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a b s t r a c t 

The selection mechanism plays a very important role in the performance of Genetic Pro- 

gramming (GP). Among several selection techniques, tournament selection is often consid- 

ered the most popular. Standard tournament selection randomly selects a set of individuals 

from the population and the individual with the best fitness value is chosen as the winner. 

However, an opportunity exists to enhance tournament selection as the standard approach 

ignores finer-grained semantics which can be collected during GP program execution. In 

the case of symbolic regression problems, the error vectors on the training fitness cases 

can be used in a more detailed quantitative comparison. In this paper we introduce the 

use of a statistical test into GP tournament selection that utilizes information from the in- 

dividual’s error vector, and three variants of the selection strategy are proposed. We tested 

these methods on twenty five regression problems and their noisy variants. The exper- 

imental results demonstrate the benefit of the proposed methods in reducing GP code 

growth and improving the generalisation behaviour of GP solutions when compared to 

standard tournament selection, a similar selection technique and a state of the art bloat 

control approach. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Genetic Programming (GP) is a biologically inspired method of using a computer to evolve solutions, in the form of com-

puter programs, for a problem [24,37] . To solve a problem using a GP system, a population of individuals is first initialised.

The population is then evolved, under fitness based selection, through a number of generations by applying genetic opera-

tors. The evolutionary process terminates when a desired solution is found or when the maximum number of generations

is exceeded. 

There are several factors that can affect the performance of GP for a given problem. These factors include the size of the

population, the fitness evaluation of individuals, the selection mechanisms for reproduction and the genetic operators for

modifying individuals. Amongst these, selection plays a critical role in GP performance [4] . To date, there have been many

selection schemes proposed [23] and the most widely used selection in GP is tournament selection [11] . 

Tournament selection compares the fitness values of sampled individuals. The individual with the best fitness is then

selected as the winner. This implementation is simple and its effectiveness has been widely evidenced [11] . However, the
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standard approach only uses the fitness value while ignoring information from the error vectors of individuals in all fitness

cases. Consequently, some information that is potentially useful for GP search may be lost. Recent research has shown that

significant benefit could be gained by using semantic information of GP individuals (e.g., [21,22,28,31,35] ). The genetic search

operators of crossover and mutation can be modified to improve the semantic locality of search [9,30,34] . In addition, the

preservation of semantic diversity is a desirable feature of an evolving GP population to avoid local optima [5,12] , thus, it is

also attractive to examine whether using the error vectors of individuals on the fitness cases during selection can improve

GP performance. 

In our preliminary research [6] , we have proposed two forms of semantic tournament selection that are based on sta-

tistical analysis of the error vectors of individuals. The experimental results on a set of GP benchmark problems showed

the benefit of the proposed techniques [6] . In this paper, we extend this research with the main contributions of this paper

being: 

• We introduce the use of statistical analysis of GP error vectors to create novel forms of tournament selection. Based on

a Wilcoxon signed rank test, three variants of tournament selection are proposed to exploit semantic diversity and to

explore the potential of the approach to control program bloat. 

• The performance of the selection strategies are examined on a large set of regression problems employing the original

problems and noisy variants. We observe that the new selection techniques help to reduce the code growth and improve

the generalization ability of the evolved solutions when compared to standard tournament selection and a state of the

art method for controlling code bloat in GP. 

• The simplicity of the design of the proposed selection strategies allows for further improvements. In this paper, the

addition of a state of the art crossover operator is observed to further enhance performance. 

In the next section, we present the background of the paper. Section 3 reviews the related work on improving tourna-

ment selection in GP. Three proposed tournament selection strategies are presented in Section 4 . Section 5 presents the

experimental settings adopted in the paper. Section 6 analyses and compares the performance of the proposed selection

strategies with standard tournament selection. The approach is further enhanced through it’s coupling to a state of the

art crossover strategy in Section 7 . Section 8 investigates the ability of the proposed techniques on noisy datasets. Finally,

Section 9 concludes the paper and highlights some future work. 

2. Background 

This section presents some important concepts used in the proposed selection strategies, including the semantics of a GP

individual, the error vector of an individual, and the Wilcoxon signed rank test. 

In GP, it is common to define the semantics of a program simply as its behaviour with respect to a set of input val-

ues [27,31] . Formally, the semantics of a program is defined as follows: 

Definition 2.1. Let K = (k 1 , k 2 , . . . k N ) be the fitness cases of the problem. The program semantics S ( P ) of a program P is the

vector of output values obtained by running P on all fitness cases. 

S(P ) = (P (k 1 ) , P (k 2 ) , . . . , P (k N )) , for i = 1 , 2 , . . . , N . 

This definition is valid for problems where a set of fitness cases is defined. The error vector of an individual is calculated

by comparing the semantic vector with the target output of the problem. More precisely, the error vector of an individual

is defined as: 

Definition 2.2. Let S = (s 1 , s 2 , . . . s N ) be the semantics of an individual P and Y = (y 1 , y 2 , . . . y N ) be the target output of the

problem on N fitness cases. The error vector E ( P ) of a program P is a vector of N elements calculated as follows. 

E(P ) = (| s 1 − y 1 | , | s 2 − y 2 | , . . . , | s N − y N | ) . 
In this study, the error vectors of individuals competing in a tournament are compared using a Wilcoxon signed rank test.

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used when comparing two related samples to

assess whether their population mean ranks differ [20] . This test is used as an alternative to the paired Student’s t -test

when the population cannot be assumed to be normally distributed. Let N be the sample size of the test and x 1, i and x 2, i

denote the i th pair sample. Let H 0 : be the hypothesis that difference between the pairs follows a symmetric distribution

around zero and H 1 : be the hypothesis that difference between the pairs does not follow a symmetric distribution around

zero. The test is performed as follows: 

1. For i = 1 , . . . , N, calculate | x 2 ,i − x 1 ,i | , and sgn (x 2 ,i − x 1 ,i ) , where sgn is the sign function: 

sgn (x ) := 

{ −1 if x < 0 , 

0 if x = 0 , 

1 if x > 0 . 

(1)

2. Exclude pairs with | x 2 ,i − x 1 ,i | = 0 . Let N r be the reduced sample size. 

3. Order the remaining N r pairs from smallest absolute difference to largest absolute difference, | x 2 ,i − x 1 ,i | . 
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4. Rank the pairs, starting with the smallest as 1 st . Ties receive a rank equal to the average of the ranks they span. Let R i 
denote the rank. 

5. Calculate the test statistic W , the sum of the signed ranks: 

W = 

N r ∑ 

i =1 

[ sgn (x 2 ,i − x 1 ,i ) · R i ] (2) 

6. The value of W is compared to a threshold to decide if the null hypothesis H 0 is rejected. 

In practice, p-value is often calculated from the test. This value is defined as the probability of obtaining a result equal

to or more extreme than what was actually observed, when the null hypothesis is true [38] . If p-value is smaller than a

threshold (called the critical value), the null hypothesis is rejected and two data set are significantly different. Otherwise,

we can not reject the null hypothesis. In statistics, two popular values of p-value (0.01 and 0.05) are often used. These values

correspond to the confident level of 99% and 95% to reject the null hypothesis, respectively. 

3. Related work 

Selection is a key factor that affects the performance of Evolutionary Algorithms (EAs) [10] . Commonly used selection

strategies in EAs include fitness proportionate selection, rank selection, and tournament selection [4] . The most popular

selection method in GP is tournament selection [45] . In standard tournament selection, a number of individuals (tournament

size) are randomly selected from the population. These individuals are compared with each other and the winner (in terms

of better fitness) is selected to go to the mating pool. The advantage of tournament selection is that it allows the adjustment

of the selection pressure by tuning the tournament size. A small value of the tournament size leads to a low selection

pressure while a large one results in a high selection pressure. 

Since tournament selection is the most popular selection method in GP, there have been many studies to analyse its be-

haviour and improve its effectiveness. The majority of the early studies have focused on sampling and selecting. Gathercole

et al. [14] analysed the selection frequency of each individual and the likelihood of not-selected and not-sampled individuals

in tournament selection with different values of the tournament size. Sokolov and Whitley proposed unbiased tournament

selection [41] where all individuals have a fair chance to participate in a tournament. 

Xie and his colleagues conducted a series of studies to investigate tournament selection in GP. Xie indicated that standard

tournament selection can lead to the result in which the individuals with bad fitness could be selected multiple times while

the individuals with good fitness not selected any time [44] . Thus, he proposed the fully covered tournament selection

method [44] which excludes the sampled individuals in the next tournament to ensure that each individual has an equal

chance to participate into tournaments. Next, Xie et al. [45,47] analysed the performance of no-replacement tournament

selection in which no individual can be sampled multiple times into the same tournament. Another problem in tournament

selection is that some individuals are not sampled at all when using small values of the tournament size. However, Xie

at al. [48] showed that the not-sampled issue does not seriously affect the selection performance in standard tournament

selection. 

Overall, previous research has shown that sampling strategies have a minor impact on GP performance. Consequently,

researchers have paid more attention to the second step in tournament selection: selection. Goldberg and Deb introduced

binary tournament selection [15] in which two individuals are selected at random, and the individual with better fitness

could be selected with probability p , 0.5 < p ≤ 1.0. Back [3] ranked the best individual first and the selection probability of

an individual of rank j is calculated by: 

N 

−k ((N − j + 1) k − (N − j) k ) (3) 

where k is the tournament size and N is the population size. Conversely, Blickle and Thiele [4] ranked the worst individual

first and introduced the cumulative fitness distribution, S ( f j ), which denotes the number of individuals with fitness value f j 
or worse. Finally, selection probability of an individual with rank j is calculated as: (

S( f j ) 

N 

)k 

−
(

S( f j−1 ) 

N 

)k 

. (4) 

Julstrom and Robinson also ranked the worst individual first and proposed weighted k-tournaments method [19] . A param-

eter w between 0 and 1 is chosen and the selection probability of an individual with rank j is calculated by the formula:

k (1 − w ) 

N 

k (1 − w 

k ) 
(( j − 1) + w (N − j)) k −1 (5) 

Later, Hingee and Hutter [18] introduced the polynomial rank scheme of degree d for calculating the probability of an

individual of rank j as follows: 

P (I = j) = 

d+1 ∑ 

t=1 

a t j 
t−1 (6) 
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Algorithm 1: Statistics tournament selection with random. 

Input : Tour size, Population. 

Output : The winner individual. 

A ← − Rand omInd i v id ual() ; 

for i ← 1 to T ourSize do 

B ← − Rand omInd i v id ual() ; 

sample 1 ← − Er ror (A ) ; 

sample 2 ← − Er ror (B ) ; 

p − v al ue ← − T esting(sampl e 1 , sampl e 2) ; 

if p − v alue < alpha then 

A ← − GetBetterF itness (A, B ) ; 

else 

A ← − GetRandom (A, B ) ; 

end 

end 

T heW innerInd i v id ual ← −A ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

They also showed that every probabilistic tournament is equivalent to a unique polynomial rank scheme. 

Recently, researchers have focused on adapting the selection pressure. Xie and Zhang [46] proposed a method for au-

tomatically tuning the selection pressure based on the fitness rank distribution of the population. In each generation, they

clustered the population into S clusters. Next, they sampled K clusters from S clusters with replacement and selected the

winner among K sampled clusters. Finally, a random individual is returned from the winning cluster. In grammatical evo-

lution, Forstenlechner et al. introduced semantic clustering selection [12] . The individuals in a GP population are clustered

based on the similarity of their error vectors. Then, parents are drawn from the same cluster to improve semantic locality.

Moreover, semantic diversity is managed through the preservation of the existence of multiple clusters. 

More recently, Helmuth and Matheson proposed lexicase selection [17] . The idea is to evaluate the goodness of an in-

dividual based on part of fitness cases instead of all fitness cases. Each time a parent must be selected, lexicase selection

randomly shuffles the list of fitness cases. Then, it removes any individual that did not achieve the best error value on the

first fitness case. If more than one individual remains in the population, the first fitness case is removed and this process

is repeated with the next fitness case. This technique was then extended to the real-valued regression problem by La Cava

et al. [25] and was proved to maintain better diversity compared to standard tournament selection [16,33] . 

In this paper, we propose a new method for selecting the winner in tournament selection using the statistical analysis

of the semantics of GP programs. Specifically, we focus our attention on the error vector produced in symbolic regression

problems. The most similar approach in the literature was Semantic in Selection (SiS) technique [13] which calculates the

semantic similarity of parents and selects parents which are semantically dissimilar (i.e., have large differences between

their semantic vectors). Rather than computing differences in semantic vectors we perform a statistical analysis based on

error vectors to ascertain semantic diversity of the individuals competing in a tournament. A detailed description of our

method will be presented in the next section. 

4. Methods 

This section presents three statistics tournament selection techniques using the Wilcoxon signed rank test. The objective

is to select breeding parents based on the statistical test instead of on their fitness values. The first method is called statistics

tournament selection with random [6] and shortened as TS-R. The main objective of TS-R is to promote the semantic diversity

of GP population and the process of TS-R is similar to standard tournament selection. However, instead of using the fitness

value for comparing between individuals in the tournament, a statistical test was applied to the error vectors of these

individuals. For a pair of individuals, if the test shows that the individuals are different, then the individual with better

fitness value is considered as the winner. Conversely, if the test confirms that two individuals are not different, a random

individual is selected from the pair. Next, the winner is tested against other individuals in the tournament size. The detailed

description of TS-R is presented in Algorithm 1 . 

In Algorithm 1 , function RandomIndividual () returns a random individual from the GP population. Function Error ( A ) as-

signs the error vector of individual A to sample 1 1 and function Testing ( sample 1, sample 2) performs the Wilcoxon signed

rank test. Two last functions, GetBetterFitness ( A, B ) and GetRandom ( A, B ) find the better fitness individual among A and B or

return a random individual between two, respectively. Finally, alpha is the critical value used to decide if the null hypothesis
1 To reduce the computational time, the error vectors of all individuals are calculated at the beginning of each generation. These error vectors are then 

stored for using in every statistical test in the same generation. 



356 T.H. Chu et al. / Information Sciences 436–437 (2018) 352–366 

Algorithm 2: Statistics tournament selection with size. 

Input : Tour size, Population. 

Output : The winner individual. 

A ← − Rand omInd i v id ual() ; 

for i ← 1 to T ourSize do 

B ← − Rand omInd i v id ual() ; 

sample 1 ← − Er ror (A ) ; 

sample 2 ← − Er ror (B ) ; 

p − v al ue ← − T esting(sampl e 1 , sampl e 2) ; 

if p − v alue < alpha then 

A ← − GetBetterF itness (A, B ) ; 

else 

A ← − GetSmal l erSize (A, B ) ; 

end 

end 

T heW innerInd i v id ual ← −A ; 

Algorithm 3: Statistics tournament selection with probability. 

Input : Tour size, Population. 

Output : The winner individual. 

A ← − Rand omInd i v id ual() ; 

for i ← 1 to T ourSize do 

B ← − Rand omInd i v id ual() ; 

sample 1 ← − Er ror (A ) ; 

sample 2 ← − Er ror (B ) ; 

p − v al ue ← − T esting(sampl e 1 , sampl e 2) ; 

A ← − GetBetterW ithP robability (A, B, p − v alue ) ; 

end 

T heW innerInd i v id ual ← −A ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is rejected. If p-value is smaller than alpha , then the null hypothesis is rejected and the better fitness individual is selected

as the winner. If the test can not reject the null hypothesis, then a random individual is selected from the pair. 

The second proposed tournament selection is called statistics tournament selection with size [6] and shorted as TS-S. TS-

S is similar to TS-R in the objective of promoting diversity. Moreover, TS-S also aims at reducing the code growth in GP

population. In TS-S, if the statistical test can not reject the null hypothesis, then the individual with smaller size is selected

from the pair. The detailed description of TS-S is presented in Algorithm 2 in which function GetSmallerSize ( A, B ) returns

the individual with smaller size among A and B . If the size of A and B are tie, then the first individual will be return. 

The third tournament selection method is called statistics tournament selection with probability and shorted as TS-P. This

technique is different from TS-R and TS-S in which it does not rely on the critical value to decide the winner. Instead,

TS-P uses p-value as the probability to select the winner. The better and the worse fitness individual is selected with the

probability of 1 − p-value and p-value , respectively. The detailed description of TS-P is presented in Algorithm 3 . In this

algorithm, GetBetterW ithP robability (A, B, p − v alue ) return the better fitness individual between A and B with the probability

of 1 − p-value and return the worse fitness individual with the probability of p-value . 

In three proposed tournament selection techniques, a series of the Wilcoxon signed rank test is applied on the error

vectors of sampled individuals. Potentially, there are two limitations. First, the overuse of statistical tests may result in

the significant difference being detected by chance [7] . This, subsequently, may affect the performance of the statistics

tournament selection. In Section 6 we show that, on average, approximate 50% to 70% of the Wilcoxon test in TS-R and TS-S

is significant. This large number may help to alleviate the impact of the test that are affected by chance. 

Second, the overhead of computational time that results from executing a series of the statistical test. We compare the

computational time of the selection step in statistics tournament selection and in standard tournament selection and find

that the execution time of the selection step in statistics tournament selection is greater than that in standard tournament

selection. However, statistics tournament selection often helps to remarkably reduce the code growth of GP population.

Subsequently, the GP system using statistics tournament selection often runs faster than the system that uses standard

tournament selection. 
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Table 1 

Problems for testing statistics tournament selection techniques. 

Abbreviation Name No. features No. training No. testing 

A. Benchmarking Problems 

F1 korns-11 5 20 20 

F2 korns-12 5 20 20 

F3 korns-14 5 20 20 

F4 vladislavleva-2 1 100 221 

F5 vladislavleva-4 5 500 500 

F6 vladislavleva-6 2 30 93636 

F7 vladislavleva-8 2 50 1089 

F8 korns-1 5 10 0 0 10 0 0 

F9 korns-2 5 10 0 0 10 0 0 

F10 korns-3 5 10 0 0 10 0 0 

F11 korns-4 5 10 0 0 10 0 0 

F12 korns-11 5 10 0 0 10 0 0 

F13 korns-12 5 10 0 0 10 0 0 

F14 korns-14 5 10 0 0 10 0 0 

F15 korns-15 5 10 0 0 10 0 0 

B. UCI Problems 

F16 airfoil_self_noise 5 800 703 

F17 casp 9 100 100 

F18 ccpp 4 10 0 0 10 0 0 

F19 wpbc 31 100 98 

F20 3D_spatial_network 3 750 750 

F21 protein_Tertiary_Structure 9 10 0 0 10 0 0 

F22 yacht_hydrodynamics 6 160 148 

F23 slump_test_Compressive 7 50 53 

F24 slump_test_FLOW 7 50 53 

F25 slump_test_SLUMP 7 50 53 

Table 2 

Evolutionary parameter values. 

Parameters Value 

Population size 500 

Generations 100 

Tournament size 3, 5, 7 

Crossover, mutation probability 0.9; 0.1 

Function set + , −, ∗, /, sin, cos 

Terminal set X 1 , X 2 , . . . , X n 
Initial Max depth 6 

Max depth 17 

Max depth of mutation tree 15 

Raw fitness mean absolute error on all fitness cases 

Trials per treatment 100 independent runs for each value 

Elitism Copy the best individual to the next generation. 

 

 

 

 

 

 

 

 

 

 

 

5. Experimental settings 

We tested the proposed tournament selection techniques on twenty-five regression problems. Among them, fifteen prob-

lems are GP benchmark problems recommended in the literature [43] and an additional ten problems were taken from UCI

machine learning repository [2] . For each problem, we also created a noisy version from the original (noiseless) form that

results in twenty-five noisy datasets. Totally, fifty datasets were used for the experiments. The detailed description of the

tested problems including the abbreviation, their name, number of features, number of training and testing samples are

presented in Table 1 . 

The GP parameters used for our experiments are shown in Table 2 . The terminal set for each problem includes N variables

corresponding to the number of features of that problem. The raw fitness is the mean of absolute error on all fitness cases.

Therefore, smaller values are better. Three popular values of tournament size (referred to as tour-size hereafter) including 3,

5 and 7 were tested. 2 The critical value in the Wilcoxon test in TS-R and TS-S is alpha = 0 . 05 . For each problem and each

parameter setting, 100 runs were performed. 

For statistical analysis, we followed Derrac [8] to employ the Friedman’s test on the results. If the Friedman test shows

that at least one technique is significantly different from the others with confident level of 95%, we conducted a post-hoc
2 Due to the space limitation, we only show in this paper the results with tour-size = 3 and tour-size = 7. The results with tour-size = 5 are presented in 

the supplement of the paper at https://github.com/chuthihuong/GP . 

https://github.com/chuthihuong/GP
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Table 3 

The median of testing error with tour-size = 3 (the left) and tour-size = 7 (the right). Bold indicates the best 

(lowest) value. The result is marked + if it significantly smaller than GP. Conversely, it is marked −. 

Pro GP SiS TS-R TS-S TS-P GP SiS TS-R TS-S TS-P 

F1 8.55 9.06 5.31 + 3.93 + 6.68 + 11.3 10.2 6.13 + 3.97 + 6.18 + 

F2 0.96 0.99 0.88 0.81 + 0.92 0.98 1.00 0.89 + 0.82 + 0.98 

F3 33.4 34.2 15.7 + 14.2 + 16.7 + 33.4 34.2 14.8 + 13.5 + 16.7 + 

F4 0.06 0.06 0.06 0.05 0.06 0.06 0.05 0.05 0.06 0.04 + 

F5 0.135 0.137 − 0.136 0.131 0.135 0.135 0.135 0.135 0.130 + 0.131 

F6 1.78 1.45 1.89 1.90 1.63 1.34 1.21 1.64 1.97 1.62 

F7 1.70 1.69 1.74 1.56 + 1.75 1.77 1.75 1.80 1.54 + 1.72 

F8 6.20 4.52 6.75 6.90 5.52 7.38 6.79 6.96 7.38 6.85 

F9 1.66 1.63 1.61 1.58 + 1.57 1.71 1.66 1.59 + 1.59 + 1.61 

F10 41.1 38.9 46.1 35.8 39.1 56.5 42.2 38.1 34.1 52.9 

F11 0.085 0.086 0.086 0.084 0.085 0.084 0.085 0.085 0.083 0.084 

F12 7.39 7.33 + 7.32 + 7.32 + 7.33 7.42 7.41 7.35 + 7.33 + 7.37 + 

F13 0.876 0.875 0.873 0.872 + 0.875 0.878 0.875 0.874 + 0.871 + 0.878 

F14 128.7 130.5 130.0 128.4 126.2 127.8 129.7 124.7 122.7 124.3 

F15 4.95 5.32 5.14 4.74 4.90 4.23 4.43 4.32 3.92 4.68 

F16 20.9 20.8 27.1 25.5 27.8 18.8 23.7 24.6 24.5 24.2 

F17 4.99 4.93 4.90 4.78 + 4.87 4.93 4.99 4.91 4.70 + 4.88 

F18 8.72 9.07 10.1 10.1 11.1 8.70 8.31 10.3 8.79 8.88 

F19 41.3 41.1 38.8 + 36.1 + 39.9 + 42.1 42.2 38.5 + 36.8 + 39.5 + 

F20 9.54 9.91 9.75 9.56 9.75 9.42 9.57 9.68 9.52 9.53 

F21 4.35 4.38 4.44 4.37 4.42 4.27 4.29 4.32 4.30 4.29 

F22 2.11 2.03 2.40 1.93 2.09 1.86 1.81 1.97 1.90 1.73 

F23 7.74 7.24 7.99 5.89 + 7.90 6.65 7.37 6.63 8.04 − 6.01 

F24 16.7 18.4 15.8 14.9 + 18.1 17.5 18.3 15.5 + 13.3 + 16.4 

F25 8.70 8.44 8.31 7.99 + 8.48 8.89 8.43 7.99 + 8.40 + 8.46 + 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

analysis with the BonferroniDunn correction of the p-value for each comparison [8] . In the following tables, if the result of

a method is significantly better than GP with standard tournament selection (shorthanded as GP hereafter), this result is

marked + at the end. Conversely, if it is significantly worse compared to GP, this result is marked −. 

The source code of all tested methods are available for download. 3 All techniques were implemented in Java with the

exception of neatGP for which we used the implementation in Python. 4 Moreover, the same computing platform (Operating

system: Windows 7 Ultimate (64bit), RAM 16.0GB, Intel®Core TM i7-4790 CPU@3.60GHz) was used in every experiment in

this paper. 

We divided our experiment into three sets. The first aims at investigating the performance of three variants of tour-

nament selection based on statistical analysis. The second attempts to improve the performance of the proposed selection

strategy through its combination with a state of the art semantic crossover operator [36] . The third set of experiments

examine the performance of the strategies on noisy instances of the problems. 

6. Performance analysis of statistics tournament selection 

This section analyses the performance of the statistics tournament selection methods and compares them with GP and

semantic in selection (SiS) by Galvan-Lopez et al. [13] . The first metric used in the comparison is the generalisation ability of

the tested methods [1,42] . The median of the testing error across 100 runs is shown in Table 3 . We can see that the testing

error of SiS and GP are roughly equal. The difference between the testing error of two techniques is often marginal. SiS is

only significant better than GP on F12 and GP is only significantly better than SiS on F5 with tour-size = 3. Conversely, the

testing error of three statistics tournament selection are often smaller than that of GP. Among three statistics tournament

selection, the performance of TS-S is the best on the testing data. TS-S achieved the best performance on 17 problems with

tour-size = 3 and 14 problems with tour-size = 7. 

In terms of statistical comparison using Friedman’s test, the proposed tournament selection is often significantly bet-

ter (with the confident level of 95%) than GP. For tour-size = 3, TS-R is significantly better than GP on 4 problems, TS-S is

significantly better than GP on 12 problems and TS-P is significantly better than GP on 3 problems. For tour-size = 7, these

values are 9,12 and 6 problems, respectively. Conversely, GP is only significantly better than TS-S on one problem with the

tour-size = 7 (F23). 

The second metric is the average size of their solutions. These values are presented in Table 4 . While the solutions found

by SiS are often as complex as those found GP, the solutions found by statistics tournament selection are simpler than those

of GP and SiS. Statistical test using Friedman’s test also show that the size of the solutions obtained by TS-R, TS-S and TS-P
3 https://github.com/chuthihuong/GP . 
4 http://www.tree-lab.org/index.php/resources-2/downloads/open-source-tools . 

https://github.com/chuthihuong/GP
http://www.tree-lab.org/index.php/resources-2/downloads/open-source-tools
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Table 4 

The average of solution’s size with tour-size = 3 (the left) and tour-size = 7 (the right). Bold in- 

dicates the best (lowest) value. The result is marked + if it significantly smaller than GP. Con- 

versely, it is marked −. 

Pro GP SiS TS-R TS-S TS-P GP SiS TS-R TS-S TS-P 

F1 280 276 244 121 + 238 + 286 292 264 100 + 259 

F2 169 170 130 + 35 + 148 + 160 173 150 37 + 169 

F3 263 270 262 124 + 277 262 276 278 98 + 277 

F4 171 190 225 79 + 197 184 177 217 80 + 194 

F5 89 78 91 53 + 105 91 85 93 42 + 111 

F6 167 156 141 + 50 + 159 137 151 134 37 + 145 

F7 142 138 128 48 + 147 133 136 149 38 + 157 

F8 180 166 174 108 + 184 247 215 197 101 + 210 

F9 166 141 129 + 73 + 140 227 176 + 161 + 74 + 166 + 

F10 161 145 162 108 + 162 184 172 165 101 + 175 

F11 148 139 149 76 + 152 149 151 154 66 + 159 

F12 259 222 + 179 + 92 + 188 + 306 258 211 + 89 + 226 + 

F13 169 146 119 + 32 + 135 + 161 152 117 + 29 + 152 

F14 254 210 268 168 + 273 332 284 300 164 + 287 

F15 155 132 147 112 + 163 157 150 133 84 + 156 

F16 200 184 193 152 + 189 262 252 260 203 + 276 

F17 207 182 168 50 + 165 230 220 192 39 + 192 

F18 160 150 165 119 + 165 226 207 206 132 + 203 

F19 208 200 119 + 16 + 152 + 313 280 100 + 11 + 182 + 

F20 198 177 193 125 + 199 299 290 264 178 + 282 

F21 178 149 + 179 97 + 179 236 196 219 71 + 199 

F22 186 171 178 105 + 182 194 185 190 85 + 184 

F23 160 159 132 + 56 + 134 + 204 200 149 + 24 + 155 + 

F24 164 168 115 + 45 + 137 220 195 131 + 20 + 155 + 

F25 170 167 111 + 31 + 138 + 226 205 132 + 22 + 157 + 

Table 5 

Average semantic distance with tour-size = 3. Bold indicates the value of SiS 

or TS-S is greater than the value of GP. 

Pro GP SiS TS-S Pro GP SiS TS-S 

F1 2.42 8.93 3.76 F14 11.22 11.88 12.30 

F2 0.42 1.60 0.43 F15 10.36 12.28 12.79 

F3 7.01 19.73 5.02 F16 71.08 101.43 78.42 

F4 1.05 1.55 1.24 F17 60.91 13.52 136.99 

F5 0.07 0.63 0.10 F18 105.55 366.87 123.34 

F6 0.99 1.58 1.03 F19 35.12 51.21 7.83 

F7 0.44 0.58 0.70 F20 12.43 21.87 15.25 

F8 38.28 426.28 57.13 F21 62.09 20.84 96.44 

F9 8.79 16.88 8.86 F22 6.83 7.56 11.61 

F10 8.16 12.66 10.65 F23 42.25 29.08 53.12 

F11 4.32 5.18 6.13 F24 43.10 44.05 80.74 

F12 6.12 7.10 8.81 F25 37.19 17.49 41.42 

F13 2.81 3.86 10.69 

 

 

 

 

 

 

 

 

 

is significantly smaller than that of GP on most problem. Especially, the size of the solutions of TS-S is always much smaller

than that of GP on all problems. This provides a reason partially explaining why the performance of TS-S on the testing data

is better than other techniques in Table 3 following the Occam Razor principle [29] . 

We also measured the semantic distance between parents and their children of GP, SiS and TS-S 5 using the similar

approach to Nguyen et al. [32] . This information shows the ability of a method to discover different areas in the search

space. The semantic distance between a pair of individuals (e.g. a parent and a child) averaged over the population and

over 100 runs with tour-size = 3 is presented in Table 5 . Apparently, both SiS and TS-S maintained higher semantic diversity

compared to GP. TS-S and SiS preserved better semantic diversity than GP on 23 and 21 problems, respectively. These results

show that TS-S achieved one of its objective in enhancing semantic diversity of GP population. 

The last result in this section is the percentage of rejecting the null hypothesis ( N rejnull ) in the Wilcoxon test of TS-S and

TS-R with tour-size = 3. This value is calculated in Eq. (7) 

N re jnull = 

N p 

N test 
(7)
5 We focus on analysing TS-S since this is the best selection approach among three proposed techniques. 



360 T.H. Chu et al. / Information Sciences 436–437 (2018) 352–366 

Table 6 

Average percentage of rejecting the null hypothesis in Wilcoxon test of TS-R and TS-S 

with tour-size = 3. 

Pro TS-R TS-S Pro TS-R TS-S Pro TS-R TS-S 

F1 25.32% 50.91% F10 71.95% 81.93% F19 39.83% 86.09% 

F2 19.68% 53.97% F11 62.18% 84.25% F20 75.61% 84.27% 

F3 30.75% 51.26% F12 43.31% 69.85% F21 66.13% 77.81% 

F4 63.60% 74.61% F13 38.82% 78.64% F22 71.36% 80.85% 

F5 59.65% 68.34% F14 66.87% 78.65% F23 43.22% 77.46% 

F6 39.80% 47.88% F15 85.17% 87.53% F24 42.26% 73.06% 

F7 33.69% 63.44% F16 82.01% 87.30% F25 35.80% 79.95% 

F8 70.29% 88.25% F17 43.98% 69.74% 

F9 62.91% 77.23% F18 82.29% 87.28% 

Table 7 

Median of testing error with tour-size = 3 (the left) and tour-size = 7 (the right). Bold indicates the best (lowest) 

value. The result is marked + if it significantly smaller than GP. Conversely, it is marked −. 

Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO 

F1 8.55 12.5 − 3.93 + 8.91 4.19 + 11.3 12.5 3.97 + 8.88 4.52 + 

F2 0.96 0.84 0.81 1.17 0.97 0.98 0.84 0.82 1.19 0.96 

3 33.4 32.2 14.2 + 3.73 + 1.61 + 33.4 32.2 13.5 + 5.92 + 1.87 + 

F4 0.06 0.12 − 0.05 0.02 + 0.02 + 0.06 0.12 − 0.06 0.02 + 0.02 + 

F5 0.135 0.135 0.131 0.14 0.14 0.13 0.13 0.13 0.14 0.14 −

F6 1.78 1.74 1.90 0.00 + 0.00 + 1.34 1.74 − 1.97 0.00 + 0.00 + 

F7 1.698 1.61 1.56 1.38 + 1.06 + 1.77 1.61 1.54 + 1.15 + 1.33 + 

F8 6.20 7.41 − 6.90 0.00 + 0.00 + 7.38 7.41 7.38 0.00 + 0.00 + 

F9 1.66 2.41 1.58 0.01 + 0.11 + 1.71 2.41 1.59 0.23 + 0.23 + 

F10 41.1 41.0 35.8 0.00 + 0.00 + 56.5 41.0 34.1 0.47 + 0.00 + 

F11 0.08 0.30 − 0.08 0.00 + 0.08 + 0.08 0.30 − 0.08 0.00 + 0.08 

F12 7.39 7.34 7.32 + 7.49 − 7.32 7.42 7.34 + 7.33 + 7.40 7.28 + 

F13 0.88 0.87 0.87 + 0.88 0.87 0.88 0.87 + 0.87 + 0.88 0.87 + 

F14 128.7 131.3 − 128.4 124.3 121.8 + 127.8 131.3 − 122.7 + 125.9 121.7 + 

F15 4.95 5.92 4.74 3.24 + 3.24 + 4.23 5.92 − 3.92 3.24 + 3.24 + 

F16 20.9 33.7 − 25.5 6.11 + 5.75 + 18.8 33.7 − 24.5 6.46 + 5.91 + 

F17 4.99 4.95 4.78 + 5.50 − 4.85 4.93 4.95 4.70 + 5.63 − 4.74 + 

F18 8.72 28.49 − 10.18 3.56 + 3.56 + 8.70 28.49 − 8.79 3.63 + 3.61 + 

F19 41.3 38.3 + 36.1 + 41.5 32.3 + 42.1 38.3 + 36.8 + 39.1 + 32.2 + 

F20 9.54 9.18 9.56 12.0 − 11.4 − 9.42 9.18 9.52 12.2 − 11.4 −

F21 4.35 4.52 − 4.37 4.19 + 4.17 + 4.27 4.52 − 4.30 4.24 4.18 + 

F22 2.11 3.29 − 1.93 1.09 + 1.15 + 1.86 3.29 − 1.90 1.23 + 1.23 + 

F23 7.74 8.44 5.89 + 5.72 4.32 + 6.65 8.44 − 8.04 − 6.84 4.03 + 

F24 16.7 17.7 14.9 + 22.2 − 14.8 17.5 17.7 13.3 + 23.3 14.3 + 

F25 8.70 8.89 7.99 + 12.2 − 8.13 8.89 8.89 8.40 + 16.0 − 7.07 + 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in which N p is the number of the Wilcoxon test rejecting the null hypothesis and N test is the total number of the Wilcoxon

test conducted in each selection technique. Table 6 shows that there is a large number of the test that rejected the null

hypothesis. This value of TS-R is often from 30% to 70% and the value of TS-S is slightly higher (from 50% to nearly 90%).

Thus, the statistical test will have a considerable impact to the selection process in TS-R and TS-S [7] . 

Overall, three statistics tournament selection methods find simpler solutions and generalize better on unseen data. Par-

ticularly, the solutions found by TS-S are much less complex than those of GP. Moreover, the generalization ability of TS-S

is also better compared to GP and SiS. 

7. Combining semantic tournament selection with semantic crossover 

In this section, we present an improvement of TS-S (the best approach among three proposed selection techniques)

performance by combining this technique with a recently proposed crossover - random desired operator (RDO) [36] . In other

words, we used RDO instead of standard crossover in TS-S. The resulting GP system is called statistics tournament selection

with random desired operator and referred to as TS-RDO. The reason for combining RDO with TS-S is that the training

error of TS-S is often worse than GP [6] . Moreover, RDO has been showed to perform well on the training data [32,36] . We

predict that the coupling of these semantic selection and semantic crossover strategies in the form of TS-RDO will lead to

the improved performance. 

We compare TS-RDO with TS-S, neatGP (a state of the art bloat control approach) [26] , RDO [36] and GP. The setting for

RDO is similar to the setting in [32] . The result on the testing data of these methods is shown in Table 7 . It can be seen

that TS-RDO achieved the best result among five tested techniques. The testing error of TS-RDO is smallest on 12 and 14

problems with tour-size = 3 and tour-size = 7, respectively. Furthermore, TS-RDO is more frequently significantly better than
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Table 8 

Average of solutions size with tour-size = 3 (the left) and tour-size = 7 (the right). The best (lowest) value 

is printed bold. The result is marked + if it significantly smaller than GP. Conversely, it is marked −. 

Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO 

F1 280 124 + 121 + 238 + 78 + 286 124 + 100 + 219 + 56 + 

F2 169 60 + 35 + 174 − 80 + 160 60 + 37 + 167 − 47 + 

F3 263 112 + 124 + 153 + 59 + 262 112 + 98 + 169 + 48 + 

F4 171 60 + 79 + 320 − 207 − 184 60 + 80 + 311 − 146 + 

F5 89 12 + 53 + 49 + 23 + 91 12 + 42 + 46 + 13 + 

F6 167 45 + 50 + 40 + 20 + 137 45 + 37 + 50 + 18 + 

F7 142 50 + 48 + 240 − 83 + 133 50 + 38 + 197 − 73 + 

F8 180 118 + 108 + 21 + 12 + 247 118 + 101 + 14 + 9 + 

F9 166 62 + 73 + 53 + 36 + 227 62 + 74 + 74 + 37 + 

F10 161 60 + 108 + 71 + 51 + 184 60 + 101 + 105 + 57 + 

F11 148 44 + 76 + 28 + 15 + 149 44 + 66 + 39 + 13 + 

F12 259 67 + 92 + 181 + 55 + 306 67 + 89 + 162 + 32 + 

F13 169 49 + 32 + 142 + 22 + 161 49 + 29 + 113 + 17 + 

F14 254 66 + 168 + 160 + 72 + 332 66 + 164 + 165 + 55 + 

F15 155 58 + 112 + 53 + 40 + 157 58 + 84 + 45 + 35 + 

F16 200 103 + 152 + 279 − 186 + 262 103 + 203 + 326 − 165 + 

F17 207 62 + 50 + 207 + 106 + 230 62 + 39 + 247 − 81 + 

F18 160 71 + 119 + 305 − 196 − 226 71 + 132 + 380 − 178 + 

F19 208 79 + 16 + 83 + 9 + 313 79 + 11 + 84 + 7 + 

F20 198 87 + 125 + 328 − 237 − 299 87 + 178 + 387 − 208 + 

F21 178 63 + 97 + 199 − 113 + 236 63 + 71 + 243 − 102 + 

F22 186 83 + 105 + 139 + 58 + 194 83 + 85 + 127 + 46 + 

F23 160 55 + 56 + 245 − 118 + 204 55 + 24 + 286 − 84 + 

F24 164 68 + 45 + 240 − 97 + 220 68 + 20 + 291 − 46 + 

F25 170 63 + 31 + 227 − 92 + 226 63 + 22 + 265 − 63 + 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GP compared to TS-S. TS-RDO is significantly better than GP on 17 problems with tour-size = 3 and on 21 problems with

tours-size = 7 while these values of TS-S are only 10 and 11, respectively. RDO achieved the second best (behind TS-RDO)

result. The testing error of RDO is often smaller than that of GP on all problems. This is consistent with the result in Pawlak

et al. [32,36] where RDO has been reported to perform well on unseen data. 

Among five examined methods in Table 7 , the performance of neatGP is worst. neatGP is only significantly better than GP

on 2 and 4 problems, while it is worse than GP on 9 and 10 problems correspondingly with tour-size = 3 and tour-size = 7.

This result is slightly different with the result in Trujillo et al. [26] where neatGP is showed performing equally well on

unseen data compared to GP. The reason could be that the tested problems in our experiments are more difficult than those

in [26] . Further research needed to examine this. 

The average size of the solutions are presented in Table 8 . The size of the solutions obtained by both neatGP and TS-S

are significantly smaller than that of GP. Comparing between neatGP and TS-S, the table shows that their solution’s size is

roughly equal. For RDO, its solutions are also often smaller than the solutions of GP. However, this seems only true on the

benchmarking problems. On most of UCI problems, RDO’s solutions are more complex than the solutions of GP. The best

technique in Table 8 is TS-RDO. This method achieved the best result on most problem regarding to the solution’s size. The

average size of the solutions found by TS-RDO is the smallest one on 12 and 13 problems with tour-size = 3 and tour-size = 7,

respectively. 

Overall, TS-RDO improves the testing error, and further reduces the size of the solutions compared to TS-S. Moreover,

this technique performs better than both RDO and neatGP, two recently proposed methods for improving GP performance

and reducing GP code bloat. 

8. Performance analysis on the noisy data 

This section investigates the performance of five methods in Section 7 on the noisy data. In data mining, it has been

observed that the problems will become harder when they are incorporated with noise [39,40] . We created a noisy dataset

from the original one by adding 10% Gaussian noise with zero mean and one standard deviation in the all features and

objective function of the problems in Table 1 . Moreover, the noise is installed for both the training and the testing data. The

testing error on the noisy data is shown in Table 9 . 

There are some interesting results observed from Table 9 . First, TS-RDO performs slightly more consist on the noisy data

compared to the noiseless data. The best testing error is mostly achieved by TS-RDO on all problems with both values of the

tournament size. Second, the performance of RDO on the noisy data is not as good as on the noiseless data. This technique

only achieved the best performance on one problem with tour-size = 7. This evidenced that RDO is prone to be over-fitted

on the noisy problems. Third, the performance of TS-S is also robust and more consistent than on the noiseless data. This

method is significantly better than GP on 11 and 13 problems with tour-size = 3 and tour-size = 7 while these values on the

noiseless data are only 10 and 11, respectively. Last, neatGP is still the worst method regarding to the generalization ability.
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Table 9 

Median of testing error on the noisy data with tour-size = 3 (the left) and tour-size = 7 (the right). Bold indicates 

the best (lowest) value. The result is marked + if it significantly smaller than GP. Conversely, it is marked −. 

Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO 

F1 9.68 13.1 − 5.88 + 10.3 7.99 9.19 13.1 − 5.13 + 10.2 6.53 + 

F2 0.92 0.84 0.81 1.17 − 1.01 − 0.90 0.84 0.79 + 1.14 − 0.92 

F3 29.6 32.2 15.9 + 7.06 + 6.28 + 34.8 32.2 16.8 + 7.30 + 6.28 + 

F4 0.15 0.19 − 0.145 0.143 0.136 + 0.151 0.19 − 0.147 0.143 0.138 + 

F5 0.14 0.14 0.139 + 0.141 − 0.14 0.14 0.14 0.137 + 0.14 0.14 

F6 2.14 2.19 2.10 4.03 − 1.36 + 2.22 2.19 2.07 + 2.71 1.39 + 

F7 1.74 1.73 1.71 1.64 1.61 1.79 1.73 1.64 + 1.78 1.51 + 

F8 66.9 66.9 66.8 + 68.3 − 66.8 + 67.1 66.9 66.8 + 68.0 66.6 + 

F9 5.52 5.68 5.34 5.19 5.04 5.49 5.68 5.24 4.98 + 5.10 + 

F10 63.8 56.4 56.2 49.2 + 46.3 + 57.0 56.4 55.0 49.6 + 47.1 + 

F11 0.20 0.32 − 0.20 0.20 0.20 + 0.20 0.32 − 0.20 0.20 + 0.20 + 

F12 7.40 7.41 7.31 + 7.54 − 7.36 7.44 7.41 + 7.34 + 7.44 7.30 + 

F13 0.90 0.90 0.90 + 0.91 0.90 0.90 0.90 0.90 + 0.90 0.90 + 

F14 122.8 128.8 − 122.6 122.8 122.6 + 122.8 128.8 − 122.6 122.8 122.5 + 

F15 5.01 6.21 − 5.07 4.15 + 4.12 + 4.20 6.21 − 4.13 4.13 + 4.12 + 

F16 36.4 36.3 37.2 12.0 + 11.4 + 34.5 36.3 37.5 12.1 + 11.55 + 

F17 5.61 5.45 5.42 + 6.41 − 5.34 + 5.70 5.45 5.30 + 6.55 − 5.26 + 

F18 48.3 52.9 − 46.6 37.8 + 36.8 + 48.0 52.9 − 46.3 38.6 + 36.7 + 

F19 42.8 40.2 + 37.7 + 39.5 + 35.6 + 44.9 40.2 + 37.7 + 38.4 + 35.6 + 

F20 9.22 8.72 + 9.13 11.1 − 10.5 − 9.33 8.72 + 9.16 11.7 − 10.3 −

F21 4.53 4.67 − 4.54 4.36 + 4.32 + 4.49 4.67 − 4.50 4.42 4.35 + 

F22 5.91 6.19 − 5.80 5.97 5.43 + 5.87 6.19 − 5.91 5.93 5.50 + 

F23 8.84 9.15 5.81 + 8.96 6.07 + 7.52 9.15 − 9.19 − 9.29 − 6.01 + 

F24 20.2 19.1 17.1 + 23.7 16.5 + 22.7 19.1 16.9 + 29.1 16.0 + 

F25 9.36 9.42 8.38 + 14.8 − 8.00 + 9.58 9.42 8.50 + 13.9 − 7.38 + 

Table 10 

Average running time in seconds on noisy data with tour-size = 3 (the left) and tour-size = 7 (the right). 

Bold indicates the best (lowest) value. The result is marked + if it significantly smaller than GP. Con- 

versely, it is marked −. 

Pro GP neatGP TS-S RDO TS-RDO GP neatGP TS-S RDO TS-RDO 

F1 4 863 − 1 + 32 − 10 − 3 863 − 2 + 34 − 9 −

F2 3 501 − 1 + 29 − 10 − 2 501 − 1 + 32 − 10 −

F3 4 831 − 1 + 29 − 11 − 2 831 − 2 32 − 11 −

F4 12 686 − 6 + 160 − 117 − 9 686 − 8 144 − 116 −

F5 20 177 − 18 690 − 556 − 24 177 − 25 627 − 595 −

F6 3 522 − 1 + 104 − 85 − 17 522 − 2 + 142 − 86 −

F7 4 448 − 2 + 75 − 34 − 3 448 − 3 93 − 37 −

F8 51 2439 − 35 + 1647 − 1240 − 69 2439 − 72 1674 − 1259 −

F9 49 584 − 36 1762 − 1430 − 53 584 − 71 1755 − 1556 −

F10 67 710 − 59 1937 − 1536 − 67 710 − 90 1856 − 1738 −

F11 69 573 − 59 2095 − 1239 − 72 573 − 87 1924 − 1257 −

F12 88 678 − 62 1558 − 1118 − 91 678 − 104 1387 − 1078 −

F13 69 396 − 36 + 1697 − 1235 − 69 396 − 61 1530 − 1259 −

F14 109 867 − 106 1571 − 1134 − 117 867 − 136 1745 − 1204 −

F15 54 672 − 48 1478 − 1228 − 50 672 − 74 − 1390 − 1255 −

F16 27 1081 − 32 1195 − 1050 − 39 1081 − 58 1602 − 1072 −

F17 9 398 − 4 + 137 − 65 − 8 398 − 6 192 − 67 −

F18 36 821 − 37 1782 − 1282 − 40 821 − 62 − 2293 − 1406 −

F19 8 706 − 1 + 135 − 57 − 9 706 − 3 + 199 − 58 −

F20 94 879 − 41 + 1755 − 1084 − 120 879 − 66 + 2280 − 1063 −

F21 58 535 − 45 1645 − 1436 − 66 535 − 66 2083 − 1512 −

F22 8 670 − 5 + 184 − 133 − 8 670 − 9 222 − 136 −

F23 5 365 − 2 + 68 − 31 − 3 365 − 2 81 − 31 −

F24 4 367 − 1 + 53 − 30 − 3 367 − 2 103 − 28 −

F25 4 395 − 1 + 53 − 27 − 4 395 − 2 78 − 25 −

 

 

 

 

Since the solution’s size of the tested methods on the noisy data is similar to the result on the noiseless data, it is shown

in the supplement. Alternately, Fig. 1 presents the testing error and the population size on four typical problems over the

evolutionary process. 6 It can be seen that TS-RDO often achieved the lowest testing error over the whole evolution process.

TS-RDO quickly achieved a good testing error and often kept improving this value. On one problem, F25, the testing error of
6 The figures for other problems are presented in the supplement of the paper. 
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Fig. 1. Testing error and Population size over the generations with tour-size = 3. 
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Table 11 

Average execution time of a run (shorted as Run) and average execution time of 

selection step (shorted as Tour) of GP and TS-S in seconds on noisy data with 

tour-size = 3. 

Pro GP TS-S Pro GP TS-S 

Run Tour Run Tour Run Tour Run Tour 

F1 4 0.02 1 0.3 F14 109 0.01 106 14.8 

F2 3 0.02 1 0.3 F15 54 0.02 48 16.5 

F3 4 0.02 1 0.2 F16 27 0.01 32 10.7 

F4 12 0.02 6 0.9 F17 9 0.01 4 1.3 

F5 20 0.01 18 5.4 F18 36 0.01 37 14.1 

F6 3 0.01 1 0.2 F19 8 0.01 1 0.9 

F7 4 0.01 2 0.5 F20 94 0.01 41 10.2 

F8 51 0.02 35 17.0 F21 58 0.01 45 14.3 

F9 49 0.02 36 17.2 F22 8 0.01 5 2.0 

F10 67 0.01 59 16.2 F23 5 0.02 2 0.6 

F11 69 0.01 59 15.8 F24 4 0.02 1 0.6 

F12 88 0.02 62 16.1 F25 4 0.02 1 0.6 

F13 69 0.02 36 16.8 

Table 12 

Median of testing error (the left) and average running time (the right) in seconds on 

noisy data with tour-size = 3 of GP, TS-S and TS-S-100. Bold indicates the best (low- 

est) value. The result is marked + if it significantly smaller than GP. Conversely, it is 

marked −. 

Pro F.cases GP TS-S TS-S-100 GP TS-S TS-S-100 

F5 500 0.14 0.14 + 0.14 20.40 17.67 10.41 + 

F8 10 0 0 66.95 66.84 + 66.81 + 51.42 35.03 9.11 + 

F9 10 0 0 5.52 5.34 + 5.33 48.53 36.19 + 11.09 + 

F10 10 0 0 63.89 56.21 + 55.04 + 66.99 59.42 + 31.00 + 

F11 10 0 0 0.2 0.20 + 0.2 68.84 58.67 + 32.63 + 

F12 10 0 0 7.4 7.31 + 7.25 + 87.78 61.51 + 26.29 + 

F13 10 0 0 0.9 0.90 + 0.90 + 69.03 35.92 + 14.90 + 

F14 10 0 0 122.86 122.67 122.59 108.65 106.48 69.57 + 

F15 10 0 0 5.01 5.07 − 4.13 54.01 48.16 18.70 + 

F16 800 36.44 37.20 − 55.82 − 27.33 32.30 18.02 + 

F18 10 0 0 48.33 46.60 + 47.49 36.02 36.75 16.57 + 

F20 750 9.22 9.13 8.80 + 93.63 41.50 23.61 + 

F21 10 0 0 4.53 4.54 − 4.67 − 58.21 45.36 17.06 + 

F22 160 5.91 5.80 + 5.80 7.63 4.89 3.34 + 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TS-RDO slightly goes up at the last generations. However, it does not go as high as that of RDO. The second best technique

is often RDO. However, this crossover is over-fitted after few generations particularly on the UCI problems like F22 and

F25. The figure also shows that the testing error of GP and neatGP are usually much higher than others. Last, TS-S is the

technique that has less over-fitted impact compared to others. This selection is only the technique that the trend of the

testing error is mostly downward. 

In terms of the growth of the population size, three methods including neatGP, TS-S and TS-RDO do not incur much

code growth in GP population. The population size of these techniques is only slightly increased during the course of the

evolution. Conversely, the population size of GP and RDO is quickly grown and it is much higher than that of neatGP, TS-S

and TS-RDO. 

The last experimental result analysed in this paper is the average running time of the five methods. The average running

time over 100 runs is shown in Table 10 . Apparently, TS-S is often the fastest system among all tested methods especially

with tour-size = 3. This is not surprising since, the code growth of TS-S’s population is much less than GP ( Fig. 1 ). All other

techniques need a longer running time compared to GP. For neatGP, since we used its implementation in Python, the com-

putational time is larger than that of GP and others. RDO also requires a longer time to run compared to GP and this is

consistent with the result in previous research [32] . Finally, although TS-RDO is slower than GP, its execution time has been

considerably reduced compared to RDO. Thus, by combining TS-S with RDO, we achieved better testing error compared to all

tested methods. Moreover, this technique also helps to reduce GP code growth and consequently lessens the computational

expensive of RDO. 

Table 11 presents the average execution time of the selection step in GP, TS-S and the average execution time of a run. It

can be seen that the selection step in TS-S is slower than that of GP. However, this overhead is mostly acceptable. Moreover,

since TS-S helps to reduce the code growth of GP population, the overall computational time of a run of TS-S is often smaller

than that of GP. 
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We also observed that the execution time of the selection step in TS-S is often higher on the problems with a large

number of fitness cases (F8,F9, etc.) than on the problems with a small number of fitness cases (F1, F1, etc.). On the first

problems group, it is possible to further reduce the computational time of TS-S by conducting the statistical test on only a

subset of the fitness cases. An extra experiment was conducted to examine this hypothesis by applying the Wilcoxon test

on 100 random values of fitness cases on the problems where the number of fitness cases is greater than 100. The results

of this experiment ( Table 12 ) show that this technique (TS-S-100) helps to further reduce the running time of TS-S (about

50%) while its testing error is mostly preserved. As a result, the average running time of TS-S-100 is always much smaller

than that of GP. 

9. Conclusions and future work 

In this paper, we introduced the idea of using a statistical test as part of an approach to semantic selection, which

utilizes the error vectors of GP individuals. We proposed three variations of tournament selection that employed statistical

analysis of these semantic vectors to select the winner for the mating pool. The proposed techniques aim at enhancing the

semantic diversity and reducing the code bloat in GP population. The effectiveness of the approach was examined on a large

number of symbolic regression problems including GP benchmark problems and additional problem instances drawn from

UCI dataset. In the experimental results we observed that, the proposed techniques especially TS-S was better than standard

tournament selection and neatGP (the state of the art method for controlling GP code bloat) in improving GP generalisation

and reducing GP code growth. 

One of the advantages of the proposed method is its simplicity in design and implementation. This allows it to be fur-

ther improved by combining it with advanced techniques in GP. In this paper, the best approach to semantic tournament

selection, TS-S, was combined with the recently proposed semantic crossover, RDO. The resulting method, TS-RDO, achieved

better testing error and reduced code growth to a greater extent. In addition, noisy instances of each problem were gener-

ated and performance of the various strategies examined demonstrating that the proposed methods have a good ability to

perform well on noisy problems. 

There are a number of research areas for future work. First, the experimental results showed that the performance of the

proposed methods are robust with various values of the tournament size. However, it would be better if the tournament

size could be self-adapted in the learning process [16] . Secondly, statistical analysis was used in this paper only to enhance

selection. It is also possible that statistical analysis can be employed in other phases of the GP algorithm, for example, in

model selection [49] . In terms of applications, TS-S and TS-RDO can be applied to any problem domain where the output is a

single real-valued number. In this paper, we focused exclusively on GP’s most popular problem domain, symbolic regression,

in the future we will extend semantic selection to popular problem domains such as classification and program synthesis. 
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