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ABSTRACT
Although there is a plentiful literature on the use of evo-
lutionary methodologies for the trading of financial assets,
little attention has been paid to the issue of efficient trade
execution. Trade execution is concerned with the actual me-
chanics of buying or selling the desired amount of a financial
instrument of interest. This paper introduces the concept of
trade execution and outlines the limited prior work apply-
ing evolutionary computing methods for this task. Further-
more, we build an Agent-based Artificial Stock Market and
apply Genetic Algorithm to evolve an efficient trade execu-
tion strategy. At last we suggest a number of opportunities
for future research.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Miscellaneous; J.4 [Social
and Behavioral Sciences]: Economics

General Terms
Economics, Experimentation, Performance

Keywords
Algorithmic Trading, Trade Execution, Volume Weighted
Average Price, Artificial Stock Market, Genetic Algorithm,
Evolutionary Computation

1. INTRODUCTION
Algorithmic trading (AT) can be broadly defined as the

use of computers to automate aspects of the investment pro-
cess. Hence, AT can encompass the automation of decisions
ranging from stock selection for investment, to the manage-
ment of the actual purchase or sale of that stock. A sig-
nificant proportion of all financial asset trading is now un-
dertaken by AT systems with this form of trading account-
ing for approximately 20-25% of total US market volume
in 2005. Boston-based research firm Aite Group predicts
that AT will account for more than half of all shares traded
in the U.S. by the end of 2010 [12]. AT is also common
in European financial markets with approximately 50% of
trading volumes being accounted for by algorithmic trad-
ing programs [9]. Significant volumes in Asian markets are
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similarly traded [8]. Algorithmic trading is seen in multi-
ple financial markets ranging from equities to FX (foreign
exchange), to derivative (futures, options etc.) markets.

In this paper we restrict attention to one aspect of finan-
cial trading to which AT can be applied, namely efficient
trade execution. A practical issue that arises for investors
is how they can buy or sell large quantities of a share (or
some other financial asset) as efficiently as possible in order
to minimize market impact and information leakage. Typi-
cally, orders to buy or sell a share can be either market orders
(the transaction is undertaken immediately in the market
at current prices) or limit orders (the purchase (sale) must
occur at a price which is no greater than (or less than) a
pre-specified price). So for example, if a customer places a
limit order to buy a stock at $25 per share the transaction
will only take place if the market price falls to $25 or less.
Hence, when a market order is placed, the customer does
not have control over the final price(s) at which the order
will be filled, and in a limit order, while the customer has
some price control, there is no guarantee that the order will
actually be executed.

Most major financial markets now operate based on an
electronic order book, where participants can see the current
unfilled buy and sell orders. Table 1 illustrates a sample
order book, showing the quantities that investors are willing
to buy (bid side) and sell (ask side) at each price. We can see
that 187,400 shares are currently available for sale at a price
of 133.1 (or better), and buyers are seeking 332,100 shares
at a price of 132.9 (or less). The order book also illustrates
that there are limits to the quantity of shares available for
purchase / sale at each price point. Of course, the order
book is highly dynamic, with the quantities of shares offered
at each price changing constantly as trades are executed, as
investors add new limit orders on the bid and ask sides, or
as investors cancel limit orders they have previously placed.

Table 1: Sample order book for a share with volume
and price information for bid and ask

Bid Ask
Vol Price Price Vol

332,100 132.9 133.1 187,400
134,900 132.6 133.3 211,800
342,700 132.5 133.4 242,900
86,700 131.8 133.5 142,400
124,500 131.7 134.6 93,400
78,100 131.3 134.7 187,400



When trading financial assets, particularly when an investor
is looking to buy or sell a large quantity of the asset, the
problem of market impact arises. Market impact arises when
the actions of an investor start to move the price adversely
against themselves. Hence, market impact is the difference
between a transaction price and what the market price would
have been in the absence of the transaction. For example,
if an investor wished to buy 300,000 shares given the above
order book, he would end up driving up the price paid for
some shares to 133.3. The obvious strategy to minimise
market impact is to break up the order up into smaller lots
and spread it over several purchases. While this will reduce
the market impact, it incurs the risk of suffering opportunity
cost, that market prices may start moving against you during
the multiple purchases. Hence, the design of trade execution
strategies when trading large blocks of financial assets is
intended to balance out these factors.

A popular benchmark for evaluating execution performance
is volume-weighted average price (VWAP) which is calcu-
lated across the time horizon during which the trade was
executed and is calculated as

V WAP =

∑
(V olume ∗ Price)∑

(V olume)

If the price of a buy trade is lower than VWAP, it is a good
trade. If the price is higher, it is a bad trade. Although this
is a simple metric, it largely filters out the effects of volatility,
which composes market impact and price momentum during
the trading period [1].

The task in devising an efficient execution strategy is com-
plex as it entails multiple sub-decisions including how best
to split up the large order, what style to adopt in executing
each element of the order (aggressive or passive), how execu-
tion performance is to be measured, and what type of order
to use. When an asset is traded simultaneously on multi-
ple markets a further decision must be made as to how to
split up the order amongst these markets. In addition, the
electronic order book(s) faced by the investor are constantly
changing.

In the past the task of designing an execution strategy
was undertaken by human experts but it is amenable to au-
tomation due to the high-frequency market. This highly
dynamic environment in which a trade is executed suggests
that adaptive algorithms may have particular utility. In this
paper we apply a Genetic Algorithm (GA) to evolve an ef-
ficient trade execution strategy and highlight other possible
Evolutionary Computation (EC) applications for this issue.

To test the performance of the trade execution strategy,
we also need to collect desired order flow data. An ordinary
way is to obtain the data from the exchange. This only
provides us with a single sample path of order book data
over time. Another approach is to consider the output data
from the currently popular Artificial Stock Market (ASM),
a simulation of the real stock market. An advantage of a
simulation-based approach is that many sample paths can
be generated and utility of a trade execution strategy can
be tested over all of these paths. Most ASM models are
built by a computer technique called Agent-based Modeling
(ABM) which is a hot research topic in fields of social sci-
ences. It has been applied to finance for many years. ASM
is modeled as multiple interacting agents with a price forma-
tion mechanism to investigate the emerging characteristics
of financial markets. Many researchers have suggested ASM

as a alternative market in place of real market to test trade
strategies. Novelly, this paper evolves an efficient trade exe-
cution strategy using Genetic Algorithm and to evaluate the
strategy employing an ASM.

1.1 Structure
This paper is organized as follows: the next section will

give a brief description of application of EC in trade ex-
ecution; section three will introduce the ASM model used
and shows how to simulate the ASM to generate the desired
order flow data; the followed section will demonstrate how
the order flow data is used to evolve the efficient execution
strategy deploying GA methodology; last section will con-
clude this paper by giving a number of avenues for future
work.

2. EVOLUTIONARY COMPUTATION AND
TRADE EXECUTION

Most published papers on trade execution adopt a dy-
namic programming approach [2, 5, 6, 16, 17], where given
a fixed block of shares to be traded within a fixed number of
time periods, and given a price-impact function that yields
the execution price of an individual trade as a function of the
shares traded and market conditions, the object is to deter-
mine the optimal sequence of trades as a function of market
conditions (closed-form expressions in some cases) that min-
imize the expected cost of executing the entire transaction
[2].

2.1 Evolutionary Computation
Evolutionary computation, includes GA, Genetic Program-

ming (GP), Particle Swarm Optimization (PSO), etc., ap-
plied in two basic aspects of finance, which are optimiza-
tion and model induction [4]. Optimization application are
due to the complexity and high dimension of some finan-
cial problems, such as portfolio selection. The task of model
induction is often to discover the unknown models of some
financial processes from a dataset.

Genetic Algorithm is a heuristic function for optimiza-
tion. A population of potential solutions to the optimization
problem is evolved iteratively using Darwinist evolution or
natural selection. According to the algorithm ”survival of
the fittest”, the final result at the end of the evolution is the
best solution at that time. It has already been used in many
areas of finance.

2.2 Literature Review
Despite the importance of optimizing trade execution, there

has been relatively little attention paid in the literature to
the application of evolutionary methodologies for this task.
One notable exception is Lim and Coggins [15] who applied a
genetic algorithm (GA) to evolve a dynamic time strategy to
optimize the trade execution performance using order book
data from a fully electronic limit order market, the Aus-
tralian Stock Exchange (ASX). In their study, the total vol-
ume of the order was divided into 10 slices and was traded
within one day using limit orders. Each evolved chromo-
some had N genes where each gene encoded the maximum
lifetime that an individual order (1 → N) would remain on
the order book (if it had not already been executed) before
it was automatically ticked over the spread to close out the
trade. The fitness function was the VWAP performance of



that strategy relative to the benchmark daily VWAP. Each
strategy was trained on three months’ worth of transaction-
level data using a market simulator. The results were tested
out of sample on three highly liquid stocks and tested sepa-
rately for sell side and buy side. The in sample and out of
sample performances were better than pure limit / market
order strategies.

3. AGENT-BASED ARTIFICIAL STOCK MAR-
KET

Agent-based modeling is one of the most exciting practical
developments in modeling complex systems. In ABM, the
system is modeled as a collection of autonomous, interacting
agents. Each agent makes decisions based on a set of rules.
Even a simple agent-based model can exhibit complex be-
havior patterns and provide valuable information about the
dynamics of the real-world system that it emulates [3].

Financial markets have been widely recognized as complex
systems comprised of interacting agents and price formation
mechanisms. A wide range of financial markets, like stock
markets, foreign exchange markets and option markets, have
been modeled with ABMs. Artificial stock market simula-
tion is the hottest topic in the realm of agent-based compu-
tational economic/finace (ACE). A review of ASM can be
found in [14].

This section initially introduces the limit order book mech-
anism and then describes the Swarm platform used in our
experiments.

3.1 Limit Order Book Mechanism
Here we want to build a continuous double auction artifi-

cial stock market with a limit order book mechanism. The
output data flow (a simulated order book) from the ASM
will be used to test trade execution strategies, which are
required to include detailed information of all orders, such
as each order’s arrival time, executing time, trade size and
order price.

Make decisions
Order Matching 

Mechanism

Figure 1: Price Formation

In a limit order market, orders arrive randomly in time.
The price limit of a newly arrived order is compared to those
of orders already held in the system to ascertain if there is
a match. If so, the trade occurs at the price set by the first
order. The set of unexecuted limit orders held by the system
constitutes the dynamic order book, where limit orders can
be cancelled or modified at any time or executed in price
priority and time priority sequence [11]. These markets are
usually transparent, with state of the book being widely
visible to actual and potential market participants. These
markets also provide hidden and reserve orders which are
entirely or partially invisible. A simple price formation is
illustrated in Figure 1.

3.2 Simulation
In this paper, the zero-intelligence (ZI) model in [7] is

adopted, because this model is aiming to generate a real-
istic aggregate order flow using simplest assumptions. The
ZI model models an asynchronous double auction market,

which is entirely defined by the characteristics of the agents
responsible for generating the order flow. It features a realis-
tic microstructure populated with ZI agents, which originat-
ing from Gode and Sunder [10] mean that the agents place
random orders to buy or sell. In this model, only one stock
is traded, and dividends are ignored. Traders trade order
via a centralized limit order book, without the intermediacy
of a market maker, aiming to focus on the dynamics of a
pure double auction. There are four aspects to design the
ZI model, which are order sign, order type, limit order price
and order size.

Table 2: Initial Parameters for Order Book based
ASM

Explanation Value

Initial Price price0 = 100
Tick Price δ = 0.001

Probability of Cancellation Order λc = 0.5
Probability of Market Order λm = 0.15
Probability of Limit Order λl = 0.35

Probability of Limit Order in Spread λin = 0.35
Probability of Limit Order Out of Spread λout = 0.65

Limit Price Tail Index 1 + α = 1.3
Order Size (µ, σ) ∼ (4.5, 0.8) shares

Waiting Time τ = 44 seconds

There are only two order signs, buy or sell. It is sim-
ple to consider that ZI agents have the equal probability to
make a buy order and a sell order. When an agent is active,
she can try to issue a cancellation order with probability
λc (oldest orders are cancelled first), a market order with
probability λm, a non-marketable limit order with proba-
bility λl = 1 − λc − λm. In this model, limit order price
will be uniformly distributed in the spread with probabil-
ity λin, and power-law distributed outside the spread with
probability 1− λin. Limit order price ranges are illustrated
in Figure 2. Here, market orders will simply have the same
volume as the best counterpart order that they are about to
remove, and non-marketable limit orders will follow a log-
normal distribution. The parameters used in our simulation
are presented in Table 2.

Current Best Bid Price

Current Best Ask Price

Price range of incoming limit buy orders

Price range of incoming limit sell orders

Price increases

Figure 2: Place Limit Price

A striking phenomenon prevalent in ASM is the drastic
simplification made about time. In this model, the order
generation is modeled as a poisson process, which means
that the time between orders follows an exponential distri-
bution. In our simulation, we adopt a Swarm platform in
JAVA, which is one of the most popular agent-based mod-
eling platforms, instead of discrete-event simulation in [7].
The Swarm algorithm used in our simulation is described in
Figure 3.

4. EXPERIMENT
As we have built an order book based ASM to generate

order flow in last section, this section will describe how to
use a GA to uncover a quality trade execution strategy.



Figure 3: Behavior of ZI Agent

4.1 Representation
The design of an execution strategy can be considered of

consisting of two step. First is to divide a big block of shares
into multiple small orders. Second step is to determine the
parameters of each order, including order type (limit/market
order), submitted time, limit price (limit order) and lifetime
(the time length when an order appears in the order book
before it is cancelled).

b30b1a1 c30c1

a1: submitting time of first order

b1 - b30: lifetimes of 30 orders

c1 c30: submitting limit prices of 30 orders

Figure 4: Representation

In our experiment, each large trade is divided into 30 or-
ders. Because limit orders are preferable to market orders
(as they achieve better execution prices), we only adopt limit
orders. The orders are submitted to the market one by one,
with each order being submitted at the end of the lifetime of
the previous order. As in the real market, divided orders can
always be fully traded if they are small enough. We assume
that every market buy/sell order has the same size as the
best limit sell/buy order in the order book, which is in ac-
cordance with the assumption in the ASM simulation. This
means that one market order will cause only one limit order
to be traded. So the parameters left for the 30 limit orders
include limit order’s price, lifetime in the order book before
canceled if not executed by other market orders, and the
submitted time of the first order, which will be determined
by the GA methodology. Figure 4 shows the representation
of each GA individual or chromosome. These parameters of
every GA individual form a GA strategy. The purpose of

this experiment is to evolve an efficient execution strategy
which has the best average execution price.

The objective function we used here is ratio of the differ-
ence between the VWAPs of the 30 orders and the entire
executed orders generated from the ASM simulation, which
are V WAP 30 and V WAP global respectively, to the the en-
tire executed orders’ VWAP. For both buy and sell orders,
the smaller the VWAP Ratio is, the better the strategy is.

V WAPRatio =

{V WAP30−V WAP global

V WAP global
Buy

V WAP global−V WAP30
V WAP global

Sell

4.2 Data
The data used in this paper is generated from the ASM

in last section. The ASM simulation uses a database to
store the details of each incoming order and best orders at
each time point. It consists of five tables shown in Figure
5, recording all kinds of orders, which are limit buy orders,
limit sell orders, market buy orders, market sell orders and
best buy/sell orders. The limit buy/sell order tables record
each limit order’s index number, arrival time, volume, sub-
mitting limit price, time when canceled or traded. The mar-
ket buy/sell order tables record each market order’s index
number, arrival time, traded volume, traded price and the
index number of corresponding traded limit order. The best
order table records the best bid and ask orders’ index num-
ber, volume, price, and mid-spread price at each time when
new order comes.

Limit Buy 

Order Table

Market Buy 

Order Table

Market Sell 

Order Table

Best Buy/Sell 

Order Table

Limit Sell 

Order Table

Order Flow

Order Book 

Based ASM

Figure 5: Data

In the ASM, all the data generated are stored in a database.
We put them in different datasheets. These data contain
the best orders (the best bid/ask prices, volumes and each
recording time), limit orders (each limit order’s size, limit
price, submission time, execution/cancelation time) and mar-
ket orders (each market order’s size, arrival time, execution
price). The ASM simulation was run for 10,081 seconds,
corresponding to one day (8 hours).

4.3 Parameter Settings
In each generation of GA computation, several new indi-

viduals are produced, each being a strategy which defines
how to send the 30 orders into market. To test the perfor-
mance of each strategy, we incorporate the 30 new orders
into the existing order flow generated from ASM in last sec-
tion. The new order flow is simulated as a market, where
new order will be traded. And we also assume that orders
executed do not impact on the orders which arrive in the
order book later. This is not real in the high frequency
financial market. Figure 6 illustrates how the experiment
works. In our experiment, orders can be executed in three



different ways. The GA generates the limit price for each
limit order. At the time when limit order is submitted to
the order book, if the limit price crosses the best price in the
opposite side of the order book, it will be executed immedi-
ately at the current best price as a marketable limit order
(MLO). For instance, if the limit price of a buy order gen-
erated from GA is higher than the best ask price, this limit
buy order is traded at the best ask price. If an order can
not be executed during its lifetime, it will be automatically
traded as a market order (MO) at the best price at the end
of its lifetime. The last possibility is that the limit order
(LO) is traded during its lifetime.

Figure 6: Experiment

We used a population of 25 individuals, running for 450
generations, to evolve an efficient GA strategy and test it
with in-sample data and out-of-sample data separately. The
parameters used in GA can be seen from Table 3. At the
same time, we adopted another strategy to be compare with
our GA strategy, which is pure market order strategy (MOS).
It trades orders as market orders immediately after submis-
sion to the market.

Table 3: Parameters for Genetic Algorithm

Population size 25
Maximum number of generation 450

Generation gap 0.8
Crossover rate 0.8
Mutation rate 0.0005

Selection method Stochastic Universal Sampling
Crossover method Single-Point

4.4 Results and Discussion
Running both simulations for buy orders and sell orders

over 30 trials, we obtain the results shown in Tables 4 &
5. The ‘Best’ provides the best result for objective value
VWAP Ratio. The best results averaged over 30 trials are
reported in the ‘Mean’. The VWAP Ratio reveals the dif-
ference between the volume weighted execution price of GA
orders and the average traded price of all orders during the
whole simulation time. The better strategies have smaller
VWAP ratios. The VWAP ratio of pure market order strat-
egy, namely MOS, is also shown in Tables 4 & 5. In order to
analyze the GA strategy, the execution types of the 30 or-
ders are also calculated in our experiment. The three types
are MLO, LO and MO.

From Tables 4 & 5, the GA strategy outperforms MOS
strategy significantly, both in-sample and out-of-sample tests,
which is consistent with the results in [15]. And the two ta-
bles both shows that the GA strategy, which has more orders
executed in the way of LO, has smaller VWAP ratio, mean-
ing better performance. All the GA strategies with negative

Table 4: Results of Buy Order.

MOS GA Strategy
VWAP Ratio VWAP Ratio TradedOrderType

(10−3) (10−3) MLO LO MO
In-sample

Best 5.1029 -2.1741 7 15 8
Mean 5.4580 -1.7998 8 13 9

Out-of-sample
Best 2.5061 1.2779 12 3 15
Mean 3.4146 2.4061 13 3 14
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Figure 7: In-sample Results for Buy Order

VWAP ratios have more orders executed in the way of LO
than that executed in two other ways, except the best out-
of-sample strategy in Table 5.

Table 5: Results of Sell Order.

MOS GA Strategy
VWAP Ratio VWAP Ratio TradedOrderType

(10−3) (10−3) MLO LO MO
In-sample

Best 2.1644 -4.2316 6 13 11
Mean 2.6200 -3.3232 9 12 9

Out-of-sample
Best 1.9005 -0.4931 9 6 15
Mean 1.5803 0.6830 10 5 15

Also, GA strategies have achieved better VWAP than that
of the whole simulation time for buy and sell in in-sample
test, which is showed by the negative values of VWAP ra-
tios. This is more significant for the sell order. It is easy to
see this from Figures 7 & 8. Most of the execution prices,
red circles in these figures, are below the average price in
Figure 7 and are above the average price in Figure 8. But it
is not significant for out-of-sample tests. However, these re-
sults suggest the applicability and potential of GA in trade
execution.

5. CONCLUSION AND FUTURE WORK
In this paper, we present an evolutionary approach to the

trade execution problem. Initially, we built an order book
based artificial stock market (ASM) using agent-based mod-
eling, which is a powerful computer technique for model-
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Figure 8: In-sample Results for Sell Order

ing complex systems. The platform used here is a Swarm
platform in JAVA, which is open source. Using the order
flow produced by the ASM, we applied a Genetic Algorithm
for optimizing the parameters of efficient trade execution
strategies, in order to achieve a better execution price than
the currently popular benchmark Volume Weighted Average
Price (VWAP). In our experiments, GA evolved strategies
provide satisfactory results for this trade execution problem,
indicating Evolutionary Computation methodologies have
potential applications in the domain of trade execution. The
success of applying order book based ASM for trade execu-
tion experiment suggests an alternative way for testing trade
execution strategies, instead of using backtesting strategies
based on historical market data.

In future work, we intend to extend the application of the
EC to harder and dynamic optimization problems in trade
execution. For instance, if the price in market moves up or
moves down, how should the trader change the limit price
of limit order to get a better execution price? Kissell [13]
proposed three adaptation tactics, which are Target Cost,
Aggressive in the Money (AIM) and Passive in the Money
(PIM), based on price adjustments to be consistent with
investor’s implementation goal during execution. Genetic
Programming can be applied to this problem. Also, Agent-
based Artificial Stock Market can be combined with GP.
An agent with GP evolved strategy can be represented as
an Algorithmic Trader in ASM, whose purpose is to evolve
best execution strategy using GP. We also plan to relax more
assumptions in the ASM, such as adding market impact into
the current model.
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