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Abstract—Although many real world problems are dy-
namic in nature, the study of Genetic Programming in dy-
namic environments is still immature. This paper investigaes
the application of some recently proposed semantic-based
crossover operators on a series of dynamic problems. The op-
erators studied include Semantic Similarity based Crossar
and the Most Semantic Similarity based Crossover. The
experimental results show the advantage of using semantic-
based crossovers when tackling dynamic problems.
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presented in Section Ill. It is followed by a section de-
tailing our experimental settings. The experimental rssul
are shown and discussed in Section V. The last section
concludes the paper and highlights some potential future
work.

Il. RELATED WORK

This section briefly reviews the relevant literature for
this study. Firstly, a summary of ways in which seman-
tics have been employed in GP is provided, and this
is followed by an overview on the study of dynamic
environments.

In the field of Genetic Programming (GP) [24], [20], A. Semantics in Genetic Programming
researchers have recently paid more attention to semantic

information, with a dramatic increase in the number of

publications (e.g., [14], [16], [17], [19], [18], [1], [23]

[25], [27], [8]). Previously, most research has purely
focused on syntactic aspects of GP representation. From
programmer’s perspective, however, maintaining syntacti
correctness is only one part of program construction:

Incorporating semantics into GP has recently been con-
sidered by a number of GP researchers. This results in a
dramatic increase in the number of related publications.
Generally, the work falls into three main strands:

1) using formal methods [14], [16], [17], [19], [18]
2) using grammars [28], [8], [9]

maintaining program semantic correctness is much more 3) using structures such as GP trees [1], [23], [25], [27]
desirable. Thus incorporating semantic awareness in the The first approach in a series of work [14], [16],

GP evolutionary process could improve its performance[17] was advocated by Johnson. In this work, Abstract
extending the applicability of GP to problems that arelnterpretation and Model Checking are used to calcu-

difficult with purely syntactic approaches.

late/extract semantics. Then, semantic information isluse

In a recent work, Uy et al. proposed a Semantic Sim-to measure the fitness of individuals where it is unable to
ilarity based Crossover (SSC) with the aim to improveuse traditional sample point fitness. Consequently, Katz
semantic locality [27]. The basic idea of SSC is keepingand Peled used model checking to solve the Mutual
a semantically small change in crossover by exchangingxclusion problem [19], [18]. Again, individuals’ fitness i
two semantically similar subtrees. The experiments in [27]quantified through model checking. These formal methods
show that SSC helps to significantly improve GP perfor-have a strict mathematical foundation, that potentially ma
mance in comparison with standard crossover in solvingid GP. Perhaps because of high complexity, however,
a class of real valued symbolic regression problems. SS¢hese methods have seen only limited research despite the
has been extended to the Most Semantic Similarity baseddvocacy of Johnson [15]. Their main application to date
Crossover (MSSC) [26] to predict time series and thehas been in evolving control strategies.
experimental results in [26] show that MSSC helps to The second methodology uses Attribute Grammars as
improve the performance of GP in solving this problem.the main formalism. By adding attributes to a grammatr,
However, the problems in the previous studies [27], [26]some useful semantic information about individuals can
are static problems. Therefore, it raises a question whethée generated. This information can then be used to delete
these semantic-based crossovers still maintain their suad individuals [9], or to prevent generating semantically
perior performance when they are applied to dynamidnvalid ones [28], [8]. The attributes used to represent
problems? This paper aims to answer the above questiosemantics are, however, problem dependent, and it is not

The remainder of the paper is organised as followsalways easy to design such attributes for a new problem.

In the next section we review the literature on GP with

In the last category, controlling the GP operators is the

semantics and a description of dynamic environmentsmajor theme. In [1], the authors investigated the effect
The Semantic Similarity based Crossover (SSC) and thef semantic diversity on Boolean domains, checking the
Most Semantic Similarity based Crossover (MSSC) aresemantic equivalence between offspring and parents by



transforming them to a canonical form, Reduced Orderedhe search space. To the best of our knowledge, semantics
Binary Decision Diagrams (ROBDDSs) [12]. This informa- has not been employed as a technique in solving dynamic
tion is used to determine which offspring are copied to theproblems. This paper aims to promote semantic locality
next generation. The method improved GP performancepf crossover and applies new semantic-based crossovers
presumably because it increased semantic diversity. Th® dynamic problems.

method has also been applied to mutation [3] and to the
initialisation phase of GP [2].

While, most of previous research on semantics in GP This section presents the methods used in the study. A
were focused on combinatorial and boolean problems [8]way to measure semantics in GP is presented, followed by
[1], [23], [19], research on real-valued domains [25], a detailed description of the way in which attributes can be
[27], [21] is only recently considered. Krawiec and Li- used to store semantics. We then present Semantic Simi-
chocki [21] based the semantics of individuals on fithesdarity based Crossover and its more recent improvement,
cases, using it to guide the crossover operafgpfoxi- the Most Semantic Similarity based Crossover.
mating Geometric CrossoverAGC). AGC turned out to ) )
be not significantly better than standard crossover (SC) ot Measuring Semantics
their tested real-valued problems, and only slightly lsette  Although, an exact definition of semantics is non-trivial,
on Boolean domains. in the field of GP, semantics of an individual program

Uy et al. [25] proposed Semantics Aware Crossovelis often understood as the behavior of that program with
(SAC) with an aim to promote semantic diversity. SAC respect to a set of input values. In this paper, we follow
is based on checking semantic equivalence of subtrees. flhe previous work in [27] in using sampling semantics to
showed limited improvement on some real-valued probimeasure semantics of any subtree. FormallySampling
lems; SAC was subsequently extended to Semantic SimiSemanticSS) of a (sub)tree is defined as follows:
larity based Crossover (SSC) [27], which performed better Let F be a function expressed by a (sub)tieeon a
than both SC and SAC on tested real valued regressiodomainD. Let P be a sequence of points sampled from
problems [27]. The idea of SSC was then extended talomainD, P= (p1, p2, ..., pn). Then, theSampling Seman-
the Most Semantic Similarity based Crossover (MSSC) intics of T on P in domainD is the corresponding sequence
solving time series prediction problem. However, in [27], S= (s1,%,...,Sv) Wheres =F(p;),i =1,2,...,N.

[26], SSC and MSSC were only tested on some static The optimal choice oN andP depends on the problem;
problems. The objective of this paper is to investigate howwe follow the approach of [27] in setting the number of
SSC and MSSC perform when they are applied to dynamipoints for evaluating the semantics equal to the number of
problems. fitness cases (20 points — Section V) and in choosing the
sequence of pointB coincide to the fithess cases of the
problem.

Before examining the performance of an algorithm in' Based on SS, we define @ampling Semantic Dis-
dynamic problems, it is important to define exactly whattance (SSD) between two subtrees. It differs from that
is a dynamic problem. In a broad context, dynamic probin [27] in using the mean absolute difference in SS
lems can mostly be defined as problems in which somgajlyes, rather than the sum of absolute difference. Let
elements under their domain vary with the progression ofy — (Ug,Up,...,un) andV = (v,Va,...,Vy) represent the
time [10]. There are many aspects in which a problemsss of two subtree§, andS;; then the SSD betwee®
can be considered as dynamic [6], [11]. In the context Ofand& is defined in equation 1:

Genetic Programming, the inputs, the constraints, or even

the objective of the problem itself could be changed over

time. In this paper, we restrict the definition of dynamism SSOS, ) = N (1)
where the objective function of the problem changed with \we follow [27] in defining a semantic relationship,

respect to time. In other words, the objective of evolutiongemantic SimilaritySSi), on the basis that the exchanging

I1l. METHODS

B. Dynamic Environment

N Jui v

becomes dependent on time: of subtrees in crossover is most likely to be beneficial
if they are not semantically identical, but also not too
f(x) = f(xt) different. Two subtrees are semantically similar if their

SSD lies within a positive interval. The formal definition
of SSi between subtree§; and & is given in the
following equation:

where f is the fithess functionx is an individual and is
the current generation.

So far, the studies of applying evolutionary compu-
tation to dynamic environments have focused on two
main approaches: Memory recall [5], [4] and promoting
diversity [13], [7]. The idea of the first method is to SS(St,Sh) = if a < SSD(Sk,Sk) < B
equip algorithms with a mechanism to recall previous
solutions, and the motivation for the second method is
to prevent the premature convergence of the population of else false
a searcher resulting in its failure to discover new areas of

then true



the corresponding fitness cases. This helps to speed up
crossover in AGP.

C. Semantic Similarity-based Crossover

Inspired from the difficulty in designing an operator
with the property of high locality in GP, Semantic Sim-
ilarity based Crossover (SSC) was first proposed in [27]
oA - with the main o_bje_ctive being to ir_nprove the_ locality of
A2=0.5  Az-05 crossover. SSC is in fact an extension of SAC in two ways.
AL Az Firstly, when two subtrees are selected for crossover, thei
semantic similarity, rather than semantic equivalenceas i
SAC, is checked. Secondly, semantic similarity is more
difficult to satisfy than semantic equivalence, so repeated
failures may occur. Thus SSC uses multiple trials to
find a semantically similar pair, only reverting to random
selection after passing a bound on the number of trials.
Algorithm 1 shows how SSC operates in detail. In our
N S S N S S experiments, the value of MaXrial was set to different
A2=1 2205 A2-05  maeas A=l ps05 a-05  mags  Values to see how these values affect SSC’s performance
AL AsmL as A3=1 AL asL as A3=1 in solving dynamic problems.

Figure 1. An individual in AGP and the Process of Evaluatitey i
Attributes. Algorithm 1: Semantic Similarity based Crossover

select Parent P;;

wherea and B are two predefined constants, thever select Parent 2y;

and upper bounds for semantics sensitivity. In general, Count=0;

the best values for these semantic sensitivity bounds have While CountcMax_Trial do ,
been found to be problem dependent. In this work we set choose a random crossover poSbtreg in Pi;

a =103 andB = 0.4, which have been found to provide choose a random crossover poSuibtree in P;
good performance in the case of SSC. generate a number of random poinB 6n the
problem domain;

B. Attribute Based Representation calculate the SSD betwe&ubtree and Subtree

onP
Since SS is expensive to compute, we reduce the cost if Subtree is similar to Subtregthen
by caching. The SS of each subtree is stored in the root execute crossover,
node using attributes; the resulting GP system is known add the children to the new population;
asAttributes Genetic Programmin@\GP). In more detail, | return true;
else

assume that the problem ha$ fitness cases; theN
attributes are added to each node in the individual’s tree.

| Count=Count+1;

In figure 1N is set to 3, so three attributég, Ay, Az are choose a random crossover poBiibtreg in Py,
added to every node, to cache the SS of the corresponding choose a random crossover po8ubtree in Py;
subtree. execute crossover;

Figure 1 also describes the process of evaluating at- return true;
tribute values in AGP. Initially (Figure 1a), the attribate
are set to zero. Assume that the fitness cases include three S
values 0, 0.5, and 1, then, in the second step, the attributd® The Most Semantic Similarity-based Crossover
of the leaves of the individual are assigned with these The Most Semantic Similarity based Crossover (MSSC)
values (Figure 1b, attributes at the nodes labeled with avas proposed in [26] as an improvement of SSC in
constant are assigned with the value of that constantpredicting time series. MSSC further exploits the main
Next, the attributes at the level above the leaves arédea of SSC. The purpose of MSSC is to avoid the manual
assigned with values. At this point, the semantics of thedetermination of the semantic sensitivities in SSC, bilt sti
leaves is passed upward to their parents, and the operatheep a small semantic change in child individual(s) after
at those nodes are applied to calculate the values facrossover. MSSC works as follows. Firstly, N subtree pairs
the attributes (Figure 1c) at these nodes. This process &re randomly selected from the two parents. The Sampling
then continued until the attributes at the root node areSemantic distance (SSD) of two subtrees in each pair is
assigned with values (Figure 1d). It is noted that whencalculated. The pair that have the smallest (most similar
this process of value propagation completes, the fithess dfut not equivalent) semantic distance of two subtrees in
the individual can be obtained by comparing the semantic$l pairs is chosen for crossover. In MSSC, the concept of
of the root node with the values of the target function onsemantic equivalence is the same as in SAC. Algorithm




Algorithm 2: The Most Semantic Similarity based
Crossover

Table |
RUN AND EVOLUTIONARY PARAMETER VALUES.

select Parent Py;
select Parent 2;
Count=0;
Max=Extremal Value;
while CounkcMax_Trial do
choose a random crossover poSubtree in Py;
choose a random crossover poSubtreg in Py;
SD=SSDEubtreg, Subtreg)
if a < SD < Maxthen
Max=SD;
CrossPointlSubtreg;
CrossPoint2Subtree;

Execute crossover by exchange the subtrees at
CrossPointl and CrossPoint2;

2 shows how MSSC works in detail. In the experiments
of MSSC, the value of MaxTrial (TM) is again set as in

SSC, and ExtremaValue is set to 18

IV. EXPERIMENTAL SETTINGS

Parameters Value
Population size 500
Generation 50
Selection Tournament
Tournament size 3
Crossover probability 0.9
Mutation probability 0.05

Initial Max depth 6

Max depth 15

Max depth of mutation tree 15
Non-terminals +, -, *, | (protected one),
sin, cos, exp, log (protected one)

Terminals X, 1
Training set 20 random points in [-1,1]
Raw fitness mean of absolute error on all

fitness cases
100 independent runs for
each value

Trials per treatment

5. cos(x)+sin(x)+sif(x)+sim(x)+sin*(x)+simf(x)

This section outlines the settings used for our exper-
iments. The dynamic problems used in this study are F4 = 1. cos(x)+sin(x)

presented, followed by the GP parameters settings.

A. Dynamic Problems

In order to achieve dynamic problems, the static prob-

N

. cos(x)+sin(x)+sin(2x)

3. cos(x)+sin(x)+sin(2x)+sin(3x)

4. cos(x)+sin(x)+sin(2x)+sin(3x)+sin(4x)

5. cos(x)+sin(x)+sin(2x)+sin(3x)+sin(4x)+sin(5x)

lems are extended so that their fithess functions change

with respect to time. The population is allowed to evolve These problems can be divided into two groups. The
normally for a certain number of generations before thefirst group includes two polynomial problems and the

objective function changes. This number of generationsecond group comprises two trigonometrical problems.
is known asT. In our experiments in this papef, is  The first polynomial problem changes from simple form

fixed at 10, meaning that the evolution continues for 10to complex form while the second one changes conversely.
generations before the fitness function changes. At thigoth trigonometrical problems change from simple form

point, the entire population is evaluated on the new fitnesso more complex form. The objective of the research is
functions and the evolution then continues for 10 moreto study the behaviour of semantic-based crossovers with
generations before the objective function changes oncdifferent types of changing environment.

more. For the experiments in this paper, the four following

dynamic problems are used.
F1=1. x+¥
2. X+x2+x3
3. xH+x3+x4
4. XXX +x4+x5
5. x+HX+x3+x*+x2+x8

1. X+R+x3+x4+x2+x8
2. X3 +x44x5
3. XHX+x3+x4
4. x+x2+x3

5

X+

1. cos(x)+sin(x)

2. cos(x)+sin(x)+sif(x)

3. cos(x)+sin(x)+sif(x)+sin’(x)

4. cos(x)+sin(x)+sif(x)+sin(x)+sirf(x)

B. GP Parameters Settings

The GP parameters used for our experiments are shown
in Table I. Since all the above dynamic problems change
the fitness function five times and each fitness function
is evolved over 10 generations, the maximum number of
generations is 50. Despite this being an experiment purely
concerned with the crossover, we have retained mutation
with a small rate in the system because the aim of the
experiment is to study crossover in the context of a normal
GP run.

For SSC, the lower bound of semantic sensitivity is set
at 103 and the upper bound is set at 0.4. Six values of
Max_Trial (MT), 4, 8, 12, 16, 20, 24 are tested. These
configurations of SSC will be referred to as SSCX with
X=4, 8, 12, 16, 20, 24. The same values of MT are used
for MSSC and the similar conventional naming is used.
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Figure 2. The plot of mean best fithess, MT=12 for both SSC a®E®1 The lower lines are better.

V. RESULTS AND DISCUSSION the values are averaged across the runs and the ratio
between standard crossover and semantic-based crossovers

The results of the experiments are presented in thISére calculated. If these ratios are smaller than 1, meaning

section. The best fitness across the runs is averaged OVt‘?]rat semantic-based crossovers improve fitness faster than
100 runs and is plotted in Figure 2 (MT=12 for SSC and P

MSSC in this figure). Three properties of these graphs arﬁ':andard crossover. Whereas, .'f these vfalue are greater
an 1, then standard crossover improves fitness faster than
analysed (see Table ). semantic-based crossovers in each period
Area under the curve (AUC) is the area covered by i o P '
each line. The value of semantic-based crossover (SSC, Interpreting the plots seen in Figure 2, we can see that
and MSSC) is then divided by the value of standardse€mantic-based crossovers, both SSC and MSSC perform

crossover (SC). Since the objective is to minimise fitnesdetter than standard crossover in solving these dynamic
then if the ratio is smaller than 1, it indicates that, Problems. It can be seen from this figure that the mean
generally, SSC and MSSC perform better than SC andest fitness of SSC and MSSC are often smaller than
smaller values are better. If these values are larger than @ SC. The figure also shows that when the problems
then SC is better than semantic-based crossovers. change from simple form to complex form (F1, F3 and F4)
Fall off (FO) is the immediate difference between the advantage of semantic-based crossovers over standard
fitness before and after a change in the environmerroSSOver seem gr(_eaterthan when the proble_m adapts from
occurs. This quantity presents the ability to react withc@mplex form to simple form (F2). Comparing between
the change in the environment of each crossover. Th&VO semantic-based crossovers, SSC and MSSC, the figure
values are averaged across the runs and the ratio betwedhiows that they perform mostly equally.
semantic-based crossovers and standard crossover are calThe values of AUC in Table Il are consistent with
culated. If these ratios are smaller than 1, it means thaFigure 2. It can be seen from this table that the values
semantic-based crossover react better with the change wf AUC are always smaller than 1 and in many cases they
the environment and vice versus. are mostly equal to 0.5. This indicates that, in general, the
Drawdown (DD) is the difference between fithess from populations of SSC and MSSC are fitter than SC across
the start of a period to the end of it. This value reflectthe dynamic runs. The table also shows that the superior
the speed to improve fithess of each method. Againperformance of SSC and MSSC over SSC are greater on



Table Il
THE ANALYSIS OF SOME PROPERTIES OF THE MEAN BEST FITNESS OF SEMTIC-BASED CROSSOVERS IN COMPARISON WITH STANDARD
CROSSOVER THE VALUES FORAUC, FO, DDARE SMALLER THAN 1 INDICATE THAT SEMANTIC-BASED CROSSOVERS ARE BETTER THAN
STANDARD CROSSOVER CONVERSELY, IF THEY ARE GREATER THAN1, STANDARD CROSSOVER IS BETTER

Methods F1 F2 F3 F4

AUC FO DD | AUC FO DD | AUC FO DD | AUC FO DD
SSC4 064 081 104 084 174 093 074 104 092 069 093 0.92
SSC8 057 078 105 082 124 096 072 109 088 063 095 0.88

SSC12 052 071 107 081 143 095 069 109 0.88 062 096 0.86
SSC16 045 063 113 078 120 0.97 072 110 089 063 096 0.88
SSC20 046 062 112 078 134 096 075 120 0.85 059 097 0.84
SSC24 044 062 113 078 145 095 073 114 088 064 100 0.82
MSSC4 072 089 099 087 111 098 071 101 091 0.78 094 0.97
MSSC8 052 075 105 080 169 093 075 111 090 066 097 0.87
MSSC12| 044 066 110 080 197 092 077 122 0.83 067 099 0.85
MSSC16| 044 063 113 081 236 090 082 138 0.79 071 100 0.81
MSSC20| 043 061 114 082 258 089 080 143 0.73 082 111 0.79
MSSC24 | 042 051 122 082 267 088 084 142 076 085 113 0.79

F1, F3, F4 than on F2. fitness of these crossovers are plotted and some important
While the AUC values provide evidence that semantic-properties of these graphs are analysed. The results show
based crossovers performance is better than standatidat semantic-based crossovers help to improve the perfor-
crossover across the evolutionary process, the values fonance of GP compared to standard crossover in solving
FO are mixed. On two problems, F1 and F4, FO are ofterdynamic problems. Further analyses show that SSC and
smaller than 1 and on two left problems, FO are greateMSSC improve fitness faster than SC, although they do
than 1. Therefore, it is difficult to conclude about the abil- not respond to the change in the environment better than
ity to react with change in the environment of semantic-SC.
based crossovers compared to standard crossover. There are a number of avenues for future research
Finally, the table shows that the speed to improve fithesshat can be developed from this paper. Firstly, this paper
in each period of semantic-based crossovers are oftestudies dynamic problems with an environmental change
faster than for standard crossover. It can be observedhich occurs at regular intervals. In the near future we
from the table that the values for DD are often smalleraim to study these problems with different frequencies
than 1 with only exception on function F1. This result is of change. Secondly, we want to combine semantic-based
understandable since the previous researches have showrossovers with some diversity promoting methods, such
that semantic-based crossovers, SSC and MSSC help & fitness sharing [22] to see if they help to gain further im-
improve the performance of GP versus standard crossoveprovements in dynamic environments. Last, but not least,
This can be seen as a reason that helps semantic-based would like to create a class of dynamic benchmark
crossovers perform better than standard crossover in dysroblems suitable for GP.
namic problems.
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