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Abstract—Small Cells are being deployed alongside
pre-existing Macro Cells in order to satisfy demand
during the current era of exponential growth in mobile
traffic. Heterogeneous networks are economical because
both cell tiers share the same scarce and expensive
spectrum. However, customers at cell edges experience
severe cross-tier interference in channel sharing Het-
Nets, resulting in poor service quality. Techniques for
improving fairness globally have been developed in pre-
vious works. In this paper, a novel method for service
differentiation at the level of individual customers is
proposed. The proposed algorithm redistributes spec-
trum on a millisecond timescale, so that premium
customers experience minimum downlink rates exceed-
ing a target threshold. System level simulations indi-
cate that downlink rate targets of at least 1 [Mbps]
are always satisfied under the proposed scheme. By
contrast, naive scheduling achieves the 1 [Mbps] target
only 83% of the time. Quality of service can be improved
for premium customers without significantly impacting
global fairness metrics. Flexible service differentiation
will be key to effectively monetizing the next generation
of 5G wireless communications networks.

I. INTRODUCTION

Mobile traffic is exploding due to the proliferation of
data-hungry User Equipments (UEs) such as smartphones
and tablets [6]. Capacity can be increased by densifying
the pre-existing Macro Cell (MC) tier with low-powered
nodes called Small Cells (SCs) [4]. SCs are installed in an
ad-hoc fashion near hotspots like transport hubs or busy
shopping districts. The resulting configuration of MCs and
SCs is known as a Heterogeneous Network or ‘HetNet’
Cellular operators such as AT&T Inc. have embraced this
multi-tiered paradigm because MCs and SCs can share
spectrum, which is scarce and expensive. However, two
issues constrain the capacity of channel sharing HetNets.
Firstly, SCs struggle to offload UEs from much stronger
MCs resulting in underutilization of the SC tier. Secondly,
severe cross-tier interference occurs at SC edges, since
nearby high-powered MCs transmit on the same spectrum.

The 34 Generation Partnership Project [I] has specified
mechanisms for more efficiently offloading UEs onto the
SC tier, mitigating cell-edge interference, and allocating
spectrum [I2]. The task of designing controllers that
implement these protocols has been the subject of an
intensive research effort [7][§][I0]. The main goal of the
cited studies is to allocate resources fairly, so that all
customers experience an acceptable Quality of Service
(QoS). Effectively managing QoS in real time is impor-
tant because channel conditions fluctuate dramatically on
short timescales. Therefore, a customer may experience
intermittent service outages, which may be unacceptable
depending on their use case. For example, occasional lulls
may not affect messaging applications, whereas smooth
service is essential for multimedia streaming.

Previous work [I3] has demonstrated that fairness
is improved by scheduling cell-edge UEs to receive
more spectrum than high-performing UEs closer to cell
centres. In [I3] the authors employed a technique from
Natural Computing [5] called Grammar-based Genetic
Programming (GP) [15] to automatically evolve schedulers
for MCs and SCs. However, the state of the art does not
support fine-grained service differentiation at the level of
individual customers — a core goal of the ongoing 5G
standardization [2][3]. In this paper, a novel method is
proposed for providing QoS guarantees to customers that
subscribe to a premium service plan. Schedules are first
computed using evolved models in order to fairly allocate
the spectrum. The proposed algorithm then allocates
additional spectrum to premium customers if necessary,
so that their target downlink rate is realized.

The approach is assessed by simulating a HetNet
deployment serving an urban region. The experiments
demonstrate that evolved schedulers improve cell-edge
downlink rates compared to a baseline scheme used in
practice. However, premium customers still occasionally
receive less than their target rate. QoS targets are



satisfied with high probability by adjusting the optimized
schedules using the proposed algorithm. The impact of
prioritized scheduling on global throughput and fairness
is small for moderate QoS targets. However, non-premium
customers experience significantly lower downlink rates
when the proportion of premium customers, or their target
downlink rates, become unreasonably large. Thus, a trade-
off exists between providing premium service plans for
some customers, and ensuring acceptable QoS for all
customers. This trade-off presents the operator with an
opportunity to design tailored service plans that maximize
profit.

The rest of this paper is organized as follows. In
Section [[I] mechanisms for load balancing, interference
mitigation, and scheduling in HetNets are outlined. This
framework motivates the paper’s main goal: achieving
fairness and fine-grained service differentiation through
intelligent scheduling. In Section [[TI} a novel algorithm
for realizing QoS targets is presented. The simulation
environment and experiments are described in Section [[V]
followed by a discussion of the results in Section [V} The
paper concludes with directions for future work in Section

VI

II. PROBLEM DEFINITION

Mobile traffic is growing rapidly, but wireless spectrum
is scarce and expensive. HetNets are a cost-effective means
of satisfying demand because both cell tiers can share the
same spectrum. However, low-powered SCs struggle to of-
fload UEs from high-powered MCs, and severe interference
at cell edges results in poor QoS for cell-edge UEs. In this
section, mechanisms for load balancing and interference
mitigation are outlined. The motivation for providing QoS
guarantees is then discussed.

A. Load Balancing and Interference Mitigation in HetNets

Figure[T]illustrates these load balancing and interference
issues in a toy deployment with three MCs my, ms, m3 and
two SCs s1, 2. Let M and S denote the sets of MCs and
SCs respectively. The signal strength that UE u receives
from cell c € M US is given by:

signal,, . < Pe+ G, (1)

where P, is the power of cell ¢ (in decibel milliwatts
[dBml]), and G, . is the signal gain from ¢ to u (in decibels
[dB]). UE u attaches to its serving cell ¢’ according to the
attachment rule:

¢ = argmax (signal,, .+ B.), Vee MUS, (2)

where (. is a cell selection bias that enables more efficient
offloading onto the SC tier, and where 85 > 0 [dB], Vs € S
and B, = 0 [dB], Ym € M. For example, SC s; in Figure
can utilize a positive selection bias in order to absorb
the two nearby UEs from MC my. The blue region in
Figure[1b|depicts the ‘expanded region’ that forms around

s1 when (35, > 0. Herein, UEs uy and ug attach to s;
despite receiving a stronger signal from mo.

Expanded

Region

Fig. 1: Load balancing and interference mitigation in a
toy HetNet. On the right, SC s; broadcasts a positive cell
selection bias in order to reduce congestion on MC ms.
Severe interference in the resulting expanded region of s;
is mitigated by periodically muting the interfering MCs.

The severe interference experienced by us and ug in the
expanded region of s; can be mitigated by periodically
muting ms and other nearby MCs. Note that cells transmit
packets to their attached UEs during 1 [ms] intervals called
subframes, and a full frame consists of 8 subframes. When
a MC mutes we say that it executes an Almost Blank
Subframe (ABS), since only minimal reference signals are
transmitted therein. Interference mitigation via ABSs is
referred to as enhanced Inter-cell Interference Coordina-
tion (eICIC) [1]. For example, let MCs m € M mute in
the first four out of eight subframes in every frame, so that
ABS’r’:f;ET" =[0,0,0,0,1,1,1,1]. Hence, SC attached UEs
uy,us and ug experience reduced interference from MCs,
and a higher downlink rate from SC s;. Note that SCs do
not implement ABSs so they transmit in every subframe:
ABSTY™ = [1,1,1,1,1,1,1,1], Vs € 8.

B. Downlink Rates

Downlink rates are given by Shannon’s formula. The
signal to interference and noise ratio (SINR) received by
UE u in subframe f of some frame F; (where ¢t € N counts
the number of elapsed frames) is given by:

. pattern
SINR,; = signal,, . ¥ ABSC,J . 3)
noise+ > signal, . x ABS?
ceMUS\ ¢ ’

where the signal strength is converted to Watts [W], and
noise = 4 x 10716 [W] is background electromagnetic
noise. Let @, ¢ denote the ‘channel quality’ experienced
by w in f:

Qu,f = IOgQ (1 + SINRu,f) . (4)

Hence, Shannon’s formula yields the instantaneous
downlink rate:

Ryp = Qug x schy § x (20 x 10°), (5)



where 0.0 < schy,,; < 1.0 is the proportion of the spectrum
(20 x 10% [Hz] in our experiments) that u is scheduled to
receive during f. In every subframe, exactly 100% of the
spectrum is utilized by the UEs u € A., where A, denotes
the set of UEs that attach to cell ¢. That is,

Z schy,y =10, VfeF.
ueA.

Finally, the (average) downlink rate for u over frame F; is
given by:

Ry =|F|"" ) Ruy (6)
feF:

C. Fuairness and Service Differentiation via Scheduling

Perceived QoS does not depend linearly on received
downlink rate. Extremely low rates (<1 [Mbps]) will re-
sult in many dropped packets, causing service outages and
excessive loading times. However, applications may run
smoothly at either 25 [Mbps] or 1 [Mbps]. Therefore, extra
resources should be directed towards the lowest-rate UEs,
by sacrificing those with higher rates.

Shannon’s formula in Equation [§] suggests that downlink
rates can be managed by controlling the channel quality
experienced by UEs (i.e. Q. s), or by computing optimized
schedules (i.e. schy, s). Previous work demonstrated that
channel conditions are improved at SC edges by optimizing
the powers and biases of SCs, and the muting patterns
of MCs [§][I3]. The proposed technique is compatible
with these existing methods for optimizing the HetNet
configuration. However, in this paper we implement a
static HetNet configuration, in order to isolate the effects
of the proposed scheduling method. SC powers are set to
35 [dBm)], SC biases are fixed at 10 [dB], and MCs mute
during the first four out of eight subframes in every frame.

The next section describes how GP is employed to evolve
schedulers for allocating spectrum fairly. The main con-
tribution of the paper is then presented: an algorithm for
fine-grained service differentiation at the level of individual
customers.

III. METHODS

In this section, the shortcomings of a baseline scheduler
that is used in real HetNets are identified, motivating
GP as a means for automatically constructing intelligent
schedulers. An algorithm is then developed for fine-tuning
the schedules produced by evolved models, so that QoS
targets are satisfied for premium customers.

A. Baseline Scheduling

Consider again the toy HetNet displayed in Figure
[l Here, five UEs download packets during a single
8 [ms] frame F;. Downlink rates can be computed for
Ui, Ug,...,us given the channel gains G, . displayed in
Table [I[| and knowledge of the HetNet configuration (recall
Section . The steps are as follows.

Ul u2 us U4 us

mi1| —100 —98 —110 | —117 —99
mal —89 —88 —82 —92 —72
m3a| —120 —92 —85 —96 —101
S1| —82 —80 —65 —105 | —100
S2| —85 —112 —89 —98 —123

TABLE I: Channel gains G, [dB] for the toy HetNet
depicted in Figure [I] in some frame F;. For example, the
signal gain from cell m; to UE w; is —100 [dB] during F.

Firstly, Equations [I] and [2 imply that uy, us, us attach
to s1, whereas uy, us attach to ms. Hence, Equations[3]and
|§| give the channel qualities (), s experienced by the UEs
in every subframe f € F;. Under baseline (BL) scheduling,
a cell splits the spectrum evenly among its attached
UEs. Therefore, s; assigns a proportion sch, s = 1/3
of the spectrum to wuq,us2,us € A, in every subframe
f. Similarly, mo assigns a proportion sch, s = 1/2 of
the spectrum to wug,us € A,,, in every subframe f.
Given the values of @, s and sch,, ¢, Shannon’s formula in
Equation [5] yields the instantaneous downlink rates Ry, ;.
Finally, average downlink rates over frame JF; are given by
Equation [6}

Method Ry,
BL 5.1 7.3

R,
24.2

TABLE II: Downlink rates (in [Mbps]) received by UEs
u1, Uz, ug attached to SC sy in the toy HetNet.

Table [[T displays the downlink rates received by the SC
attached UEs. Notice how BL scheduling has resulted in
a highly unfair outcome. Here, the downlink rate for ug is
over four times greater than that for u;. The next section
describes how evolved models improve fairness by granting
more spectrum to the poorly performing UEs.

B. FEwvolving Schedulers with Genetic Programming

Previous work has established that Genetic
Programming (GP) is a powerful framework for evolving
schedulers in HetNets [I3][14]. In this paper, GP is
augmented with a novel algorithm that enables fine-
grained service differentiation at the level of individual
customers. Evolved models (i.e. a symbolic expressions)
map channel quality reports to schedules on a millisecond
timescale. Algorithm [I] and Figure 2] describe how a
schedule is produced for SC s; of the toy HetNet.

The leftmost panel in Figure [2] displays the channel
qualities @, s that are experienced by w1, uz, us € As, (the
UEs attached to s1) during frame J;. Note that UEs send
reports of @, s to their serving cell after every frame. In
step 1, the evolved model maps features computed over the
channel qualities to the real values (modeli?. Table
defines the features and arithmetic operators. For instance,
T8.,r is the average of all reported channel qualities over
frame JF;. In step 2, the real valued outputs from the
scheduler are scaled, so that exactly 100% of the spectrum



is utilized in every subframe. For example, consider the
following simple scheduler:

modely)s = (T124,5 % T124,)%(T12y 5 * T1y 5)
— fxf (7)

Vi1t (f*Qu,f)Q.

The rightmost panel of Figure [2] displays the schedule
generated by the model in Equation [7}

Algorithm 1 Generate schedule using evolved model.

1: procedure COMPUTE PRIORITIZED SCHEDULE(Q,,f, V(u, f) € Ac X Fy)

2: schf}; = 0.0, VY(u,f) € A. X Fy; #initialise schedule
3 #Step 1 — execute model:

4 for u € A. do #iterate over UEs

5: for f € F; do #iterate over subframes

6 Compute features in Tablegiven Qu,f3

7 Hence, execute the scheduler yielding model., s;

#Step 2 — scaling:
8: for u € A. do
9: for f € F; do

GP
model
10: sch$h = el
’ g modelGF
u, f
u€EAc

return schS.’r}, V(u, f) € Ac X Fy;

ur U2 us Ul u us Uup U2 U3
1[0.4]05[1.3 1[19.09]15.52] 6.13 1[0.47]0.38[0.15
2[0.4]0.5|1.3 2[16.48[13.46] 5.35 2[0.47[0.37]0.16
3[0.4]0.5]1.3 3[13.85(11.38 4.58 3[0.46[0.38]0.16
4[0.4]0.5]1.3] S*P ! 4[T1.18[0.28[3.80 | 5'°P 2 40.46[0.38[0.16
5[12[1.8]6.3| 7 5[3.26]2.20|0.63 5[0.53[0.37[0.10
6[1.2]1.86.3 6[2.41 [ 1.64 [ 0.48 6[0-52]0.37[0.11
7[1.2[1.863 7[ 154 1.07 | 031 7[0.52[0.37]0.11
8[1.2]1.86.3 8[0.64| 049 0.16 8[0.50[0.38]0.12

Qu,r model,, ¢ schﬁ?

Fig. 2: In step 1, channel quality reports from the UEs
attached to SC s; are mapped to real values. In step
2, outputs are scaled so that 100% of the spectrum is
utilized per subframe. Fairness is achieved by allocating
more spectrum to UEs with the lowest channel qualities.

Replicating the calculations from Section [[II-4] yields
the downlink rates received by w1, us, and uz under the
fair schedule. Table [[TI] shows that fairness is improved
relative to the baseline, since the three UEs that attach to
s1 now experience similar downlink rates.

Method Ry, Ru, Rug
BL 5.1 7.3 24.2
GP 7.70 8.19 8.56

TABLE III: Downlink rates (in [Mbps]) received by u €
A, under baseline (BL) and fair (GP) scheduling.

High performing models are evolved via grammar-based
GP [9)[15]. Table|V]displays the Backus-Naur-Form gram-
mar which defines the search space of symbolic expressions

Feature Interpretation Operator Interpretation
Tzu,f Qu‘f (I+y) Tty
T2u,5 - T4,y avg,min, max {Qu,«} (z —y) T—y
T5u,5 - T7u,f avg, min, max {Q« s} (z x y) T Xy
T8y ¢ - T10, avg, min, max . % —z
v . g {Qu -} (z%y) e
T11.,5f ID, € [1,2,...,|A]] plog(x) log(1 + |z|)
T124, 5 fez2,...,8 sine(x) sin(x)
psqrt(x) 4/ |zl

TABLE IV: Interpretation of the grammar elements. A
cell’s attached UEs are sorted in ascending order based on
received channel quality and assigned identifiers (ID,,).

(r) | {r) | (r) [ (T)
(A1) ((e)) | ({e)(Az)(e))

< =

< =

(A1) = plog | sine | psqrt

(Ag) i:= £+ | = | x| %

(T) = Tlup | T2uy | oo | T12up | (n) | (n)
(n) = —1.0| —09 | ,..., | 0.9 | 1.0

TABLE V: Backus-Naur-Form grammar.

that is explored by GP. The standard hyperparameter set-
tings recommended by [9] are adopted, since GP reliably
yields highly fit models [I4]. The function and terminal
sets are defined in Table[[V] A GP run proceeds as follows:

1) Initialize a population of 1000 randomly generated
derivation trees.

2) Assign a fitness to each individual (i.e. derivation
tree) by evaluating the corresponding model
(i.e. phenotype) in simulation.

3) Select parents from the current population using
tournament selection with tournament size 5.

4) Each pair of selected parents undergoes subtree
crossover with a probability of 0.7. Subtrees rooted
at randomly selected non-terminals in each parent
individual are swapped.

5) Mutate all of the resulting children using subtree
mutation. A randomly selected non-terminal in the
derivation tree is replaced by a new random subtree.

6) Replace the worst 99% of the current population
with the children resulting from subtree crossover
and mutation. The remaining 1% are the fittest
‘elites’ found so far, and they enter into the next
generation unchanged.

7) Return the fittest individual (on validation data)
found after 250 generations.

In item 2, models are evaluated using 30 channel gain
matrices (similar to that in Table corresponding to
30 different frames. In this paper, channel gain data are
generated in simulation, but UEs report channel gains in
real HetNets. Hence, the fitness of a model is given by the
sum logarithm of downlink rates [§]:

fitness = Z log (Eu) , Vu receiving data, (8)

where fitness is high when spectrum is fairly allocated
among UEs. Of the 30 channel gain matrices, 25 serve



as training cases and the remaining 5 are validation cases
used for model selection. GP automatically discovers com-
plex models that are tailored to the deployment scenario
[13]. Automation is valuable in this domain because manu-
ally designing schedulers for different deployment scenarios
is a labor intensive task.

C. Prioritized Scheduling

Algorithm [2] specifies a procedure for fine-tuning the
schedule generated by an evolved model, so that premium
customers receive their target downlink rate.

. . —=PR —target
Algorithm 2 Modify schedule: R, >R, =, VYueP.
1: procedure COMPUTE PRIORITIZED SCHEDULE
2: schiF} = schff, V(u, f) € Ac X Fy;
3: for f € 7, do
4: RU% = Qu 5 X schl% x (20 x 10%),  V(u, f) € Ac X Fi;
5: 7PR:LZRuf, Yu € A¢; a
fer
6: P’z{uEAcﬂ"Plﬁp <Rarget}7
|7 x (FLrEet _RFPR

. j— ’.
7 5u,f = Qu,, ><(20><106) , YuePy
&: Ay f = Schi}?, Yu € A:. \ P’;
9: of = Z Ou,f; #spectrum needed by premium UEs

ueP’
10: Ay = Z Ay, r; #total spectrum available
u€Ac\P’
11: if 6y < Ay then
12: schPF} = schEF} +6u,5, Yue P
N

13: schl T = schi, s — bu.f ( “}f) . Yu€e A\ P
14: else if 55 > Ay then
15: schpf:schpf+A ( "ff), Yu € P';
16: schl = schi s — Ay f, Yu € A\ P

return schS’F}, V(u, f) € Ac X Fy;

Intuitively, Algorithm [2|redistributes the spectrum from
non-premium to premium UEs, so that the latter receive
their target rate over a frame. Let P denote the subset of
EEE ghat subscribe to the premium service plan, and let

£ denote their target rate. Recall that A, denotes the
set of UEs that are attached to cell ¢ during frame F;. On
line 2, the prioritized (PR) schedule is initialised to the
schedule generated by the evolved model. The algorithm
then iterates over subframes (line 3). Downlink rates that
would be received under the current prioritized schedule
are computed on lines 4 and 5. The subset of premium UEs
(P’) that require more spectrum in order to reach their
target rate is then determined on line 6. The amount of
extra spectrum (d,,¢) needed by each u € P’ in subframe
f in order to reach their target rate is computed on line
7. Similarly on line 8, the amount of spectrum that non-

premium UEs can sacrifice (A, f) is computed. Lines 11—
13 describe how spectrum is redistributed to premium UEs
if they require less spectrum than is available in f. Sim-
ilarly, lines 14-16 deal with the case when premium UEs
request more spectrum than is available in f. Spectrum
is diverted from non-premium UEs based on their ability
to sacrifice it (line 13), and granted to premium UEs in
proportion to their need (line 15). These steps preserve
the constraint that 100% of the spectrum is utilized per
subframe.

For illustration, let u; from the toy HetNet subscribe
to a premium service plan offering minimum downlink
rates of 10 [Mbps]. That is, u3 € P and Rmrget = 10.
Figure [3| displays the prioritized (PR) schedule generated
by Algorithm [2[ after it modifies the fair (GP) schedule
from Figure 2] Notice that all of the spectrum is awarded
to uy during the first four subframes. Hence, the average
downlink rate for u; is increased by slightly sacrificing non-
premium UEs uy and ug over the frame.

Ul u9 us (51 ug us
110.4710.38]0.15 1/ 1.0(0.0]0.0
210.47]0.37]0.16 2(1.0{0.0]0.0
310.46/0.38]0.16 Alg 9 3 1.0{0.0]0.0
410.46/0.38(0.16 | ; 411.010.0]0.0
510.53(0.37|0.10 5(0.62|0.30(0.08
6(0.52(0.37(0.11 6(0.52|0.37]0.11
710.52|0.37]0.11 710.52|0.37]0.11
810.50(0.38(0.12 8(0.50/0.38(0.12

schfﬁ schgf}

Fig. 3: The prioritized schedule for s; ensures that pre-
mium UE u; € P receives an average downlink rate of at
least R, "R 10,0 [Mbps]. Extra spectrum is granted to u;
at the expense of non-premium UEs us and ug.

Finally, Table [V]] displays the average downlink rates
under the baseline (BL: Section [[II-A)), fair (GP: Section
[I-B), and prioritized (PR: Sect schedules. The
last row indicates that the target downlink rate for u; is re-
alized when s; executes the prioritized schedule. Further-

more, the remaining spectrum remains falrly dlstrlbuted
between the non-premium UEs since R ~ R

Method R, Ru, R,
BL 5.1 7.3 24.2
GP 7.70 8.19 8.56
PR 10.0 6.08 6.32

TABLE VI: Downlink rates R, [Mbps] for u € A, under
various scheduling regimes.

IV. EXPERIMENTS
A HetNet with 21 MCs and 21 SCs serving Dublin
City centre was simulated. Realistic channel gains were
computed by modelling obstacles in the environment such
as buildings, roadways, and parks. Table [VI]| displays



the parameters of the simulation and path loss model.
Figure [4a] displays the terrain. The path loss model was
described in [II]. Figure shows how channel quality
varies throughout the network. Seven trisector MC towers
were spaced out on a regular grid. SCs were distributed
randomly in order to reflect their ad-hoc installation where
hotspots arise. The blue hue at cell edges indicates regions
of low channel quality where inter-cell interference is
significant.

(a) Terrain. (b) Channel Quality Heatmap.

Fig. 4: A HetNet with 21 MCs and 21 SCs serving a
3.24 km? region of Dublin City is displayed. UEs are
represented by white dots. Starting and end points for a
single UE traversing the HetNet are displayed.

Parameters Value
Scenario
Indoor/outdoor map Dublin

MC BS placement
SC BS placement
Inter-MC BS distance

7 eNodeB with 3 sectors each (hexagonal grid)
Uniformly randomly distributed
800 [m]

Scenario resolution 2 [m]
LPC power weight set {0, 1} (binary on/off power control)
Noise density —174 [dBm/Hz]

Channel
Carrier frequency 2 [GHz]
Bandwidth 20 [MHz]
NLOS path-loss Gpn = —21.5 — 391log,y(d) (MC)

Gpn = —30.5 — 36.71og;, (d) (SC)

LOS path-loss Gp1 = —34.02 — 22log,((d)
Shadow fading (SF) 6 dB std dev.

SF correlation R = e’l/QOd, 50% inter-site
Environment loss GE,n = —20 [dB] if indoor, O [dB] if outdoor

Antenna
Height
Maximum gain
H. halfpow. beamwidth
V. halfpow. beamwidth
Front-to-back ratio
Downtilt
Elements & spacing
Phase difference
Element amplitude

25 [m] (MC), 10 [m] (SC)

Gmax = 15.5 [dBi] (MC), 7.06 [dBi] (SC)

a = 65°

B =11.5° (MC)

x = 30 [dB] (MC)

61 = 8.47° (MC)

4 element dipole, dejem.=0.6\ (SC)

Sphase = 95° (SC)

Qelem. = [0.9691,1.0768,1.0768,0.8614] (SC)

TABLE VII: Simulation Parameters.

The best model from 30 runs of GP was executed during
‘snapshots’ that simulated several minutes of activity in
the HetNet. Exactly 1000 UEs were dropped randomly
onto the map at the beginning of a snapshot. Each UE
then moved at uniform velocity towards a randomly chosen

end point. Downlink rates for all 1000 UEs were computed
in 100 frames that were sampled uniformly throughout the
snapshot. A total of 30 snapshots were simulated in order
to resolve the following research questions:

1) To what extent can Algorithm [2|satisfy QoS targets
for premium UEs?

2) How rapidly does the probability of achieving QoS
targets decrease as the proportion of premium UEs
and their target downlink rate increase?

3) How is overall network throughput and fairness
impacted by redistributing spectrum from non-
premium to premium UEs?

V. RESULTS AND DISCUSSION

The experimental results are presented and discussed in
this section. We first confirm that evolved models improve
fairness relative to the baseline method. A case study then
motivates the proposed prioritized scheduling algorithm.
Properties of Algorithm [2] are analyzed, including its abil-
ity to achieve QoS targets. Finally, the impact on global
fairness incurred by redistributing spectrum to premium
customers is assessed.

A. Managing QoS through Intelligent Scheduling

Figure [p] shows that downlink rates are increased for the
worst performing UEs when evolved models are used for
scheduling. Better fairness improves the QoS experienced
by vulnerable customers at cell-edges, since they receive a
higher downlink rate.

60 Global Fairness
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Fig. 5: Downlink rates for the worst performing UEs (0"
5" percentile) are increased by between 35% and 58%
versus baseline (BL), when evolved models (GP) are used
for scheduling. Fairness is achieved by slightly sacrificing
the best performing UEs (roughly, 25"-100*" percentile).

Figure 6] displays the downlink rates received by a single
customer traveling through the HetNet. The path traced
out by this customer along the River Liffey in Dublin City
was indicated in Figure ] The target downlink rate of
2 [Mbps] is rarely achieved under fair scheduling (GP)
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Fig. 6: Downlink rates received by a particular UE during a
snapshot, under fair (GP) and prioritized (PR) scheduling.
The target downlink rate is 2 [Mbps].

alone. However, the target rate is typically (though not
always) achieved after the optimized schedules are modi-
fied using Algorithm [2| Notice how prioritized scheduling
smooths out the large fluctuations that occur during the
handover between two MCs from timesteps t = 40 to
t = 60. Figure [7] shows that downlink rates are increased
by over 450% during some frames. Figure [7] also indicates
that the target rate is occasionally achieved by evolved
models, and thus there is sometimes no need to modify the
schedule. Algorithm [2] automatically detects when a cell’s
schedule should be modified, and it precisely redistributes
the spectrum so that target rates are satisfied for premium
customers.
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Fig. 7: Percentage increase in downlink rates versus fair
scheduling for a single customer traveling through the
HetNet.

B. Statistical Analysis

The preceding case study demonstrated the benefits of
prioritized scheduling for a single customer. In this section,

a statistical analysis of Algorithm [2)is presented. Downlink
rates were computed for 1000 UEs in the 100 frames of 30
different snapshots (recall Section [[V)).

Distribution of Downlink Rates for Premium UEs
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Fig. 8: Violin plots visualizing how downlink rates are dis-
tributed for premium UEs under fair (GP) and prioritized
(PR) scheduling. The values in parentheses indicate the
number of premium UEs (out of 1000) and their target
rate (in [Mbps]) respectively.

Figure [§] displays the distribution of downlink rates for
premium customers under fair (columns labeled “GP”)
and prioritized (columns labeled “PR”) scheduling. The
subset of premium customers with downlink rates below
the target under fair scheduling are first identified. Their
downlink rates are then computed after executing Algo-
rithm 2] Fair scheduling typically results in downlink rates
for premium customers that are below their target rate. In
contrast, the distribution closely straddles the target value
after schedules have been modified using Algorithm [2} In
fact, the rightmost column indicates that target rates as
high as 4 [Mbps| are usually achieved.

Probability

o
N}

Fig. 9: Probability that a premium customer will receive
their target downlink rate for different settings of the
target rate and proportion of premium customers.

Of course, it is not always possible to satisfy QoS targets



since non-premium UEs can only liberate a finite amount
of spectrum. Figure [J] visualizes how the probability that
target rates are achieved decreases, as the proportion of
premium customers and their target rate increases. QoS
targets can be satisfied with high probability for a wide
range of settings. For example, target rates are delivered to
premium customers with a probability exceeding 0.95 if up
to 150 premium customers have a target rate of 3.0 [Mbps].

C. Impact of Prioritized Scheduling

Global fairness is damaged by diverting spectrum away
from non-premium UEs in order to satisfy QoS targets for
premium UEs. It follows that a trade-off exists between
overall fairness, and the number of premium UEs and their
target rates. Figure [I0] displays the percentage change in
downlink rates compared to the baseline method for fair
and prioritized scheduling. As discussed in Section [V-A]
evolved models improve fairness by increasing downlink
rates for the worst performing cell-edge UEs (e.g. 0th-5th
percentile). The blue curve implies that target rates of
0.75 [Mbps] can be delivered to 50 (out of 1000) premium
UEs without significantly degrading cell-edge throughput.
The cyan curve suggests that target rates up to 1.5 [Mbps]
can be tolerated. However, cell-edge throughput is severely
damaged if the number of premium UEs and their target
rate increases above 100 and 1.5 [Mbps]| respectively.

Impact of Prioritized Scheduling on Fairness
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Fig. 10: Evolved models (GP) improve fairness compared
to baseline scheduling (BL). There is a trade-off between
improving QoS for premium UEs and sustaining global
fairness

VI. CONCLUSIONS

Maintaining high customer satisfaction is vital in the
fiercely competitive wireless telecommunications industry.
The technique for service differentiation that was outlined
in this paper provides stable QoS for customers that
avail of a premium service plan. However, the HetNet’s
ability to support such a scheme depends on the number
of participants, and their QoS targets. Therefore, net-
work operators should price plans appropriately, so that

a small subset of all customers take part. In practice,
customers could be dynamically assigned to the premium
class, depending on the application they are running. For
example, a customer could be given preferential treat-
ment temporarily when streaming high definition video.
Prioritized scheduling has minimal impact on network-
wide performance under reasonable conditions. In real
HetNets, scheduling contributes to better QoS and lower
latency, but congestion control and traffic partitioning is
also necessary. Future work could explore the potential for
natural computing techniques in 5G HetNets.
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