ‘7’ ‘2’
UE (u)

Subfram
e

(f)

UE (u) UE (u)

Schedulet+1Model
!
stats

)
Qt
u,f

*")
Qt
u,f

*

T
T
F
F
F
F
F
F

F
T
F
F
F
T
F
F

F
F
F
F
T
F
F
T

‘4’ ‘7’ ‘2’

T
im

e

GBGP Model Mapper

H H H

Q1,1

Q1,2

Q1,3

Q1,4

Q1,5

Q1,6

Q1,7

Q1,8

Q2,1

Q2,2

Q2,3

Q2,4

Q2,5

Q2,6

Q2,7

Q2,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

T
im

e

Subfram
e

(f)

HUE (u)
‘1’ ‘2’ ‘3’

)
Qu,f

*

s2

s1

1

0.4
-0.1
-0.5
-0.6
-1.3
-2.6
-3.0
-4.1

2.1
5.6
2.5
1.7
1.9
4.2
3.3
3.0

1.3
0.9
0.8
0.4
1.8
-0.4
0.5
2.2

‘4’ ‘7’ ‘2’
1.5
1.1
0.8
0.3
0.3
0.3
0.3
0.3

5.4
4.6
3.2
2.8
2.8
2.8
2.8
2.8

7.9
7.0
6.5
4.4
4.4
4.4
4.4
4.4

1
2
3
4
5
6
7
8

‘4’ ‘7’ ‘2’
UE (u)

Subfram
e

(f)

UE (u) UE (u)

Schedulet+1Model
!
stats

)
Qt
u,f

*")
Qt
u,f

*

T
T
F
F
F
F
F
F

F
T
F
F
F
T
F
F

F
F
F
F
T
F
F
T

‘4’ ‘7’ ‘2’

T
im

e

GBGP Model Mapper

H H H

Q1,1

Q1,2

Q1,3

Q1,4

Q1,5

Q1,6

Q1,7

Q1,8

Q2,1

Q2,2

Q2,3

Q2,4

Q2,5

Q2,6

Q2,7

Q2,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

T
im

e

Subfram
e

(f)

HUE (u)
‘1’ ‘2’ ‘3’

)
Qu,f

*

u4

1

0.4
-0.1
-0.5
-0.6
-1.3
-2.6
-3.0
-4.1

2.1
5.6
2.5
1.7
1.9
4.2
3.3
3.0

1.3
0.9
0.8
0.4
1.8
-0.4
0.5
2.2

‘4’ ‘7’ ‘2’
1.5
1.1
0.8
0.3
0.3
0.3
0.3
0.3

5.4
4.6
3.2
2.8
2.8
2.8
2.8
2.8

7.9
7.0
6.5
4.4
4.4
4.4
4.4
4.4

1
2
3
4
5
6
7
8

‘4’ ‘7’ ‘2’
UE (u)

Subfram
e

(f)

UE (u) UE (u)

Schedulet+1Model
!
stats

)
Qt
u,f

*")
Qt
u,f

*

T
T
F
F
F
F
F
F

F
T
F
F
F
T
F
F

F
F
F
F
T
F
F
T

‘4’ ‘7’ ‘2’

T
im

e

GBGP Model Mapper

H H H

Q1,1

Q1,2

Q1,3

Q1,4

Q1,5

Q1,6

Q1,7

Q1,8

Q2,1

Q2,2

Q2,3

Q2,4

Q2,5

Q2,6

Q2,7

Q2,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

T
im

e

Subfram
e

(f)

HUE (u)
‘1’ ‘2’ ‘3’

)
Qu,f

*

1

0.4
-0.1
-0.5
-0.6
-1.3
-2.6
-3.0
-4.1

2.1
5.6
2.5
1.7
1.9
4.2
3.3
3.0

1.3
0.9
0.8
0.4
1.8
-0.4
0.5
2.2

‘4’ ‘7’ ‘2’
1.5
1.1
0.8
0.3
0.3
0.3
0.3
0.3

5.4
4.6
3.2
2.8
2.8
2.8
2.8
2.8

7.9
7.0
6.5
4.4
4.4
4.4
4.4
4.4

1
2
3
4
5
6
7
8

‘4’ ‘7’ ‘2’
UE (u)

Subfram
e

(f)

UE (u) UE (u)

Schedulet+1Model
!
stats

)
Qt
u,f

*")
Qt
u,f

*

T
T
F
F
F
F
F
F

F
T
F
F
F
T
F
F

F
F
F
F
T
F
F
T

‘4’ ‘7’ ‘2’

T
im

e

GBGP Model Mapper

H H H

Q1,1

Q1,2

Q1,3

Q1,4

Q1,5

Q1,6

Q1,7

Q1,8

Q2,1

Q2,2

Q2,3

Q2,4

Q2,5

Q2,6

Q2,7

Q2,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

T
im

e

Subfram
e

(f)

HUE (u)
‘1’ ‘2’ ‘3’

)
Qu,f

*

u3

(a)

m2

m1
m3

s1

Expanded
Region

1

0.4
-0.1
-0.5
-0.6
-1.3
-2.6
-3.0
-4.1

2.1
5.6
2.5
1.7
1.9
4.2
3.3
3.0

1.3
0.9
0.8
0.4
1.8
-0.4
0.5
2.2

‘4’ ‘7’ ‘2’
1.5
1.1
0.8
0.3
0.3
0.3
0.3
0.3

5.4
4.6
3.2
2.8
2.8
2.8
2.8
2.8

7.9
7.0
6.5
4.4
4.4
4.4
4.4
4.4

1
2
3
4
5
6
7
8

‘4’ ‘7’ ‘2’
UE (u)

Subfram
e

(f)

UE (u) UE (u)

Schedulet+1Model
!
stats

)
Qt
u,f

*")
Qt
u,f

*

T
T
F
F
F
F
F
F

F
T
F
F
F
T
F
F

F
F
F
F
T
F
F
T

‘4’ ‘7’ ‘2’

T
im

e

GBGP Model Mapper

H H H

Q1,1

Q1,2

Q1,3

Q1,4

Q1,5

Q1,6

Q1,7

Q1,8

Q2,1

Q2,2

Q2,3

Q2,4

Q2,5

Q2,6

Q2,7

Q2,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

T
im

e

Subfram
e

(f)

HUE (u)
‘1’ ‘2’ ‘3’

)
Qu,f

*

u1

u2
u5

1

0.4
-0.1
-0.5
-0.6
-1.3
-2.6
-3.0
-4.1

2.1
5.6
2.5
1.7
1.9
4.2
3.3
3.0

1.3
0.9
0.8
0.4
1.8
-0.4
0.5
2.2

‘4’ ‘7’ ‘2’
1.5
1.1
0.8
0.3
0.3
0.3
0.3
0.3

5.4
4.6
3.2
2.8
2.8
2.8
2.8
2.8

7.9
7.0
6.5
4.4
4.4
4.4
4.4
4.4

1
2
3
4
5
6
7
8

‘4’ ‘7’ ‘2’
UE (u)

Subfram
e

(f)

UE (u) UE (u)

Schedulet+1Model
!
stats

)
Qt
u,f

*")
Qt
u,f

*

T
T
F
F
F
F
F
F

F
T
F
F
F
T
F
F

F
F
F
F
T
F
F
T

‘4’ ‘7’ ‘2’

T
im

e

GBGP Model Mapper

H H H

Q1,1

Q1,2

Q1,3

Q1,4

Q1,5

Q1,6

Q1,7

Q1,8

Q2,1

Q2,2

Q2,3

Q2,4

Q2,5

Q2,6

Q2,7

Q2,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

T
im

e

Subfram
e

(f)

HUE (u)
‘1’ ‘2’ ‘3’

)
Qu,f

*

1

0.4
-0.1
-0.5
-0.6
-1.3
-2.6
-3.0
-4.1

2.1
5.6
2.5
1.7
1.9
4.2
3.3
3.0

1.3
0.9
0.8
0.4
1.8
-0.4
0.5
2.2

‘4’ ‘7’ ‘2’
1.5
1.1
0.8
0.3
0.3
0.3
0.3
0.3

5.4
4.6
3.2
2.8
2.8
2.8
2.8
2.8

7.9
7.0
6.5
4.4
4.4
4.4
4.4
4.4

1
2
3
4
5
6
7
8

‘4’ ‘7’ ‘2’
UE (u)

Subfram
e

(f)

UE (u) UE (u)

Schedulet+1Model
!
stats

)
Qt
u,f

*")
Qt
u,f

*

T
T
F
F
F
F
F
F

F
T
F
F
F
T
F
F

F
F
F
F
T
F
F
T

‘4’ ‘7’ ‘2’

T
im

e

GBGP Model Mapper

H H H

Q1,1

Q1,2

Q1,3

Q1,4

Q1,5

Q1,6

Q1,7

Q1,8

Q2,1

Q2,2

Q2,3

Q2,4

Q2,5

Q2,6

Q2,7

Q2,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

T
im

e

Subfram
e

(f)

HUE (u)
‘1’ ‘2’ ‘3’

)
Qu,f

*

u4

1

0.4
-0.1
-0.5
-0.6
-1.3
-2.6
-3.0
-4.1

2.1
5.6
2.5
1.7
1.9
4.2
3.3
3.0

1.3
0.9
0.8
0.4
1.8
-0.4
0.5
2.2

‘4’ ‘7’ ‘2’
1.5
1.1
0.8
0.3
0.3
0.3
0.3
0.3

5.4
4.6
3.2
2.8
2.8
2.8
2.8
2.8

7.9
7.0
6.5
4.4
4.4
4.4
4.4
4.4

1
2
3
4
5
6
7
8

‘4’ ‘7’ ‘2’
UE (u)

Subfram
e

(f)

UE (u) UE (u)

Schedulet+1Model
!
stats

)
Qt
u,f

*")
Qt
u,f

*

T
T
F
F
F
F
F
F

F
T
F
F
F
T
F
F

F
F
F
F
T
F
F
T

‘4’ ‘7’ ‘2’

T
im

e

GBGP Model Mapper

H H H

Q1,1

Q1,2

Q1,3

Q1,4

Q1,5

Q1,6

Q1,7

Q1,8

Q2,1

Q2,2

Q2,3

Q2,4

Q2,5

Q2,6

Q2,7

Q2,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

T
im

e

Subfram
e

(f)

HUE (u)
‘1’ ‘2’ ‘3’

)
Qu,f

*

1

0.4
-0.1
-0.5
-0.6
-1.3
-2.6
-3.0
-4.1

2.1
5.6
2.5
1.7
1.9
4.2
3.3
3.0

1.3
0.9
0.8
0.4
1.8
-0.4
0.5
2.2

‘4’ ‘7’ ‘2’
1.5
1.1
0.8
0.3
0.3
0.3
0.3
0.3

5.4
4.6
3.2
2.8
2.8
2.8
2.8
2.8

7.9
7.0
6.5
4.4
4.4
4.4
4.4
4.4

1
2
3
4
5
6
7
8

‘4’ ‘7’ ‘2’
UE (u)

Subfram
e

(f)

UE (u) UE (u)

Schedulet+1Model
!
stats

)
Qt
u,f

*")
Qt
u,f

*

T
T
F
F
F
F
F
F

F
T
F
F
F
T
F
F

F
F
F
F
T
F
F
T

‘4’ ‘7’ ‘2’

T
im

e

GBGP Model Mapper

H H H

Q1,1

Q1,2

Q1,3

Q1,4

Q1,5

Q1,6

Q1,7

Q1,8

Q2,1

Q2,2

Q2,3

Q2,4

Q2,5

Q2,6

Q2,7

Q2,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

Q3,8

T
im

e

Subfram
e

(f)

HUE (u)
‘1’ ‘2’ ‘3’

)
Qu,f

*

u3

s2

(b)

Fig. 1: Load balancing and interference mitigation in a
toy HetNet. On the right, SC s1 broadcasts a positive cell
selection bias in order to reduce congestion on MC m2.
Severe interference in the resulting expanded region of s1
is mitigated by periodically muting the interfering MCs.

The severe interference experienced by u2 and u3 in the
expanded region of s1 can be mitigated by periodically
mutingm2 and other nearby MCs. Note that cells transmit
packets to their attached UEs during 1 [ms] intervals called
subframes, and a full frame consists of 8 subframes. When
a MC mutes we say that it executes an Almost Blank
Subframe (ABS), since only minimal reference signals are
transmitted therein. Interference mitigation via ABSs is
referred to as enhanced Inter-cell Interference Coordina-
tion (eICIC) [1]. For example, let MCs m ∈ M mute in
the first four out of eight subframes in every frame, so that
ABSpattern

m,f = [0, 0, 0, 0, 1, 1, 1, 1]. Hence, SC attached UEs
u1, u2 and u3 experience reduced interference from MCs,
and a higher downlink rate from SC s1. Note that SCs do
not implement ABSs so they transmit in every subframe:
ABSpattern

s,f = [1, 1, 1, 1, 1, 1, 1, 1] , ∀s ∈ S.

B. Downlink Rates
Downlink rates are given by Shannon’s formula. The

signal to interference and noise ratio (SINR) received by
UE u in subframe f of some frame Ft (where t ∈ N counts
the number of elapsed frames) is given by:

SINRu,f =
signalu,c′ ×ABSpattern

c′,f

noise +
∑

c∈M∪S\c′
signalu,c ×ABSpattern

c,f

, (3)

where the signal strength is converted to Watts [W], and
noise = 4 × 10−16 [W] is background electromagnetic
noise. Let Qu,f denote the ‘channel quality’ experienced
by u in f :

Qu,f = log2 (1 + SINRu,f ) . (4)

Hence, Shannon’s formula yields the instantaneous
downlink rate:

Ru,f = Qu,f × schu,f × (20× 106), (5)



where 0.0 ≤ schu,f ≤ 1.0 is the proportion of the spectrum
(20 × 106 [Hz] in our experiments) that u is scheduled to
receive during f . In every subframe, exactly 100% of the
spectrum is utilized by the UEs u ∈ Ac, where Ac denotes
the set of UEs that attach to cell c. That is,

∑

u∈Ac
schu,f = 1.0, ∀f ∈ Ft.

Finally, the (average) downlink rate for u over frame Ft is
given by:

Ru = |Ft|−1 ∑

f∈Ft
Ru,f . (6)

C. Fairness and Service Differentiation via Scheduling
Perceived QoS does not depend linearly on received

downlink rate. Extremely low rates (�1 [Mbps]) will re-
sult in many dropped packets, causing service outages and
excessive loading times. However, applications may run
smoothly at either 25 [Mbps] or 1 [Mbps]. Therefore, extra
resources should be directed towards the lowest-rate UEs,
by sacrificing those with higher rates.

Shannon’s formula in Equation 5 suggests that downlink
rates can be managed by controlling the channel quality
experienced by UEs (i.e. Qu,f ), or by computing optimized
schedules (i.e. schu,f ). Previous work demonstrated that
channel conditions are improved at SC edges by optimizing
the powers and biases of SCs, and the muting patterns
of MCs [8][13]. The proposed technique is compatible
with these existing methods for optimizing the HetNet
configuration. However, in this paper we implement a
static HetNet configuration, in order to isolate the effects
of the proposed scheduling method. SC powers are set to
35 [dBm], SC biases are fixed at 10 [dB], and MCs mute
during the first four out of eight subframes in every frame.

The next section describes how GP is employed to evolve
schedulers for allocating spectrum fairly. The main con-
tribution of the paper is then presented: an algorithm for
fine-grained service differentiation at the level of individual
customers.

III. Methods
In this section, the shortcomings of a baseline scheduler

that is used in real HetNets are identified, motivating
GP as a means for automatically constructing intelligent
schedulers. An algorithm is then developed for fine-tuning
the schedules produced by evolved models, so that QoS
targets are satisfied for premium customers.

A. Baseline Scheduling
Consider again the toy HetNet displayed in Figure

1. Here, five UEs download packets during a single
8 [ms] frame Ft. Downlink rates can be computed for
u1, u2, . . . , u5 given the channel gains Gu,c displayed in
Table I and knowledge of the HetNet configuration (recall
Section II-C). The steps are as follows.

u1 u2 u3 u4 u5

m1 �100 �98 �110 �117 �99
m2 �89 �88 �82 �92 �72
m3 �120 �92 �85 �96 �101
s1 �82 �80 �65 �105 �100
s2 �85 �112 �89 �98 �123

Table 1: Channel gains Gu,c [dB] for the toy HetNet depicted in Figure ??
during a single frame. For example, the signal gain from cell m1 to UE u1 is
�100 [dB].
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TABLE I: Channel gains Gu,c [dB] for the toy HetNet
depicted in Figure 1 in some frame Ft. For example, the
signal gain from cell m1 to UE u1 is −100 [dB] during Ft.

Firstly, Equations 1 and 2 imply that u1, u2, u3 attach
to s1, whereas u4, u5 attach tom2. Hence, Equations 3 and
4 give the channel qualities Qu,f experienced by the UEs
in every subframe f ∈ Ft. Under baseline (BL) scheduling,
a cell splits the spectrum evenly among its attached
UEs. Therefore, s1 assigns a proportion schu,f = 1/3
of the spectrum to u1, u2, u3 ∈ As1 in every subframe
f . Similarly, m2 assigns a proportion schu,f = 1/2 of
the spectrum to u4, u3 ∈ Am2 in every subframe f .
Given the values of Qu,f and schu,f , Shannon’s formula in
Equation 5 yields the instantaneous downlink rates Ru,f .
Finally, average downlink rates over frame Ft are given by
Equation 6.

Method Ru1 Ru2 Ru3
BL 5.1 7.3 24.2

TABLE II: Downlink rates (in [Mbps]) received by UEs
u1, u2, u3 attached to SC s1 in the toy HetNet.

Table II displays the downlink rates received by the SC
attached UEs. Notice how BL scheduling has resulted in
a highly unfair outcome. Here, the downlink rate for u3 is
over four times greater than that for u1. The next section
describes how evolved models improve fairness by granting
more spectrum to the poorly performing UEs.

B. Evolving Schedulers with Genetic Programming
Previous work has established that Genetic

Programming (GP) is a powerful framework for evolving
schedulers in HetNets [13][14]. In this paper, GP is
augmented with a novel algorithm that enables fine-
grained service differentiation at the level of individual
customers. Evolved models (i.e. a symbolic expressions)
map channel quality reports to schedules on a millisecond
timescale. Algorithm 1 and Figure 2 describe how a
schedule is produced for SC s1 of the toy HetNet.
The leftmost panel in Figure 2 displays the channel

qualitiesQu,f that are experienced by u1, u2, u3 ∈ As1 (the
UEs attached to s1) during frame Ft. Note that UEs send
reports of Qu,f to their serving cell after every frame. In
step 1, the evolved model maps features computed over the
channel qualities to the real values

(
modelGP

u,f

)
. Table IV

defines the features and arithmetic operators. For instance,
T8u,f is the average of all reported channel qualities over
frame Ft. In step 2, the real valued outputs from the
scheduler are scaled, so that exactly 100% of the spectrum



is utilized in every subframe. For example, consider the
following simple scheduler:

modelGP
u,f = (T12u,f ∗ T12u,f )%(T12u,f ∗ T1u,f )

= f ∗ f√
1 + (f ∗Qu,f )2

. (7)

The rightmost panel of Figure 2 displays the schedule
generated by the model in Equation 7.

Algorithm 1 Generate schedule using evolved model.
1: procedure Compute prioritized Schedule(Qu,f , ∀(u, f) ∈ Ac×Ft)
2: schGP

u,f = 0.0, ∀(u, f) ∈ Ac × Ft; #initialise schedule
3: #Step 1 – execute model:
4: for u ∈ Ac do #iterate over UEs
5: for f ∈ Ft do #iterate over subframes
6: Compute features in Table IV given Qu,f ;
7: Hence, execute the scheduler yielding modelu,f ;

#Step 2 – scaling:
8: for u ∈ Ac do
9: for f ∈ Ft do

10: schGP
u,f =

modelGP
u,f∑

u∈Ac

modelGP
u,f

;

return schGP
u,f , ∀(u, f) ∈ Ac × Ft;
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Fig. 2: In step 1, channel quality reports from the UEs
attached to SC s1 are mapped to real values. In step
2, outputs are scaled so that 100% of the spectrum is
utilized per subframe. Fairness is achieved by allocating
more spectrum to UEs with the lowest channel qualities.

Replicating the calculations from Section III-A yields
the downlink rates received by u1, u2, and u3 under the
fair schedule. Table III shows that fairness is improved
relative to the baseline, since the three UEs that attach to
s1 now experience similar downlink rates.

Method Ru1 Ru2 Ru3
BL 5.1 7.3 24.2
GP 7.70 8.19 8.56

TABLE III: Downlink rates (in [Mbps]) received by u ∈
As1 under baseline (BL) and fair (GP) scheduling.

High performing models are evolved via grammar-based
GP [9][15]. Table V displays the Backus-Naur-Form gram-
mar which defines the search space of symbolic expressions

Feature Interpretation Operator Interpretation
T1u,f Qu,f (x+ y) x+ y

T2u,f - T4u,f avg,min,max {Qu,∗} (x− y) x− y
T5u,f - T7u,f avg,min,max {Q∗,f} (x× y) x× y

T8u,f - T10u,f avg,min,max {Q∗,∗} (x%y) x√
1+y2

T11u,f IDu ∈ [1, 2, . . . , |Ac|] plog(x) log(1 + |x|)
T12u,f f ∈ [1, 2, . . . , 8] sine(x) sin(x)

psqrt(x)
√
|x|

TABLE IV: Interpretation of the grammar elements. A
cell’s attached UEs are sorted in ascending order based on
received channel quality and assigned identifiers (IDu).

ÈeÍ ::= ÈrÍ | ÈrÍ | ÈrÍ | ÈTÍ
ÈrÍ ::= ÈA1Í(ÈeÍ) | (ÈeÍÈA2ÍÈeÍ)
ÈA1Í ::= plog | sine | psqrt
ÈA2Í ::= + | ≠ | ◊ | %
ÈTÍ ::= T1u,f | T2u,f | , . . . , | T13u,f | ÈnÍ | ÈnÍ
ÈnÍ ::= ≠1.0 | ≠0.9 | , . . . , | 0.9 | 1.0

T12u,f

TABLE V: Backus-Naur-Form grammar.

that is explored by GP. The standard hyperparameter set-
tings recommended by [9] are adopted, since GP reliably
yields highly fit models [14]. The function and terminal
sets are defined in Table IV. A GP run proceeds as follows:
1) Initialize a population of 1000 randomly generated

derivation trees.
2) Assign a fitness to each individual (i.e. derivation

tree) by evaluating the corresponding model
(i.e. phenotype) in simulation.

3) Select parents from the current population using
tournament selection with tournament size 5.

4) Each pair of selected parents undergoes subtree
crossover with a probability of 0.7. Subtrees rooted
at randomly selected non-terminals in each parent
individual are swapped.

5) Mutate all of the resulting children using subtree
mutation. A randomly selected non-terminal in the
derivation tree is replaced by a new random subtree.

6) Replace the worst 99% of the current population
with the children resulting from subtree crossover
and mutation. The remaining 1% are the fittest
‘elites’ found so far, and they enter into the next
generation unchanged.

7) Return the fittest individual (on validation data)
found after 250 generations.

In item 2, models are evaluated using 30 channel gain
matrices (similar to that in Table I) corresponding to
30 different frames. In this paper, channel gain data are
generated in simulation, but UEs report channel gains in
real HetNets. Hence, the fitness of a model is given by the
sum logarithm of downlink rates [8]:

fitness =
∑

u

log
(
Ru
)
, ∀u receiving data, (8)

where fitness is high when spectrum is fairly allocated
among UEs. Of the 30 channel gain matrices, 25 serve



as training cases and the remaining 5 are validation cases
used for model selection. GP automatically discovers com-
plex models that are tailored to the deployment scenario
[13]. Automation is valuable in this domain because manu-
ally designing schedulers for different deployment scenarios
is a labor intensive task.

C. Prioritized Scheduling
Algorithm 2 specifies a procedure for fine-tuning the

schedule generated by an evolved model, so that premium
customers receive their target downlink rate.

Algorithm 2 Modify schedule: RPR
u ≥ Rtarget

u , ∀u ∈ P.
1: procedure Compute Prioritized Schedule

2: schPR
u,f = schGP

u,f , ∀(u, f) ∈ Ac × Ft;

3: for f ∈ Ft do

4: RPR
u,f = Qu,f × schPR

u,f × (20× 106), ∀(u, f) ∈ Ac × Ft;

5: R
PR
u = 1

|F|

∑
f∈F

RPR
u,f , ∀u ∈ Ac; a

6: P′ =
{
u ∈ Ac ∩ P

∣∣RPR
u < R

target
u

}
;

7: δu,f =
|F|×
(
R

target
u −RPR

u

)
Qu,f×(20×106) , ∀u ∈ P′;

8: ∆u,f = schPR
u,f , ∀u ∈ Ac \ P′;

9: δf =
∑
u∈P′

δu,f ; #spectrum needed by premium UEs

10: ∆f =
∑

u∈Ac\P′
∆u,f ; #total spectrum available

11: if δf < ∆f then

12: schPR
u,f = schPR

u,f + δu,f , ∀u ∈ P′;

13: schPR
u,f = schPR

u,f − δu,f
(

∆u,f
∆f

)
, ∀u ∈ Ac \ P′;

14: else if δf ≥ ∆f then

15: schPR
u,f = schPR

u,f + ∆f

(
δu,f
δf

)
, ∀u ∈ P′;

16: schPR
u,f = schPR

u,f −∆u,f , ∀u ∈ Ac \ P′;

return schPR
u,f , ∀(u, f) ∈ Ac × Ft;

Intuitively, Algorithm 2 redistributes the spectrum from
non-premium to premium UEs, so that the latter receive
their target rate over a frame. Let P denote the subset of
UEs that subscribe to the premium service plan, and let
R

target
u denote their target rate. Recall that Ac denotes the

set of UEs that are attached to cell c during frame Ft. On
line 2, the prioritized (PR) schedule is initialised to the
schedule generated by the evolved model. The algorithm
then iterates over subframes (line 3). Downlink rates that
would be received under the current prioritized schedule
are computed on lines 4 and 5. The subset of premium UEs
(P ′) that require more spectrum in order to reach their
target rate is then determined on line 6. The amount of
extra spectrum (δu,f ) needed by each u ∈ P ′ in subframe
f in order to reach their target rate is computed on line
7. Similarly on line 8, the amount of spectrum that non-

premium UEs can sacrifice (∆u,f ) is computed. Lines 11–
13 describe how spectrum is redistributed to premium UEs
if they require less spectrum than is available in f . Sim-
ilarly, lines 14–16 deal with the case when premium UEs
request more spectrum than is available in f . Spectrum
is diverted from non-premium UEs based on their ability
to sacrifice it (line 13), and granted to premium UEs in
proportion to their need (line 15). These steps preserve
the constraint that 100% of the spectrum is utilized per
subframe.
For illustration, let u1 from the toy HetNet subscribe

to a premium service plan offering minimum downlink
rates of 10 [Mbps]. That is, u1 ∈ P and R

target
u1 = 10.

Figure 3 displays the prioritized (PR) schedule generated
by Algorithm 2 after it modifies the fair (GP) schedule
from Figure 2. Notice that all of the spectrum is awarded
to u1 during the first four subframes. Hence, the average
downlink rate for u1 is increased by slightly sacrificing non-
premium UEs u2 and u3 over the frame.
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Fig. 3: The prioritized schedule for s1 ensures that pre-
mium UE u1 ∈ P receives an average downlink rate of at
least RPR

u = 10.0 [Mbps]. Extra spectrum is granted to u1
at the expense of non-premium UEs u2 and u3.

Finally, Table VI displays the average downlink rates
under the baseline (BL: Section III-A), fair (GP: Section
III-B), and prioritized (PR: Section III-C) schedules. The
last row indicates that the target downlink rate for u1 is re-
alized when s1 executes the prioritized schedule. Further-
more, the remaining spectrum remains fairly distributed
between the non-premium UEs since RPR

u2 ≈ R
PR
u3 .

Method Ru1 Ru2 Ru3
BL 5.1 7.3 24.2
GP 7.70 8.19 8.56
PR 10.0 6.08 6.32

TABLE VI: Downlink rates Ru [Mbps] for u ∈ As1 under
various scheduling regimes.

IV. Experiments
A HetNet with 21 MCs and 21 SCs serving Dublin

City centre was simulated. Realistic channel gains were
computed by modelling obstacles in the environment such
as buildings, roadways, and parks. Table VII displays



the parameters of the simulation and path loss model.
Figure 4a displays the terrain. The path loss model was
described in [11]. Figure 4b shows how channel quality
varies throughout the network. Seven trisector MC towers
were spaced out on a regular grid. SCs were distributed
randomly in order to reflect their ad-hoc installation where
hotspots arise. The blue hue at cell edges indicates regions
of low channel quality where inter-cell interference is
significant.

(a) Terrain. (b) Channel Quality Heatmap.

Fig. 4: A HetNet with 21 MCs and 21 SCs serving a
3.24 km2 region of Dublin City is displayed. UEs are
represented by white dots. Starting and end points for a
single UE traversing the HetNet are displayed.

8

A. Simulation Environment

Figure 6a displays the 3.24 square kilometer region of
Dublin City Centre in which three different topologies were
simulated: a sparse HetNet with |M| = 21 MCs and |S| = 21
SCs serving 750 UEs per frame (Figure 6b), a standard
topology with (|M|, |S|) = (21, 63) serving 2500 UEs per
frame (Figure 6d), and a dense topology with (|M|, |S|) =
(21, 105) serving 7500 UEs per frame (Figure 6e). SCs were
placed at random locations on the map reflecting their ad-hoc
installation in real networks near traffic hotspots. MCs were
arranged on a regular hexagonal grid. Realistic channel gains
were computed by modelling the distribution of buildings,
streets, parks, and waterways. The parameters of the path loss
model are available in the supplementary materials.

Parameters Value

Scenario
Indoor/outdoor map Dublin
MC BS placement 7 eNodeB with 3 sectors each (hexagonal grid)
SC BS placement Uniformly randomly distributed
Inter-MC BS distance 800 [m]
Scenario resolution 2 [m]
LPC power weight set {0, 1} (binary on/off power control)
Noise density �174 [dBm/Hz]

Channel
Carrier frequency 2 [GHz]
Bandwidth 20 [MHz]
NLOS path-loss GPn = �21.5� 39 log10(d) (MC) [37]

GPn = �30.5� 36.7 log10(d) (SC) [37]
LOS path-loss GPl = �34.02� 22 log10(d) [37]
Shadow fading (SF) 6 dB std dev. [38]
SF correlation R = e�1/20d, 50% inter-site
Environment loss GE,n = �20 [dB] if indoor, 0 [dB] if outdoor

Antenna
Height 25 [m] (MC), 10 [m] (SC)
Maximum gain Gmax = 15.5 [dBi] (MC), 7.06 [dBi] (SC)
H. halfpow. beamwidth ↵ = 65�

V. halfpow. beamwidth � = 11.5� (MC)
Front-to-back ratio  = 30 [dB] (MC)
Downtilt �1 = 8.47� (MC)
Elements & spacing 4 element dipole, delem.=0.6� (SC)
Phase difference �phase = 95� (SC)
Element amplitude aelem. = [0.9691, 1.0768, 1.0768, 0.8614] (SC)

UE Measurement Reports
SINR report range [�5 : 1 : 23] [dB]
Out-of-Sync Threshold �5 [dB]

TABLE III
SIMULATION PARAMETERS

The traffic model was designed to simulate the two main
properties of wireless demand in real HetNets. Firstly, UEs
request data from unpredictable locations in any given frame.
Secondly, hotspots materialize, move around, and dissipate
over time. Periods of activity hereafter referred to as ‘snap-
shots’ were simulated. A snapshot consisted of 200 frames
indexed by ⌧ 2 [1, 2, . . . , 200]. |S| hotspots were placed on
the map at the beginning of a snapshot. Half of the hotspots
were placed within 20 metres of randomly selected SCs, and
half were placed at random locations. The physical size, load,
and location of a hotspot HS was varied:

• The radius of HS was chosen randomly from the range
[10 [m], 40 [m]] at ⌧ = 1 and ⌧ = 200, and it was varied
linearly between these values during the snapshot.

• N (µHS (⌧), 2) UEs were dropped into hotspot HS in
frame ⌧ , where N is the normal distribution with mean
µHS (⌧) and standard deviation � = 2. µHS was chosen
randomly from the range [5, maxAvgLoad ] at ⌧ = 1
and ⌧ = 200, and it varied linearly between these values
during the snapshot. The parameter maxAvgLoad was
set to 15, 30 and 65 in the sparse, standard and dense

HetNets respectively. Thus, denser HetNets contained
more congested hotspots.

• Finally, the centre of HS moved between 0 [m] and
50 [m] from its initial location by the end of a snapshot.

Hotspots were populated at the beginning of each frame.
UEs were then dropped randomly until 750, 2500 and 7500
existed on the map in the sparse, standard and dense HetNets
respectively.

B. Evolutionary Learning of Schedulers

GP was employed to evolve tailored schedulers for MCs and
SCs in the deployment scenarios displayed in Figure 6. Runs
using � = 4 and � = �4 were executed in each scenario to
show how fairness and peak rates are improved across a range
of HetNet topologies and traffic scenarios. Schedulers were
evolved for � 2 [�4,�3, . . . , 4] in the standard deployment
in order to illustrate how fairness trade-offs are controlled. The
procedure for evolving a scheduler in a given scenario was as
follows:

• Step 1: A value for � was specified, and CHC was
optimized for a large number of different snapshots.

• Step 2: A training set for GP was generated by sam-
pling training cases from randomly selected cells in the
optimized HetNets. A single training case was the matrix
tuple

�
Qreported , Qreceived

�
from a SC (if evolving a SC

scheduler), or from a MC (if evolving a MC scheduler).
Training cases were extracted from optimized HetNets
because evolved schedulers would be executed online in
pre-configured HetNets.

• Step 3: GP is a stochastic metaheuristic, so any single run
may converge to a poor local optimum. Therefore, thirty
independent runs of GP were executed. Individuals were
evaluated by computing the average of Equation 9 over
all 250 training cases in the training set. Recall section
IV-B2 which described how an individual was evaluated
on a single training case.

• Step 4: The best model from the final generation of all
30 runs was saved. These highly fit solutions were then
evaluated on an unseen test set consisting of 250 test
cases in order to identify the single best model overall.

The logistic models (LMs) presented in Section IV-B4 were
trained by using CMA-ES [36] to optimize ↵1, ↵2, . . . , ↵13.
Identical training and validation sets were used in the runs
with GP and CMA-ES. The experimental parameters for all
evolutionary runs are available in the supplementary materials.

VI. RESULTS AND DISCUSSION

This section first illustrates how the hill climbing algorithm
outperforms static baseline settings by adapting a HetNet’s
configuration (C ) with respect to time-varying traffic patterns.
Evolved schedulers are benchmarked against a state of the art
algorithm, a strong logistic model, and an industry standard
baseline scheduling method. The ability to control fairness by
tuning � in Equations 7 and 9 is then assessed. Finally, a
semantic analysis reveals the intuitive strategies that GP dis-
covers for allocating bandwidth in the time-frequency domain.

TABLE VII: Simulation Parameters.

The best model from 30 runs of GP was executed during
‘snapshots’ that simulated several minutes of activity in
the HetNet. Exactly 1000 UEs were dropped randomly
onto the map at the beginning of a snapshot. Each UE
then moved at uniform velocity towards a randomly chosen

end point. Downlink rates for all 1000 UEs were computed
in 100 frames that were sampled uniformly throughout the
snapshot. A total of 30 snapshots were simulated in order
to resolve the following research questions:
1) To what extent can Algorithm 2 satisfy QoS targets

for premium UEs?
2) How rapidly does the probability of achieving QoS

targets decrease as the proportion of premium UEs
and their target downlink rate increase?

3) How is overall network throughput and fairness
impacted by redistributing spectrum from non-
premium to premium UEs?

V. Results and Discussion
The experimental results are presented and discussed in

this section. We first confirm that evolved models improve
fairness relative to the baseline method. A case study then
motivates the proposed prioritized scheduling algorithm.
Properties of Algorithm 2 are analyzed, including its abil-
ity to achieve QoS targets. Finally, the impact on global
fairness incurred by redistributing spectrum to premium
customers is assessed.

A. Managing QoS through Intelligent Scheduling
Figure 5 shows that downlink rates are increased for the

worst performing UEs when evolved models are used for
scheduling. Better fairness improves the QoS experienced
by vulnerable customers at cell-edges, since they receive a
higher downlink rate.

Higher
Cell-edge

Rates

Fig. 5: Downlink rates for the worst performing UEs (0th–
5th percentile) are increased by between 35% and 58%
versus baseline (BL), when evolved models (GP) are used
for scheduling. Fairness is achieved by slightly sacrificing
the best performing UEs (roughly, 25th–100th percentile).

Figure 6 displays the downlink rates received by a single
customer traveling through the HetNet. The path traced
out by this customer along the River Liffey in Dublin City
was indicated in Figure 4. The target downlink rate of
2 [Mbps] is rarely achieved under fair scheduling (GP)
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Fig. 6: Downlink rates received by a particular UE during a
snapshot, under fair (GP) and prioritized (PR) scheduling.
The target downlink rate is 2 [Mbps].

alone. However, the target rate is typically (though not
always) achieved after the optimized schedules are modi-
fied using Algorithm 2. Notice how prioritized scheduling
smooths out the large fluctuations that occur during the
handover between two MCs from timesteps t = 40 to
t = 60. Figure 7 shows that downlink rates are increased
by over 450% during some frames. Figure 7 also indicates
that the target rate is occasionally achieved by evolved
models, and thus there is sometimes no need to modify the
schedule. Algorithm 2 automatically detects when a cell’s
schedule should be modified, and it precisely redistributes
the spectrum so that target rates are satisfied for premium
customers.
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Fig. 7: Percentage increase in downlink rates versus fair
scheduling for a single customer traveling through the
HetNet.

B. Statistical Analysis
The preceding case study demonstrated the benefits of

prioritized scheduling for a single customer. In this section,

a statistical analysis of Algorithm 2 is presented. Downlink
rates were computed for 1000 UEs in the 100 frames of 30
different snapshots (recall Section IV).

(50, 0.5) (100, 1.0) (200, 2.0) (400, 4.0)

Fig. 8: Violin plots visualizing how downlink rates are dis-
tributed for premium UEs under fair (GP) and prioritized
(PR) scheduling. The values in parentheses indicate the
number of premium UEs (out of 1000) and their target
rate (in [Mbps]) respectively.

Figure 8 displays the distribution of downlink rates for
premium customers under fair (columns labeled “GP”)
and prioritized (columns labeled “PR”) scheduling. The
subset of premium customers with downlink rates below
the target under fair scheduling are first identified. Their
downlink rates are then computed after executing Algo-
rithm 2. Fair scheduling typically results in downlink rates
for premium customers that are below their target rate. In
contrast, the distribution closely straddles the target value
after schedules have been modified using Algorithm 2. In
fact, the rightmost column indicates that target rates as
high as 4 [Mbps] are usually achieved.
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Fig. 9: Probability that a premium customer will receive
their target downlink rate for different settings of the
target rate and proportion of premium customers.

Of course, it is not always possible to satisfy QoS targets



since non-premium UEs can only liberate a finite amount
of spectrum. Figure 9 visualizes how the probability that
target rates are achieved decreases, as the proportion of
premium customers and their target rate increases. QoS
targets can be satisfied with high probability for a wide
range of settings. For example, target rates are delivered to
premium customers with a probability exceeding 0.95 if up
to 150 premium customers have a target rate of 3.0 [Mbps].
C. Impact of Prioritized Scheduling

Global fairness is damaged by diverting spectrum away
from non-premium UEs in order to satisfy QoS targets for
premium UEs. It follows that a trade-off exists between
overall fairness, and the number of premium UEs and their
target rates. Figure 10 displays the percentage change in
downlink rates compared to the baseline method for fair
and prioritized scheduling. As discussed in Section V-A,
evolved models improve fairness by increasing downlink
rates for the worst performing cell-edge UEs (e.g. 0th–5th
percentile). The blue curve implies that target rates of
0.75 [Mbps] can be delivered to 50 (out of 1000) premium
UEs without significantly degrading cell-edge throughput.
The cyan curve suggests that target rates up to 1.5 [Mbps]
can be tolerated. However, cell-edge throughput is severely
damaged if the number of premium UEs and their target
rate increases above 100 and 1.5 [Mbps] respectively.
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Fig. 10: Evolved models (GP) improve fairness compared
to baseline scheduling (BL). There is a trade-off between
improving QoS for premium UEs and sustaining global
fairness.

VI. Conclusions
Maintaining high customer satisfaction is vital in the

fiercely competitive wireless telecommunications industry.
The technique for service differentiation that was outlined
in this paper provides stable QoS for customers that
avail of a premium service plan. However, the HetNet’s
ability to support such a scheme depends on the number
of participants, and their QoS targets. Therefore, net-
work operators should price plans appropriately, so that

a small subset of all customers take part. In practice,
customers could be dynamically assigned to the premium
class, depending on the application they are running. For
example, a customer could be given preferential treat-
ment temporarily when streaming high definition video.
Prioritized scheduling has minimal impact on network-
wide performance under reasonable conditions. In real
HetNets, scheduling contributes to better QoS and lower
latency, but congestion control and traffic partitioning is
also necessary. Future work could explore the potential for
natural computing techniques in 5G HetNets.
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