
Semantic-based Subtree Crossover Applied to Dynamic Problems

Nguyen Quang Uy
NCRA Group
UCD, Ireland

quanguyhn@gmail.com

Eoin Murphy
NCRA Group
UCD, Ireland

eoin.murphy@ucd.ie

Michael O’Neill
NCRA Group
UCD, Ireland

m.oneill@ucd.ie

Nguyen Xuan Hoai
Faculty of IT

Hanoi University
nxhoai@gmail.com

Abstract—Although many real world problems are dy-
namic in nature, the study of Genetic Programming in dy-
namic environments is still immature. This paper investigates
the application of some recently proposed semantic-based
crossover operators on a series of dynamic problems. The op-
erators studied include Semantic Similarity based Crossover
and the Most Semantic Similarity based Crossover. The
experimental results show the advantage of using semantic-
based crossovers when tackling dynamic problems.

Keywords-Genetic Programming; Semantics; Crossover;
Dynamic Problems;

I. I NTRODUCTION

In the field of Genetic Programming (GP) [24], [20],
researchers have recently paid more attention to semantic
information, with a dramatic increase in the number of
publications (e.g., [14], [16], [17], [19], [18], [1], [23],
[25], [27], [8]). Previously, most research has purely
focused on syntactic aspects of GP representation. From a
programmer’s perspective, however, maintaining syntactic
correctness is only one part of program construction:
maintaining program semantic correctness is much more
desirable. Thus incorporating semantic awareness in the
GP evolutionary process could improve its performance,
extending the applicability of GP to problems that are
difficult with purely syntactic approaches.

In a recent work, Uy et al. proposed a Semantic Sim-
ilarity based Crossover (SSC) with the aim to improve
semantic locality [27]. The basic idea of SSC is keeping
a semantically small change in crossover by exchanging
two semantically similar subtrees. The experiments in [27]
show that SSC helps to significantly improve GP perfor-
mance in comparison with standard crossover in solving
a class of real valued symbolic regression problems. SSC
has been extended to the Most Semantic Similarity based
Crossover (MSSC) [26] to predict time series and the
experimental results in [26] show that MSSC helps to
improve the performance of GP in solving this problem.
However, the problems in the previous studies [27], [26]
are static problems. Therefore, it raises a question whether
these semantic-based crossovers still maintain their su-
perior performance when they are applied to dynamic
problems? This paper aims to answer the above question.

The remainder of the paper is organised as follows.
In the next section we review the literature on GP with
semantics and a description of dynamic environments.
The Semantic Similarity based Crossover (SSC) and the
Most Semantic Similarity based Crossover (MSSC) are

presented in Section III. It is followed by a section de-
tailing our experimental settings. The experimental results
are shown and discussed in Section V. The last section
concludes the paper and highlights some potential future
work.

II. RELATED WORK

This section briefly reviews the relevant literature for
this study. Firstly, a summary of ways in which seman-
tics have been employed in GP is provided, and this
is followed by an overview on the study of dynamic
environments.

A. Semantics in Genetic Programming

Incorporating semantics into GP has recently been con-
sidered by a number of GP researchers. This results in a
dramatic increase in the number of related publications.
Generally, the work falls into three main strands:

1) using formal methods [14], [16], [17], [19], [18]
2) using grammars [28], [8], [9]
3) using structures such as GP trees [1], [23], [25], [27]

The first approach in a series of work [14], [16],
[17] was advocated by Johnson. In this work, Abstract
Interpretation and Model Checking are used to calcu-
late/extract semantics. Then, semantic information is used
to measure the fitness of individuals where it is unable to
use traditional sample point fitness. Consequently, Katz
and Peled used model checking to solve the Mutual
Exclusion problem [19], [18]. Again, individuals’ fitness is
quantified through model checking. These formal methods
have a strict mathematical foundation, that potentially may
aid GP. Perhaps because of high complexity, however,
these methods have seen only limited research despite the
advocacy of Johnson [15]. Their main application to date
has been in evolving control strategies.

The second methodology uses Attribute Grammars as
the main formalism. By adding attributes to a grammar,
some useful semantic information about individuals can
be generated. This information can then be used to delete
bad individuals [9], or to prevent generating semantically
invalid ones [28], [8]. The attributes used to represent
semantics are, however, problem dependent, and it is not
always easy to design such attributes for a new problem.

In the last category, controlling the GP operators is the
major theme. In [1], the authors investigated the effect
of semantic diversity on Boolean domains, checking the
semantic equivalence between offspring and parents by

transforming them to a canonical form, Reduced Ordered
Binary Decision Diagrams (ROBDDs) [12]. This informa-
tion is used to determine which offspring are copied to the
next generation. The method improved GP performance,
presumably because it increased semantic diversity. The
method has also been applied to mutation [3] and to the
initialisation phase of GP [2].

While, most of previous research on semantics in GP
were focused on combinatorial and boolean problems [8],
[1], [23], [19], research on real-valued domains [25],
[27], [21] is only recently considered. Krawiec and Li-
chocki [21] based the semantics of individuals on fitness
cases, using it to guide the crossover operator (Approxi-
mating Geometric Crossover- AGC). AGC turned out to
be not significantly better than standard crossover (SC) on
their tested real-valued problems, and only slightly better
on Boolean domains.

Uy et al. [25] proposed Semantics Aware Crossover
(SAC) with an aim to promote semantic diversity. SAC
is based on checking semantic equivalence of subtrees. It
showed limited improvement on some real-valued prob-
lems; SAC was subsequently extended to Semantic Simi-
larity based Crossover (SSC) [27], which performed better
than both SC and SAC on tested real valued regression
problems [27]. The idea of SSC was then extended to
the Most Semantic Similarity based Crossover (MSSC) in
solving time series prediction problem. However, in [27],
[26], SSC and MSSC were only tested on some static
problems. The objective of this paper is to investigate how
SSC and MSSC perform when they are applied to dynamic
problems.

B. Dynamic Environment

Before examining the performance of an algorithm in
dynamic problems, it is important to define exactly what
is a dynamic problem. In a broad context, dynamic prob-
lems can mostly be defined as problems in which some
elements under their domain vary with the progression of
time [10]. There are many aspects in which a problem
can be considered as dynamic [6], [11]. In the context of
Genetic Programming, the inputs, the constraints, or even
the objective of the problem itself could be changed over
time. In this paper, we restrict the definition of dynamism
where the objective function of the problem changed with
respect to time. In other words, the objective of evolution
becomes dependent on time:

f (x) = f (x, t)

where f is the fitness function,x is an individual andt is
the current generation.

So far, the studies of applying evolutionary compu-
tation to dynamic environments have focused on two
main approaches: Memory recall [5], [4] and promoting
diversity [13], [7]. The idea of the first method is to
equip algorithms with a mechanism to recall previous
solutions, and the motivation for the second method is
to prevent the premature convergence of the population of
a searcher resulting in its failure to discover new areas of

the search space. To the best of our knowledge, semantics
has not been employed as a technique in solving dynamic
problems. This paper aims to promote semantic locality
of crossover and applies new semantic-based crossovers
to dynamic problems.

III. M ETHODS

This section presents the methods used in the study. A
way to measure semantics in GP is presented, followed by
a detailed description of the way in which attributes can be
used to store semantics. We then present Semantic Simi-
larity based Crossover and its more recent improvement,
the Most Semantic Similarity based Crossover.

A. Measuring Semantics

Although, an exact definition of semantics is non-trivial,
in the field of GP, semantics of an individual program
is often understood as the behavior of that program with
respect to a set of input values. In this paper, we follow
the previous work in [27] in using sampling semantics to
measure semantics of any subtree. Formally, theSampling
Semantics(SS) of a (sub)tree is defined as follows:

Let F be a function expressed by a (sub)treeT on a
domainD. Let P be a sequence of points sampled from
domainD, P=(p1, p2, ..., pN). Then, theSampling Seman-
tics of T on P in domainD is the corresponding sequence
S= (s1,s2, ...,sN) wheresi = F(pi), i = 1,2, ...,N.

The optimal choice ofN andP depends on the problem;
we follow the approach of [27] in setting the number of
points for evaluating the semantics equal to the number of
fitness cases (20 points – Section IV) and in choosing the
sequence of pointsP coincide to the fitness cases of the
problem.

Based on SS, we define aSampling Semantic Dis-
tance (SSD) between two subtrees. It differs from that
in [27] in using the mean absolute difference in SS
values, rather than the sum of absolute difference. Let
U = (u1,u2, ...,uN) and V = (v1,v2, ...,vN) represent the
SSs of two subtrees,S1 andS2; then the SSD betweenS1

andS2 is defined in equation 1:

SSD(S1,S2) =
∑N

i=1 |ui −vi|

N
(1)

We follow [27] in defining a semantic relationship,
Semantic Similarity(SSi), on the basis that the exchanging
of subtrees in crossover is most likely to be beneficial
if they are not semantically identical, but also not too
different. Two subtrees are semantically similar if their
SSD lies within a positive interval. The formal definition
of SSi between subtreesS1 and S2 is given in the
following equation:

SSi(St1,St2) = if α < SSD(St1,St2) < β
then true

else false

X

A2=0
A3=0

A1=0
A2=0
A3=0

A1=0
A2=0
A3=0

A1=0
A2=0
A3=0

A1=0
A2=0
A3=0

A1=0
A2=0
A3=0

A1=0
A2=0
A3=0

X X1

(a)*

+ +

A1=0

X

A2=0.5
A3=1

A1=0
A2=0.5
A3=1

A1=0
A2=0.5
A3=1

A1=0
A2=0
A3=0

A1=0
A2=0
A3=0

A1=0
A2=0
A3=0

A1=1
A2=1
A3=1

X X1

(b)*

+ +

A1=0

X

A2=0.5
A3=1

A1=0
A2=0.5
A3=1

A1=0
A2=0.5
A3=1

A1=0
A2=0
A3=0

A1=1
A2=1
A3=1

A1=1
A2=1.5
A3=2

A1=0
A2=1
A3=2

X X1

(c)*

+ +

A1=0

X

A2=0.5
A3=1

A1=0
A2=0.5
A3=1

A1=0
A2=0.5
A3=1

A1=1
A2=1
A3=1

A1=1
A2=1.5
A3=2

A1=0
A2=1
A3=2

A1=0
A2=1.5
A3=4

X X1

(d)*

+ +

A1=0

Figure 1. An individual in AGP and the Process of Evaluating its
Attributes.

where α and β are two predefined constants, thelower
and upper bounds for semantics sensitivity. In general,
the best values for these semantic sensitivity bounds have
been found to be problem dependent. In this work we set
α = 10−3 andβ = 0.4, which have been found to provide
good performance in the case of SSC.

B. Attribute Based Representation

Since SS is expensive to compute, we reduce the cost
by caching. The SS of each subtree is stored in the root
node using attributes; the resulting GP system is known
asAttributes Genetic Programming(AGP). In more detail,
assume that the problem hasN fitness cases; thenN
attributes are added to each node in the individual’s tree.
In figure 1N is set to 3, so three attributesA1,A2,A3 are
added to every node, to cache the SS of the corresponding
subtree.

Figure 1 also describes the process of evaluating at-
tribute values in AGP. Initially (Figure 1a), the attributes
are set to zero. Assume that the fitness cases include three
values 0, 0.5, and 1, then, in the second step, the attributes
of the leaves of the individual are assigned with these
values (Figure 1b, attributes at the nodes labeled with a
constant are assigned with the value of that constant).
Next, the attributes at the level above the leaves are
assigned with values. At this point, the semantics of the
leaves is passed upward to their parents, and the operator
at those nodes are applied to calculate the values for
the attributes (Figure 1c) at these nodes. This process is
then continued until the attributes at the root node are
assigned with values (Figure 1d). It is noted that when
this process of value propagation completes, the fitness of
the individual can be obtained by comparing the semantics
of the root node with the values of the target function on

the corresponding fitness cases. This helps to speed up
crossover in AGP.

C. Semantic Similarity-based Crossover

Inspired from the difficulty in designing an operator
with the property of high locality in GP, Semantic Sim-
ilarity based Crossover (SSC) was first proposed in [27]
with the main objective being to improve the locality of
crossover. SSC is in fact an extension of SAC in two ways.
Firstly, when two subtrees are selected for crossover, their
semantic similarity, rather than semantic equivalence as in
SAC, is checked. Secondly, semantic similarity is more
difficult to satisfy than semantic equivalence, so repeated
failures may occur. Thus SSC uses multiple trials to
find a semantically similar pair, only reverting to random
selection after passing a bound on the number of trials.
Algorithm 1 shows how SSC operates in detail. In our
experiments, the value of MaxTrial was set to different
values to see how these values affect SSC’s performance
in solving dynamic problems.

Algorithm 1 : Semantic Similarity based Crossover

select Parent 1P1;
select Parent 2P2;
Count=0;
while Count<Max Trial do

choose a random crossover pointSubtree1 in P1;
choose a random crossover pointSubtree2 in P2;
generate a number of random points (P) on the
problem domain;
calculate the SSD betweenSubtree1 andSubtree2
on P
if Subtree1 is similar to Subtree2 then

execute crossover;
add the children to the new population;
return true;

else
Count=Count+1;

choose a random crossover pointSubtree1 in P1;
choose a random crossover pointSubtree2 in P2;
execute crossover;
return true;

D. The Most Semantic Similarity-based Crossover

The Most Semantic Similarity based Crossover (MSSC)
was proposed in [26] as an improvement of SSC in
predicting time series. MSSC further exploits the main
idea of SSC. The purpose of MSSC is to avoid the manual
determination of the semantic sensitivities in SSC, but still
keep a small semantic change in child individual(s) after
crossover. MSSC works as follows. Firstly, N subtree pairs
are randomly selected from the two parents. The Sampling
Semantic distance (SSD) of two subtrees in each pair is
calculated. The pair that have the smallest (most similar
but not equivalent) semantic distance of two subtrees in
N pairs is chosen for crossover. In MSSC, the concept of
semantic equivalence is the same as in SAC. Algorithm

Algorithm 2 : The Most Semantic Similarity based
Crossover

select Parent 1P1;
select Parent 2P2;
Count=0;
Max=ExtremalValue;
while Count<Max Trial do

choose a random crossover pointSubtree1 in P1;
choose a random crossover pointSubtree2 in P2;
SD=SSD(Subtree1, Subtree2)
if α < SD < Max then

Max=SD;
CrossPoint1=Subtree1;
CrossPoint2=Subtree2;

Execute crossover by exchange the subtrees at
CrossPoint1 and CrossPoint2;

2 shows how MSSC works in detail. In the experiments
of MSSC, the value of MaxTrial (TM) is again set as in
SSC, and ExtremalValue is set to 106.

IV. EXPERIMENTAL SETTINGS

This section outlines the settings used for our exper-
iments. The dynamic problems used in this study are
presented, followed by the GP parameters settings.

A. Dynamic Problems

In order to achieve dynamic problems, the static prob-
lems are extended so that their fitness functions change
with respect to time. The population is allowed to evolve
normally for a certain number of generations before the
objective function changes. This number of generations
is known asT. In our experiments in this paper,T is
fixed at 10, meaning that the evolution continues for 10
generations before the fitness function changes. At this
point, the entire population is evaluated on the new fitness
functions and the evolution then continues for 10 more
generations before the objective function changes once
more. For the experiments in this paper, the four following
dynamic problems are used.

F1 = 1. x+x2

2. x+x2+x3

3. x+x2+x3+x4

4. x+x2+x3+x4+x5

5. x+x2+x3+x4+x5+x6

F2 = 1. x+x2+x3+x4+x5+x6

2. x+x2+x3+x4+x5

3. x+x2+x3+x4

4. x+x2+x3

5. x+x2

F3 = 1. cos(x)+sin(x)
2. cos(x)+sin(x)+sin2(x)
3. cos(x)+sin(x)+sin2(x)+sin3(x)
4. cos(x)+sin(x)+sin2(x)+sin3(x)+sin4(x)

Table I
RUN AND EVOLUTIONARY PARAMETER VALUES.

Parameters Value

Population size 500
Generation 50
Selection Tournament
Tournament size 3
Crossover probability 0.9
Mutation probability 0.05
Initial Max depth 6
Max depth 15
Max depth of mutation tree 15
Non-terminals +, -, *, / (protected one),

sin, cos, exp, log (protected one)
Terminals X, 1
Training set 20 random points in [-1,1]
Raw fitness mean of absolute error on all

fitness cases
Trials per treatment 100 independent runs for

each value

5. cos(x)+sin(x)+sin2(x)+sin3(x)+sin4(x)+sin5(x)

F4 = 1. cos(x)+sin(x)
2. cos(x)+sin(x)+sin(2x)
3. cos(x)+sin(x)+sin(2x)+sin(3x)
4. cos(x)+sin(x)+sin(2x)+sin(3x)+sin(4x)
5. cos(x)+sin(x)+sin(2x)+sin(3x)+sin(4x)+sin(5x)

These problems can be divided into two groups. The
first group includes two polynomial problems and the
second group comprises two trigonometrical problems.
The first polynomial problem changes from simple form
to complex form while the second one changes conversely.
Both trigonometrical problems change from simple form
to more complex form. The objective of the research is
to study the behaviour of semantic-based crossovers with
different types of changing environment.

B. GP Parameters Settings

The GP parameters used for our experiments are shown
in Table I. Since all the above dynamic problems change
the fitness function five times and each fitness function
is evolved over 10 generations, the maximum number of
generations is 50. Despite this being an experiment purely
concerned with the crossover, we have retained mutation
with a small rate in the system because the aim of the
experiment is to study crossover in the context of a normal
GP run.

For SSC, the lower bound of semantic sensitivity is set
at 10−3 and the upper bound is set at 0.4. Six values of
Max Trial (MT), 4, 8, 12, 16, 20, 24 are tested. These
configurations of SSC will be referred to as SSCX with
X=4, 8, 12, 16, 20, 24. The same values of MT are used
for MSSC and the similar conventional naming is used.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

5 10 15 20 25 30 35 40 45 50

B
es

t F
itn

es
s

Generations

F1
SC

SSC
MSSC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15 20 25 30 35 40 45 50

B
es

t F
itn

es
s

Generations

F2
SC

SSC
MSSC

0

0.02

0.04

0.06

0.08

0.1

0.12

5 10 15 20 25 30 35 40 45 50

B
es

t F
itn

es
s

Generations

F3
SC

SSC
MSSC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35 40 45 50

B
es

t F
itn

es
s

Generations

F4
SC

SSC
MSSC

Figure 2. The plot of mean best fitness, MT=12 for both SSC and MSSC. The lower lines are better.

V. RESULTS AND DISCUSSION

The results of the experiments are presented in this
section. The best fitness across the runs is averaged over
100 runs and is plotted in Figure 2 (MT=12 for SSC and
MSSC in this figure). Three properties of these graphs are
analysed (see Table II).

Area under the curve (AUC) is the area covered by
each line. The value of semantic-based crossover (SSC,
and MSSC) is then divided by the value of standard
crossover (SC). Since the objective is to minimise fitness
then if the ratio is smaller than 1, it indicates that,
generally, SSC and MSSC perform better than SC and
smaller values are better. If these values are larger than 1
then SC is better than semantic-based crossovers.

Fall off (FO) is the immediate difference between
fitness before and after a change in the environment
occurs. This quantity presents the ability to react with
the change in the environment of each crossover. The
values are averaged across the runs and the ratio between
semantic-based crossovers and standard crossover are cal-
culated. If these ratios are smaller than 1, it means that
semantic-based crossover react better with the change in
the environment and vice versus.

Drawdown (DD) is the difference between fitness from
the start of a period to the end of it. This value reflect
the speed to improve fitness of each method. Again,

the values are averaged across the runs and the ratio
between standard crossover and semantic-based crossovers
are calculated. If these ratios are smaller than 1, meaning
that semantic-based crossovers improve fitness faster than
standard crossover. Whereas, if these value are greater
than 1, then standard crossover improves fitness faster than
semantic-based crossovers in each period.

Interpreting the plots seen in Figure 2, we can see that
semantic-based crossovers, both SSC and MSSC perform
better than standard crossover in solving these dynamic
problems. It can be seen from this figure that the mean
best fitness of SSC and MSSC are often smaller than
of SC. The figure also shows that when the problems
change from simple form to complex form (F1, F3 and F4)
the advantage of semantic-based crossovers over standard
crossover seem greater than when the problem adapts from
complex form to simple form (F2). Comparing between
two semantic-based crossovers, SSC and MSSC, the figure
shows that they perform mostly equally.

The values of AUC in Table II are consistent with
Figure 2. It can be seen from this table that the values
of AUC are always smaller than 1 and in many cases they
are mostly equal to 0.5. This indicates that, in general, the
populations of SSC and MSSC are fitter than SC across
the dynamic runs. The table also shows that the superior
performance of SSC and MSSC over SSC are greater on

Table II
THE ANALYSIS OF SOME PROPERTIES OF THE MEAN BEST FITNESS OF SEMANTIC-BASED CROSSOVERS IN COMPARISON WITH STANDARD

CROSSOVER. THE VALUES FORAUC, FO, DDARE SMALLER THAN 1 INDICATE THAT SEMANTIC-BASED CROSSOVERS ARE BETTER THAN
STANDARD CROSSOVER. CONVERSELY, IF THEY ARE GREATER THAN1, STANDARD CROSSOVER IS BETTER.

Methods
F1 F2 F3 F4

AUC FO DD AUC FO DD AUC FO DD AUC FO DD
SSC4 0.64 0.81 1.04 0.84 1.74 0.93 0.74 1.04 0.92 0.69 0.93 0.92
SSC8 0.57 0.78 1.05 0.82 1.24 0.96 0.72 1.09 0.88 0.63 0.95 0.88
SSC12 0.52 0.71 1.07 0.81 1.43 0.95 0.69 1.09 0.88 0.62 0.96 0.86
SSC16 0.45 0.63 1.13 0.78 1.20 0.97 0.72 1.10 0.89 0.63 0.96 0.88
SSC20 0.46 0.62 1.12 0.78 1.34 0.96 0.75 1.20 0.85 0.59 0.97 0.84
SSC24 0.44 0.62 1.13 0.78 1.45 0.95 0.73 1.14 0.88 0.64 1.00 0.82
MSSC4 0.72 0.89 0.99 0.87 1.11 0.98 0.71 1.01 0.91 0.78 0.94 0.97
MSSC8 0.52 0.75 1.05 0.80 1.69 0.93 0.75 1.11 0.90 0.66 0.97 0.87
MSSC12 0.44 0.66 1.10 0.80 1.97 0.92 0.77 1.22 0.83 0.67 0.99 0.85
MSSC16 0.44 0.63 1.13 0.81 2.36 0.90 0.82 1.38 0.79 0.71 1.00 0.81
MSSC20 0.43 0.61 1.14 0.82 2.58 0.89 0.80 1.43 0.73 0.82 1.11 0.79
MSSC24 0.42 0.51 1.22 0.82 2.67 0.88 0.84 1.42 0.76 0.85 1.13 0.79

F1, F3, F4 than on F2.
While the AUC values provide evidence that semantic-

based crossovers performance is better than standard
crossover across the evolutionary process, the values for
FO are mixed. On two problems, F1 and F4, FO are often
smaller than 1 and on two left problems, FO are greater
than 1. Therefore, it is difficult to conclude about the abil-
ity to react with change in the environment of semantic-
based crossovers compared to standard crossover.

Finally, the table shows that the speed to improve fitness
in each period of semantic-based crossovers are often
faster than for standard crossover. It can be observed
from the table that the values for DD are often smaller
than 1 with only exception on function F1. This result is
understandable since the previous researches have shown
that semantic-based crossovers, SSC and MSSC help to
improve the performance of GP versus standard crossover.
This can be seen as a reason that helps semantic-based
crossovers perform better than standard crossover in dy-
namic problems.

In comparing between SSC and MSSC, the table
again shows that they are most equal. For six values of
Max Trial (MT) tested, it can be seen that the values
from 8 to 16 seem slightly better than 4, 20 or 24. When
MT is too small (4), semantic-based crossovers can under
perform while if they are too large, SSC and MSSC can
be trapped into local optimals and poorly respond when
the environment changed. This is evidenced by the fact
that the values of FO are often greater with MT=20 and
24.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we apply two recently proposed semantic-
based subtree crossover operators, Semantic Similarity
based Crossover (SSC) and the Most Semantic Similarity
based Crossover (MSSC), to dynamic problems. We com-
pare the performance of GP with these two crossovers
and GP with standard crossover (SC) in solving a class
of dynamic symbolic regression problems. The mean best

fitness of these crossovers are plotted and some important
properties of these graphs are analysed. The results show
that semantic-based crossovers help to improve the perfor-
mance of GP compared to standard crossover in solving
dynamic problems. Further analyses show that SSC and
MSSC improve fitness faster than SC, although they do
not respond to the change in the environment better than
SC.

There are a number of avenues for future research
that can be developed from this paper. Firstly, this paper
studies dynamic problems with an environmental change
which occurs at regular intervals. In the near future we
aim to study these problems with different frequencies
of change. Secondly, we want to combine semantic-based
crossovers with some diversity promoting methods, such
as fitness sharing [22] to see if they help to gain further im-
provements in dynamic environments. Last, but not least,
we would like to create a class of dynamic benchmark
problems suitable for GP.

ACKNOWLEDGMENT

Q.U. Nguyen is funded under a Postgraduate Scholar-
ship from the Irish Research Council for Science Engineer-
ing and Technology (IRCSET). E. Murphy and M. O’Neill
are supported by the Science Foundation Ireland under
Grant No. 08/IN.1/I1868.

REFERENCES

[1] L. Beadle and C. Johnson. Semantically driven crossoverin
genetic programming. InProceedings of the IEEE World
Congress on Computational Intelligence, pages 111–116.
IEEE Press, 2008.

[2] L. Beadle and C. G. Johnson. Semantic analysis of program
initialisation in genetic programming.Genetic Program-
ming and Evolvable Machines, 10(3):307–337, Sep 2009.

[3] L. Beadle and C. G. Johnson. Semantically driven mutation
in genetic programming. In A. Tyrrell, editor,2009 IEEE
Congress on Evolutionary Computation, pages 1336–1342,
Trondheim, Norway, 18-21 May 2009. IEEE Computa-
tional Intelligence Society, IEEE Press.

[4] C. N. Bendtsen and T. Krink. Dynamic memory model
for non-stationary optimization. In D. B. Fogel, M. A. El-
Sharkawi, X. Yao, G. Greenwood, H. Iba, P. Marrow, and
M. Shackleton, editors,Proceedings of the 2002 Congress
on Evolutionary Computation CEC2002, pages 145–150.
IEEE Press, 2002.

[5] J. Branke. Memory enhanced evolutionary algorithms
for changing optimization problems. In P. J. Angeline,
Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala,
editors,Proceedings of the Congress on Evolutionary Com-
putation, volume 3, pages 1875–1882, 1999.

[6] J. Branke. Evolutionary optimization in dynamic environ-
ments. PhD thesis, University Karlsruhe, 2000.

[7] W. Cedeno and V. R. Vemuri. On the use of niching for
dynamic landscapes. In W. Porto, editor,Proceedings of
the 1997 IEEE International Conference on Evolutionary
Computation, pages 361–366, Piscataway, New Jersey, Apr.
1997. IEEE Press.

[8] R. Cleary and M. O’Neill. An attribute grammar decoder
for the 01 multi-constrained knapsack problem. InProceed-
ings of the Evolutionary Computation in Combinatorial
Optimization, pages 34–45. Springer Verlag, April 2005.

[9] M. de la Cruz Echeanda, A. O. de la Puente, and M. Al-
fonseca. Attribute grammar evolution. InProceedings of
the IWINAC 2005, pages 182–191. Springer Verlag Berlin
Heidelberg, 2005.

[10] I. Dempsey.Grammatical Evolution in Dynamic Environ-
ments. PhD thesis, University College Dublin, Ireland,
2007.

[11] I. Dempsey, M. O’Neill, and A. Brabazon. Founda-
tions in Grammatical Evolution for Dynamic Environments.
Springer, 2009.

[12] R. E.Bryant. Graph-based algorithms for Boolean function
manipulation.IEEE Transactions on Computers, C-35:677–
691, 1986.

[13] J. J. Grefenstette. Genetic algorithms for changing envi-
ronments. In R. Maenner and B. Manderick, editors,Proc.
Parallel Problem Solving from Nature-2, pages 137–144.
North-Holland, 1992.

[14] C. Johnson. Deriving genetic programming fitness proper-
ties by static analysis. InProceedings of the 4th European
Conference on Genetic Programming (EuroGP2002), pages
299–308. Springer, 2002.

[15] C. Johnson. Genetic programming with guaranteed con-
straints. InRecent Advances in Soft Computing, pages 134–
140. The Nottingham Trent University, 2002.

[16] C. Johnson. What can automatic programming learn from
theoretical computer science. InProceedings of the UK
Workshop on Computational Intelligence. University of
Birmingham, 2002.

[17] C. Johnson. Genetic programming with fitness based on
model checking. InProceedings of the 10th European
Conference on Genetic Programming (EuroGP2002), pages
114–124. Springer, 2007.

[18] G. Katz and D. Peled. Genetic programming and model
checking: Synthesizing new mutual exclusion algorithms.
Automated Technology for Verification and Analysis, Lec-
ture Notes in Computer Science, 5311:33–47, 2008.

[19] G. Katz and D. Peled. Model checking-based genetic
programming with an application to mutual exclusion.
Tools and Algorithms for the Construction and Analysis
of Systems, 4963:141–156, 2008.

[20] J. R. Koza.Genetic Programming: On the Programming of
Computers by Means of Natural Selection. The MIT Press,
Cambridge, Massachusetts, 1992.

[21] K. Krawiec and P. Lichocki. Approximating geometric
crossover in semantic space. In F. Rothlauf, editor,Genetic
and Evolutionary Computation Conference, GECCO 2009,
Proceedings, Montreal, Québec, Canada, July 8-12, 2009,
pages 987–994. ACM, 2009.

[22] R. I. B. McKay. An investigation of fitness sharing in
genetic programming.The Australian Journal of Intelligent
Information Processing Systems, 7(1/2):43–51, July 2001.

[23] N. McPhee, B. Ohs, and T. Hutchison. Semantic building
blocks in genetic programming. InProceedings of 11th Eu-
ropean Conference on Genetic Programming, pages 134–
145. Springer, 2008.

[24] R. Poli, W. B. Langdon, and N. F. McPhee. A
Field Guide to Genetic Programming. Published
via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With
contributions by J. R. Koza).

[25] N. Q. Uy, N. X. Hoai, and M. O’Neill. Semantic aware
crossover for genetic programming: the case for real-valued
function regression. InProceedings of EuroGP09, pages
292–302. Springer, April 2009.

[26] N. Q. Uy, M. O’Neill, and N. X. Hoai. Predicting the tide
with genetic programming and semantic-based crossovers.
In KSE 2010 The Second International Conference on
Knowledge and Systems Engineering, Hanoi, Vietname, 7-9
Oct. 2010. IEEE Computer Society, IEEE Press.

[27] N. Q. Uy, M. O’Neill, N. X. Hoai, B. McKay, and E. G.
Lopez. Semantic similarity based crossover in GP: The
case for real-valued function regression. In P. Collet, editor,
Evolution Artificielle, 9th International Conference, Lecture
Notes in Computer Science, pages 13–24, October 2009.

[28] M. L. Wong and K. S. Leung. An induction system that
learns programs in different programming languages using
genetic programming and logic grammars. InProceedings
of the 7th IEEE International Conference on Tools with
Artificial Intelligence, 1995.

