
A methodology for user directed search in evolutionary
design

Jonathan Byrne • Erik Hemberg • Michael O’Neill •

Anthony Brabazon

Received: 19 July 2012 / Revised: 4 March 2013 / Published online: 18 April 2013

� Springer Science+Business Media New York 2013

Abstract A designer should be able to express their intentions with a design tool.

This work describes a methodology that enables the architect to directly interact

with the encoding of designs they find aesthetically pleasing. Broadening interaction

beyond simple evaluation increases the amount of feedback and bias a user can

apply to the search. Increased feedback will have the effect of directing the algo-

rithm to more fruitful areas of the search space. We conduct trials on two interfaces

for making localised changes to a design in order to evaluate if the user is capable of

directing search. In addition, an examination of the locality of changes made by the

users provides an insight into how they explore the search space. The results show

that a suitably designed interface is capable of directing search and that the par-

ticipants used different magnitudes of change during directed search.

Keywords Grammatical evolution � Interactivity � Interrupt intervene and resume

1 Introduction

In traditional interactive evolutionary computation (IEC) there is a disconnect

between the user and the algorithm. User evaluation through selection is only

indirectly responsible for the output. The designer must feel directly involved in the

J. Byrne (&) � E. Hemberg � M. O’Neill � A. Brabazon

Natural Computing Research and Applications Group, University College Dublin, Dublin, Ireland

e-mail: jonathanbyrn@gmail.com

E. Hemberg

e-mail: erikhemberg@gmail.com

M. O’Neill

e-mail: m.oneill@ucd.ie

A. Brabazon

e-mail: anthony.brabazon@ucd.ie

123

Genet Program Evolvable Mach (2013) 14:287–314

DOI 10.1007/s10710-013-9189-6



design process [3]. Take the example of a user evaluating bridge designs for an

interactive evolutionary algorithm. Through selection they manage to find the

perfect bridge, except that the handrail is out of place. The user knows it is possible

to move the handrail to the correct place and wants to alter the design. If evaluation

is the only means of making this change then the user must select bridges where the

handrail is in the correct place and hope the algorithm intuits their wishes correctly.

Interrupt, intervene and resume (IIR) is a desirable quality for an evolutionary

design system [3] as it allows the user to directly manipulate the design while

remaining within the evolutionary framework. Incorporating the immediate wishes

of the designer into the process is necessary if evolutionary algorithms are to be

used for design.

Grammatical evolution (GE) has shown itself to be a suitable representation for

evolving architectural designs when combined with shape generating grammars [34,

38, 39]. For IIR to work with GE it must be possible to map changes to the

phenotype back to the genotype. The mapping used by GE complicates this process.

It is possible the user could make changes that are not expressible in the grammar

and so a reverse mapping would be impossible. The user can export the design to a

suitable CAD format and make further changes but then the design cannot be

evolved.

An alternative approach that permits IIR when a mapping process is involved is

to change the phenotype by directly altering the genotype. This work presents two

novel interfaces that enable the user to directly manipulate the chromosome and

instantly examine the resulting change. The immediate feedback presented to the

users allows them to observe the possible impact of genotypic changes and choose

their preference accordingly. The interface is not intended to replace evaluation in

IEC but to increase user input through direct intervention and enhance existing

interactive evolutionary design tools. The primary contribution of this work is that it

provides a focused version of selection driven search that incorporates the intentions

of the user into the evolutionary design process.

Locality—how well neighbouring genotypes correspond to neighbouring

phenotypes - has been described as a key element in Evolutionary Computation

[28]. In standard GE mutation there are two component behaviours. Nodal mutation

alters a part of the genome that encodes for a leaf node of a derivation tree and

structural mutation encodes for an internal node on a derivation tree. It has been

previously demonstrated that nodal and structural mutation had a perceivable

difference in the locality of their changes [6, 7]. Nodal mutation generated changes

of high locality while structural mutation generated changes of low locality.

By giving the user the ability to selectively apply each operator the user can

choose to move a small or a large distance from the current individual. Choosing

which operator to apply allows the user to bias the search toward exploring a

specific area of the search space, which has been shown by Whigham [51] to

improve evolutionary search. User interaction with the search is increased by

directly mutating individuals they find appealing. The approach taken in this work

makes the assumption that when users want to see similar variations of their

preferred designs. The experiments described in this work evaluate different user

288 Genet Program Evolvable Mach (2013) 14:287–314

123



interfaces to the evolutionary algorithm. The intention of the experiments is to

explore if the interface can aid the evolutionary design process.

The intention of this work is to examine if an IIR methodology combined with a

suitable interface is capable of directing search. To this end, empirical experiments

test whether the user can manipulate a given design to match a specified target.

Previous research in this area is discussed in Sect. 2 An overview of grammatical

evolution and the mapping process is given in Sect. 3 The initial interactivity

experiment and static user interface are described in Sect. 4 The results from the first

experiment led to a novel implementation of the animated interface. A new series of

experiments were carried out on the animated interface, which are described in Sect. 5

Finally, the conclusions and future work are discussed in Sect. 6.

2 Related research

This work combines the use of grammars for architectural design with an

investigation into different approaches for interactive evolutionary computation.

Accordingly, the related research is split into two taxonomies.

2.1 Grammars for architectural design

Grammars are a simple way of describing a generative encoding that allow for

syntactical correctness, compression and domain knowledge embedding [22]. A

grammar defines everything that can be said in a language. A correctly formed

grammar ensures that every completely mapped individual is valid. As well as

ensuring syntactic correctness, grammars allow domain knowledge to be embedded

in the system. By constraining the system to particular constructions or by calling

predefined functions, the user can manipulate how the individuals generated by the

grammar will behave.

The use of grammars to generate shapes was originally conceived by Stiny [45].

The shape grammar formalism developed by Stiny uses three types of rules, a start

rule, at least one transformation rule and a termination rule. The transformation

rules are applied to the start rule to generate shapes until a termination rule is

reached. Shape grammars have had several successful applications for generating

designs. Koning and Eizenberg [26] generated prairie houses in the style of Frank

Lloyd Wright by starting at the central fireplace and building around it with

variations on his tradition design. A shape grammar for describing and generating

coffee maker designs was set out in [1] and there have been several shape grammars

for capturing the aesthetic signature of classic designs such as the work by Pugliese

and Cagan [41] on Harley Davidson motorcycles and the work by McCormack et al.

[31] on Buick cars.

While shape grammars have a great expressive power, there is an inherent

difficulty with implementing shape grammars on a computer. The computer must be

able to recognise emergent shapes so that transformational rules may be applied to

them. Computer vision algorithms are required to categorise these emergent shapes.

The problem is explained in greater detail in [17]. There are three components

Genet Program Evolvable Mach (2013) 14:287–314 289

123



required to implement shape grammars on a computer. An interpreter is required to

apply shape grammar rules, a parser to deduce if a shape is in the shape grammar,

and an inference program that given a set of shapes would infer the rules that

created them.

O’Neill et al. [38] used context free grammars (CFG) in conjunction with

grammatical evolution to generate two dimensional shapes. An objective fitness

function and a specific target was used to automatically evolve designs. This work

was furthered in O’Neill et al. [39] to make three dimensional designs for a smoking

shelter. The output was rendered using Blender [44] and a user interface was

provided for interactive fitness evaluation. The results attained were limited by the

fact that many designs in the grammar were not connected to each other. Hemberg

et al. [23] combined GE with a variation on Lindenmayer systems [40] to create

abstract architectural designs. Evolution was guided by the user and by objective

shape rules such as symmetry and smoothness. The user could also add repellors and

attractors to manipulate the overall shape that was generated.

Machado et al. [29] used a graph based evolutionary approach combined with

context free design grammars to evolve images. Context Free Art [11] is an image

generation software package that uses context free design grammars to generate

shapes and patterns. In this work the genotype was a well formed context free

grammar that was represented as a graph. The graph used nodes to encode for non-

terminals and the edges were annotated with the parameter values being passed to

the non-terminals. The experiments used both objective and subjective fitness tests.

McDermott et al. [34] compared shape grammars with CFGs for design

generation. It was shown that CFGs are easier to manipulate and eliminate much

of the ambiguity present in shape grammar mappings-terminals. There have been

several applications that have used CFGs for design generation. The work by

Wonka et al. [52] used a context free grammar based approach for rapidly

generating feasible architecture. By separating the generation process into split and

set grammars they could generate varied architectural structures that still had

aspects of regularity. Set grammars specify the overall layout of a design while split

grammars break up an object into smaller interchangeable components. The results

generated by the split grammar would then be used as components by the set

grammar.

Coia and Ross [10] combined a context free grammar with CityEngine [15] for

generating three dimensional buildings. The grammar applied rules such as extrude,

rotate, split scale and insert, to a starting component to generate connected yet

varied designs. The buildings were evolved using objective aesthetic constraints

such as the number of unique face normals, overall surface area and overall height.

In an effort to create more coherent designs and also to avoid problems of infinite

recursion in a grammar, higher order functions (HOF) were introduced. Currying

higher order functions, i.e., setting a function argument to a fixed value, allows

recursion to be used without having to worry about non terminating recursive calls

Yu [53]. McDermott et al. [33] incorporated this approach into a CFG. Combining

higher order functions and lambda abstraction meant that the problem of

connectedness in a generated design was addressed and it also allowed for more

modularity, regularity and hierarchy in the resulting designs.

290 Genet Program Evolvable Mach (2013) 14:287–314

123



The designs generated in this work use a context free grammar that incorporates

both higher order functions and lambda functions to generate the designs. This

means that there is a non-trivial mapping process between the genotype and the

phenotype as discussed in greater detail in Sect. 3.2 The next section describes

methods for user interaction with an evolutionary algorithm similar to the methods

implemented in this work.

2.2 Interactive evolutionary computation

Human interaction was originally introduced to the evolutionary process for

problems where no objective fitness function could be found. One of the earliest

applications was the generation of images by Dawkins [13]. Interactive fitness

functions have allowed EC to be applied to problems that have aesthetic

considerations such as music and computer graphics, This allows EAs to function

as an exploratory tool as opposed to being limited to optimisation.

The primary problem with user interaction is the ‘‘fitness bottleneck’’ [4]. An

algorithm can evaluate individuals in parallel and is limited only by the speed and

number of the processors. Humans, conversely, can only process small amounts of

input that is limited by their perceptual abilities and can only assign fitness to

individuals serially. Miller [36] showed that humans have difficulty handling more

than approximately seven quantized measurements of information. This is true

regardless of sensory modality. The result is that user input slows the process of the

EA due to the limited number of evaluations that they can perform.

How the user interacts with the algorithm is of paramount importance. There are

many different implementations that vary the level of interaction and the amount of

information provided to the user. In his survey paper Takagi [47] splits IEC into

several different categories, each based on the level of interaction. Approaches that

allow direct participation in the evolutionary process through means other than

evaluation are categorised as active user intervention (AUI) [47]. The interfaces

described in this work are based on the AUI approach. Several successful AUI

methodologies have been used to increase user participation and are discussed

below.

2.2.1 Online knowledge embedding

Online knowledge embedding (OLKE) [46] provides a mechanism for directing the

algorithm through hints, ideas or intentions. The user highlights components of a

design that they think have high fitness and the genes relating to these components

are then fixed, which reduces the search space. An example of this is the tracking a

criminal suspect through face-space with a genetic algorithm [9]. The main

advantage of using IEC for this task was that it relied on human recognition instead

of human recall. Identikit images that are normally used for criminal investigations

were evaluated by the user. There were 10 discrete values for rating the likeness. If a

user felt that they had matched a particular feature they could set it so it would stay

fixed for the rest of the run. OLKE is only possible if each component of the output

maps directly to a particular gene.

Genet Program Evolvable Mach (2013) 14:287–314 291

123



Hart [19] developed an evolutionary art that used a novel form of tree alignment

to create better genetic dissolves. The user was given fine grained control of the

mutation operator and was allowed to select or mask different types of mutation.

They could also adjust the relative probability of mutation and bias the mutation rate

depending on tree depth. This work is notable for letting the user apply their own

intuition on the operator.

SBART [49], a 2D picture generator, enables the user to break parts of the

population into different sub-populations. Each sub population evolves separately

from their neighbours. Individuals may be saved and introduced into different

populations, thus allowing individuals to be treated as ‘‘digital amber’’ [42], a

metaphor for how the genetic code of an individual organism is preserved in the

computer after a run is terminated, and whereby it may be reintroduced into future

populations or reused in a different run entirely.

The approach of grouping and categorizing interesting individuals was also used

in the evolutionary art tool NEvAr [30]. During the exploration stage of the

selection process the chosen individuals are saved in a separate gallery. The user

may then categorise the individuals as images that should be discarded, images that

may be useful, images that should be further refined, and images that are artworks

that fully satisfy the user’s aesthetic criteria.

2.2.2 Visualised IEC

Visualised IEC (VIEC) collapses a multi-dimensional search space into a 2D

representation. The individuals are then mapped to the 2D space and presented to

the user. The user is able to observe the distribution and fitness of the population and

direct the search to particular parts of the search space, thus combining both

evolutionary and human search techniques. VIEC has been shown to dramatically

improve convergence. Hayashida and Takagi [20] used self organising maps (SOM)

to collapse an n-D Schaffer function into a 2-D representation and Hayashida and

Takagi [21] compared different methods for mapping an n-D function to a 2-D

representation. The problem with VIEC is that a meaningful mapping from n-D to

2-D space must be performed and the topological relationships must remain intact.

2.2.3 Human based genetic algorithm

Human based genetic algorithms (HBGA) enable the user to apply low level genetic

operators such as mutation, initialisation, selection and crossover to the population

[27]. Using humans is useful in problems such as evolving natural language

statements, where it is hard to design efficient computational operators. HBGA

requires that an individual in the population can be understood by the user and that

the operators perform in a manner intuitive to the user.

Hyper-interactive evolutionary computation (HIEC) extends HBGA by giving

the users access all the genetic operators [5]. HIEC treats the operators as a tool set

for the user. Additional operators such as duplicate, delete are available to the users.

The approach taken in this thesis is similar to HBGA in that the users choose when

and where to apply mutation operators. The difference is that the users are presented

292 Genet Program Evolvable Mach (2013) 14:287–314

123



with the consequences of applying an operator and they select the change they want.

One early example of this is the mutasynth sound generation tool by Dahlstedt [12].

In conjunction with selection, the user manually mutates and freezes sets of genes to

focus the search on preferred individuals.

The approaches described in this work are similar to HBGA and HIEC in that

they allow the user to apply mutation operators. There are also aspects of OLKE as

the user is allowed to focus search on a specific individual of interest. This section

gave an overview of the related research under two taxonomies, grammars for

architectural design and interactive evolutionary computing. The next section gives

a detailed description of grammatical evolution, the evolutionary algorithm used in

the experiments.

3 Grammatical evolution

Grammatical evolution [14, 37] is a grammar based form of genetic programming

[35] that uses evolutionary processes to automatically generate programs. GE uses a

mapping process to create output called the genotype to phenotype mapping. The

genotype to phenotype mapping is a terminology that has been adapted from the

field of biology. A genotype is an encoding upon which the evolutionary operators

of mutation and recombination act. A biological example of a genotype would be

human DNA. Changes to the genotype are translated into changes to the phenotype.

A phenotype is an observable characteristic of an individual. An example of this in

humans would be eye-color or height. Evaluation of the fitness is performed on the

phenotype. This biological concept was introduced to the field of EC as a method

for separating the search and solution space [2] and as a metaphor for describing the

representations and mapping processes.

GE generates strings in a context free language by using a list of numeric values

(called a chromosome) to select the production choices for non-terminals. The

chromosome is made up of codons. Each codon in the chromosome is used to select

a production rule from a BNF grammar. The numeric values of each codon can be

stored as either binary or integer values. The choice of genotype representation has

an effect on the algorithm, as shown by Hugosson et al. [25], but this is not

examined as integer representations are used exclusively in the investigations of this

work. Once all the non-terminals in a derivation have been mapped to terminals an

output string in that language has been generated. The output string is the

phenotypic form of the individual. The phenotype is a computer program that may

then be executed and evaluated by the fitness function.

3.1 A component-based view of mutation in GE

As mutation is applied to the genotype and not the phenotype, single mutation

events combined with the mapping process can result in different magnitudes of

change to the phenotype, i.e., mutation events have different locality. Locality refers

to how well neighboring genotypes correspond to neighboring phenotypes, i.e., a

small change to the genotype results in a small change to the phenotype and vice

Genet Program Evolvable Mach (2013) 14:287–314 293

123



versa. A mapping has locality if the neighbourhood is preserved under that mapping

[43]. In order to perform the classification of different types of mutation event, a

derivation tree of the individual must first be created.

Standard GE mutation can be divided into two types of events, those that are

structural in nature and those that are nodal. Nodal mutation changes a single leaf of

the derivation tree. The structure of the derivation tree remains unchanged. A nodal

codon encodes for a rule that only has terminal productions. Structural mutation
changes one or more internal nodes of the derivation tree (and zero or more leaves)

and can result in a change to the structure of the derivation tree. A structural codon

encodes for a rule with non-terminal productions and zero or more terminal

productions. An example of a nodal and structural mutation is given in Fig. 1b, c.

Previous work investigating locality in GE mutation [6–8] showed that structural

and nodal mutation had different effects on locality during the mapping process and

on the resulting output. Nodal mutation generates high locality changes and

structural mutation generates low locality changes. As the user is exclusively

applying mutation, we shall investigate how the different locality of events are used

to navigate the search space.

3.2 Higher-order function grammar

Hornby [24] states that hierarchy, regularity and modularity are desirable qualities

in a representation for design. McDermott et al. [33] and Yu [53] showed that

grammars were capable of encoding such qualities through the use of higher-order

functions (HOF). Higher-order programming requires that functions can be passed

to other functions as arguments (first-class functions) and that anonymous functions

can be created (lambda expressions). Lambda expressions allow the grammar to

define unique functions for the program which then act as modules. Lambda

expressions also allow for currying, where a pre-existing function is called except

some of the arguments to that function are fixed. Passing functions to other

functions allows for a level of hierarchy in the structure of the program. Both of

these functions combine to generate structures that contain repetition and similarity,

also known as regularity. An example of a program that uses such a grammar is now

given.

(a) (b) (c)

Fig. 1 Nodal (green) and structural (blue) nodes of a derivation tree. Nodal mutation changes a leaf node
while structural mutation changes an internal node (Color figure online)

294 Genet Program Evolvable Mach (2013) 14:287–314

123



A simplified example of the functional set of the grammar used in this

experiment is given in Algorithm 1. The geometric objects are created by combining

path functions and connecting functions. Path functions are given scalar values and

return nodes on a path. Connecting functions are given nodes and then generate

additional nodes and connect them together.

Variations of the principles in the following example were used to create the bridge

designs that were used in the experiments. An example of a program is shown in

Algorithm 2. The program uses the map function in conjunction with a scalar list to

generate a list of nodes that follow a circular path 2(a). Two of the arguments to

circle_path() have been fixed or ‘‘curried’’, the axis is set to z-axis and the circle

radius is set to 50. The map function then applies the functions Connect3() and

drop_perpendicular() to the set of nodes generated by circle_path().

Connect3() adds triangles to the nodes, as shown in Fig. 2b, and has the axis

argument curried so that it is set to the y-axis for all of the triangles. Finally

drop_perpendicular() add a vertical line as shown in Fig. 2c. The next section

describes how the distances between bridge designs was measured objectively.

4 Application of nodal and structural mutation using a static interface

This experiment primarily examines if user application of mutation operators can

direct the evolutionary algorithm during search. The secondary goal of the

Genet Program Evolvable Mach (2013) 14:287–314 295

123



experiment is to compare whether separating mutation events allows the user to

navigate the search space more effectively by varying the locality of their search.

The experiment compares user performance at directing search using integer

mutation against a combination of nodal and structural mutation. A static interface

consisting of generated is used as this is the traditional method for interactivity

experiments involving visual stimulus.

The subjective nature of aesthetics makes interactive evolutionary design a

difficult area to quantify. Normally a user is allowed to explore the search space

until they discover an appealing design [30]. This approach is problematic as there

is no way of distinguishing if the algorithm provided any benefit to the search or

whether it just presented randomly generated designs to the user. In addition, there

is also the problem that the interest a user has for a design is completely subjective

and prevents any additional analysis of the results.

In an effort to generate measurable results, the experiment specifies a target

design and the goal for the user is to match that target. The user’s results are then

compared against a control group of randomly generated selections. The user is

asked to match three targets using two different techniques. Although this is quite

different to the design process, it is analogous to the user combining an interesting

design with a design they had observed previously during the evolutionary process,

i.e., finding a path from the current design to one that incorporates features of the

previously generated design. Setting an objective makes the task quantifiable but it

does not simplify the task. The user must change the correct codons before they are

mapped to obtain the desired output. This is a non-trivial task given the complex

mapping processes in GE. The experiment described in the next section examines if

the user can direct search to match a target using such an approach.

4.1 Experimental design

The grammar used in this experiment is a shape generating grammar that outputs

bridges using the higher order function techniques as described in Sect. 3.2 The

interface used in this experiment is shown in Fig. 3. There is a target bridge on the

right hand side and nine bridges to select from on the left hand side. When the user

selects a bridge 8 mutated variations are generated and their choice is saved in a green

box in the top left frame, so that they may generate more mutations from it. The user

can keep selecting bridges until they think they have matched the target or have

(a) (b) (c)

Fig. 2 The output design generated by the program example

296 Genet Program Evolvable Mach (2013) 14:287–314

123



reached the 5-minute time limit. A Euclidean distance measure, was used to calculate

the distance of the user generated results from the target. The graph distance provided

an objective measure to calculate how close the user got to the target. A more detailed

description of the graph distance is given in Sect. 4.2 Twenty four volunteers

participated in this experiment and the experiment itself was approved by the Ethics

Committee in UCD (Reference number: LS-E-11-05-Byrne-ONeill).

There is no crossover used in this experiment. All variants are created exclusively

by mutation events. The mutation operators select a codon from within the coding

region of the genome and increment it by one. As a codon is only used when

choosing the production of a rule, incrementing it by one means that it will always

encode for a new production, thus ensuring a genomic change in the individual. It

also means that the Hamming distance between mutation events is exactly one.

To avoid confusion it was decided to simplify the allowed user input. The user is

limited to either the left mouse button (LMB) exclusively, or both the left and right

mouse button (RMB). When the input is exclusively LMB, standard integer mutation

is applied. When the user has a choice of both buttons, the LMB corresponds to a nodal

mutation and the RMB corresponds to a structural mutation. The intention of this

decision is to examine if more fine grained control can have an effect on how the users

traverse the search space. The targets the user was required to match are shown in

Fig. 4. They were created by generating a random genotype which was then mapped

using the same bridge grammar that the static interface was based upon. Randomly

generating the targets removes any human bias from the target selection process.

The user was allowed two trial runs to familiarise themselves with the static

interface and the different effects of the mutation operators. Finally, after

completion of the trial the user was asked to complete six experiments. The first

Fig. 3 A screen-shot of the interactive GUI. The target is on the right and the results from the previous
mutation choice are in the 9 frames on the left

Genet Program Evolvable Mach (2013) 14:287–314 297

123



three of the experiments used integer mutation to match three targets and the next

three experiments used nodal and structural mutation to match the same three

targets. A fixed random seed was used for each experiment so that all participants

would be presented with the same initial designs. The user had a time limit of 5 min

to complete each task. The time of each selection and the individual selected were

recorded. Once the user had completed the experiment they were asked to fill out a

short survey that asked them which features they used to compare similarity.

The user was presented with every selection they had made upon completion of

the experiment and was asked to select the design that most closely matched the

target. In order to see if the improvement over time was due to the choices of users,

a sample of random mutation events was generated for comparison. The random

sample was created by allowing a Mersenne twister random number generator make

selections using the same static interface that participants had used.

Given a sample of randomly generated mutation events l0, and the results of user

application of mutation operators, l1 and l2, where l1 allowed the user to apply

integer mutation and where l2 allowed the user to apply nodal and structural

mutation, the following hypothesis is stated.

H0: There will be no statistically significant difference between the random

sample and either operator, l0 = l1 = l2

H1: There is a statistically significant difference in performance for a particular

operator,l0 6¼ l1kl0 6¼ l2kl1 6¼ l2

a: The significance level of the Wilcoxon rank-sum is 0.05.

4.2 Euclidean graph distance

The output of the evolutionary design software generated graph representations

of designs. The graphs consisted of nodes and edges in a three dimensional

space. Euclidean graph distance uses a Euclidean distance measure to compare

the nodes of the output designs. Euclidean distance is defined as the straight-line

distance between two nodes on the same plane. The distance, d, is given by the

formula:

(a) (b) (c)

Fig. 4 The targets that the users had to match

298 Genet Program Evolvable Mach (2013) 14:287–314

123



dððx1; y1; z1Þ; ðx2; y2; z2ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x2Þ2 þ ðy1 � y2Þ2 þ ðz1 � z2Þ2
q

:

The graph with the most nodes is selected for iteration. The distance is then

calculated by iterating though each node in the larger graph and comparing it with

the the nearest node in the smaller graph. The distance between these nodes is then

added to the total distance between designs. The euclidean graph distance fulfils the

metric axiom of non-negativity, d(a, b) C 0.

The output graphs consist of nodes and the edges between them but the Euclidean

distance formula only compares nodes in space. The edges between nodes must be

taken into consideration so that d(a, b) = 0 if and only if a = b. Exhaustively

checking how the nodes were connected proved to be computationally expensive.

Instead, while computing the distance between node pairs, the number of outgoing

edges for each pair is also compared. Any difference in the number of outgoing

edges is added to the total fitness. As the fitness is being minimised this results in a

worse fitness.

Two graphs, a and b, are considered identical if the distance for every node in

graph a and its nearest respective node in graph b is zero and the number of edges

for each node pair is identical. While Euclidean graph distance does not fulfill all of

the axioms required by a metric this does not prevent it from being a useful measure

in practice [18, 32]. The next section describes how the metric is used to evaluate

the performance of the participants when using an interface to match a given target.

The next section describes the first interface experiment carried out in this work.

4.3 Results

The results for the distance metrics are shown in Fig. 5. The Figures show the time

taken by the user (in seconds) on the x-axis and the distance from the target on the

intTarget1Euc

time(seconds)

di
st

an
ce

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0

bothTarget1Euc

time(seconds)

di
st

an
ce

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0

(a) (b)

Fig. 5 The best fitness Euclidean distance for target 1, the x axis is the time taken and the y axis is the
distance from the target. There is no significant improvement in distance during the course of the run

Genet Program Evolvable Mach (2013) 14:287–314 299

123



y-axis. The smaller the value on the y-axis, the more closely the result matched the

target. The graphs show the best result obtained from the users. As shown in the

graphs, there is little or no improvement over time. This result was further

confirmed by comparing the user input against the sample of random selections.

A Wilcoxon rank-sum was performed and no significant difference was found

between the user data and the randomly generated data. This result supports the null

hypothesis. Only the results for the first target image are shown as the other target

graphs show similar results.

These results appear to support the null hypothesis, that the user is unable to

direct search using interactive operators and selection. This is a highly contentious

conclusion to draw as many years of interactive evolutionary computation studies

have generated results that reach the opposite conclusion [19, 30, 48]. If this is not

the case then there are two possible causes for the results.

4.3.1 Choice of metrics

How a human evaluates the similarity of two designs is a subjective measurement.

The survey showed that users often based how similar they found bridges on

individual features or parts of the design, such as the handrail or the curve of the

walkway. While no metric is perfect and human selection is subjective, Euclidean

graph distance should have recorded some improvement over time.

4.3.2 Methodology

The experiment was constructed to present the evolved population to the user and to

facilitate precise logging of input. Pilot studies were completed to ensure the static

interface was usable and that certain concerns were addressed such as saving

previous designs and allowing a single design to be repeatedly mutated. While these

aspects of the static interface are important they are essentially technical concerns.

What is not addressed is how to best facilitate the user’s exploration of the search

space.

A user made 17 selections on average during the 5 min they had to match a

target. Although mutations could occur on the same codon, the user could

theoretically move a maximum Hamming distance of 17 from their original

selection. An average of 48 codons were used to encode a design so a Hamming

distance of 17 could allow for significant change to the individual. The lack of

progress during search arose from the fact that each selection presented the user

with 8 more images. As the participant is presented with only 136 designs (on

average) during the course of a run, the result is that they only observe a small part

of the search space. To assume that a significant improvement could be made in this

short distance was optimistic.

The target bridges were created by randomly generating genotypes and using

these to select individuals from the search space. Little thought was given to how

‘‘far’’ the target individuals were from the starting node. Nor was it known if the

targets were reachable from the starting node. The approach taken in this

300 Genet Program Evolvable Mach (2013) 14:287–314

123



experiment was intended to reduce human bias but it may have inadvertently made

the task too difficult for the user.

The user did not know what change to expect between a nodal and a structural

mutation, which meant that the users intention of ‘‘big’’ and ‘‘small’’ changes may

not be evident in the generated individuals. What constitutes a small or a large

change depends on the user’s personal preference. The nodal mutation events

presented a unique problem to the user as the resulting mutations looked identical to

the user. Some nodal changes fell below the threshold of a Just Noticeable

Difference (JND). JND is a concept from cognitive psychology first described by

Ernst Heinrich Weber [50]. JND is the smallest difference between two stimuli that

is still capable of being perceived. The lack of what the user perceived as new

variations also hindered them in completing the task.

The grammar also complicated what was already a difficult task. Several

participants complained of identical bridges being generated. Although most of

these cases were a result of the JND described above, distance comparisons

performed afterwards showed that some individuals were identical. Despite every

mutation incrementing a used codon, sometimes the grammar generated anonymous

functions that required codons for components that were not expressed in the output.

An example of this would be codon values being used to define a curve and only

half the curve being used in the final bridge design. Neutral mutations were removed

in the following experiment by applying the euclidean graph distance formula to the

mutated individuals. If the distance is zero then the mutated individual is removed

from the population.

Due to the reasons discussed above a new approach was developed for allowing

user interaction with the evolutionary algorithm. The new animated interface is

discussed in the next section.

5 An animated search interface for interactive evolutionary architectural
design

It became clear from the experiment in Sect. 4 that allowing the user to apply the

mutation operators is not enough, the user has to be able to interact with the

algorithm in a meaningful way and be able to process a much greater area of the

search space. After analysing the results and user feedback gathered from the

previous experiment, the interface was re-implemented in an attempt to allow the

user to explore the search space more effectively. Whether the metrics adequately

reflect similarity and locality is also examined. The problems and their respective

solutions are shown in Table 1. The underlying principle of mutation driven search

remains the same but instead of the user choosing an operator, all possible mutations

of Hamming distance one were applied to an individual. Each codon was mutated in

turn, the result was rendered and then the codon was restored to its original value.

The productions for each codon generated a collection of nodal and structural

mutation events to choose from. This process is shown in Fig. 6. By making no

assumption about operator choice and instead presenting the user with every

Genet Program Evolvable Mach (2013) 14:287–314 301

123



available option, it is now possible to examine how they navigate the search space

based on their selections.

Presenting an entire population of mutation events to the user simultaneously is

not feasible. The animated interface instead uses a single window for exploring the

population. The interface is shown in Fig. 7. The current user selection is on the left

and the target is the image on the right. The leftmost panel states the instructions,

user controls, time remaining and the distance from the target (stated as the

difference). The user scans through the mutation events using the left and right

arrow keys and the selects the mutation change they want and that now becomes the

basis for generating the next population. By presenting the phenotypic effects of a

mutation change to the genome the user is not required to understand the

relationship between the codons and their mapping to the phenotype. The interface

displays the consequences of different mutation events and the user then selects the

change that most closely matches their preference.

The user viewed the individuals by moving the slider or holding down the left

and right arrow keys. The refresh rate for the window is ten frames per second. As

the frame rate is at a level where the frames can be perceived individually, the user

is capable of perceiving the bridges distinctly. A greater frame rate could result in

the user skipping over bridges due to persistence of vision. Codon changes were

made sequentially so a codon’s productions are grouped in their presentation to the

user. Overlaying groups of changes in the same window allowed the user to pick up

smaller JND changes by viewing them in rapid succession.

Fig. 6 Generating Hamming distance 1 individuals for user selection. The value of each codon is altered
and the result is saved. The codon is then restored to the original value before moving on to the next
codon

Table 1 Problems addressed by the new interface

Problem Solution

Magnitude of change unknown Show all changes in advance

Limited user evaluations Local search is animated for quicker evaluation

No measure of target difficulty Each target increases in Hamming distance

No alternative paths allowed ‘‘undo’’ button added

Difference below JND Mutations animated to highlight changes

Identical Individuals Removed by comparing Euclidean graph distance

302 Genet Program Evolvable Mach (2013) 14:287–314

123



(a)

(b)

(c)

Fig. 7 New animated interface. The target is on the right and the current individual is in the middle
frame. The user instructions and a slider that shows the current position in the population is on the left

Genet Program Evolvable Mach (2013) 14:287–314 303

123



5.1 Experimental setup

The subjective nature of aesthetics makes evolutionary design search a difficult area

to quantify. To generate measurable results a target design is specified and the user

must then attempt to match it. The experiment asked the user to match ten different

targets. The random seed was fixed so that the animated interface always started

from the same individual. The targets were mutated variants of the starting

individual and they increased in difficulty as the Hamming distance was greater for

each successive target.

The targets are shown in the order they were presented to the user in Fig. 8. The

Hamming distance, the number of nodal and structural mutations and the Euclidean

graph distance from the starting graph for each target is shown in Table 2. In an

effort to generate a range of target difficulties, each target had a Hamming distance

greater than or equal to the target that preceded it. Although this is not an absolute

measure of difficulty it does mean that more input is required from the user to obtain

a perfect match.

Each participant had 2 min in which to try to match the target. The experiment

was set on a timer to end as soon as 2 min had been reached. This meant that all

experiments could be compared equally. They were free to make as many selections

within this time frame and they could undo selections if they wished. At the end of

target exercise the user was asked a short survey asking them which features they

used to compare similarity. Twenty five volunteers participated in this experiment

and the experiment itself was approved by the Ethics Committee in UCD (reference

number: LS-E-11-129-Byrne-ONeill).

A sample of random trials were generated to examine if the users were capable of

using the animated interface to match the target. The same interface was used

except selections were chosen randomly by a Mersenne twister random number

generator. Twenty five random samples were generated for each of the targets. The

distribution of the random selections for each target matched the user’s click

average and standard deviation, as shown in Table 2.

Given the distance results of a sample of randomly selected individuals from a

given target, l0, and the distance results of the user selected individuals from a

given target, l1, the following hypothesis is stated:

H0 There will be no statistically significant difference between the random

sample and the user generated results, l0 = l1

H1 There is a statistically significant difference in distance from the target for the

user generated results, l0 = l1

a The significance level of the Wilcoxon rank-sum is 0.05.

5.2 Results

The number of user selections (user clicks) and the number of images presented to

the user (user evaluations) are shown in Table 2. In the previous experiment, the

users selected 17 individuals and evaluated 136 designs on average in a five minute

time period, the equivalent of 27 evaluations per minute. The user click and user

304 Genet Program Evolvable Mach (2013) 14:287–314

123



evaluation results show that the user made fewer selections with the new animated

interface than in the previous experiment but they evaluated many more designs

within a two minute time period. The highest number of evaluations was for target 5

where the user was presented on average with 325 images for evaluation, the

equivalent 162 evaluations per minute.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Fig. 8 The targets that the user had to match, the original individual that the user started with is in the
top left corner

Genet Program Evolvable Mach (2013) 14:287–314 305

123



The percentage of user mutations (User Matched) and random sampling

mutations (Random Matched) that matched the target codon changes are also

shown in Table 2. With some exceptions, the percentage of matched codon

mutations decreases as the Hamming distance increases. The opposite is true for

random sampling: as more codons are changed there is an increased likelihood that

a random mutation would match that of the target.

A Wilcoxon rank-sum test compared the final selections for the user and the

random sampling. There was a statistically significant difference from the random

sample with exceptions of target 5 and target 10. The result rejects the null

hypothesis for 8 of the 10 targets. In these cases the results show a distinct

improvement over time for the user generated results while the random samples

either show no reduction of distance from the target or an increase in distance from

the target. The results show that users could successfully use the animated interface

to direct search.

Scatter plots were generated to examine if there was an improvement over time

regarding Euclidean graph distance from the target. Each user selection generated a

data point that recorded the time, distance from the target and the mutation type. A

locally weighted scatter plot smoothing (LOESS) was performed on the results to

plot a smooth curve of the average values. The set of data points was then

bootstrapped [16]. The graphs on the left of Figs. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

compares the user distribution (green) with the random sampling (grey).

The type of mutation used for each selection was recorded with intention of

examining if mutation operators of different locality were used at different points

during the target matching process. The user was not informed of whether they were

making a nodal or structural mutation. They made their selection based on the

output of the mutation event. Bar charts showing the number of nodal mutations

(red) compared to the number of structural mutation (blue) are shown in the graphs

on the right of Figs. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. The X-axis is the number of

selections made while the y-axis shows cumulative frequency for a particular type

of mutation.

Table 2 The distance and change types for each target

Target Nodal:

structural

Hamming:

Euclidean

User clicks User evaluations User

matched (%)

Random

matched (%)

Target 1 1:0 1:10 1.0 ± 0.0 22.4 ± 34.9 100 4.0

Target 2 2:1 3:92 3.8 ± 2.1 190.3 ± 80.6 64.6 11.8

Target 3 2:2 3:184 2.7 ± 1.3 202.4 ± 61.6 64.9 12.1

Target 4 4:1 5:158 4.1 ± 2.2 245.2 ± 126.4 74.1 20.3

Target 5 5:1 6:214 3.3 ± 1.1 325.6 ± 130.2 36.6 31.8

Target 6 7:0 7:188 3.5 ± 1.3 196.0 ± 61.4 58.9 31.3

Target 7 6:2 8:465 3.5 ± 1.2 262.3 ± 83.2 57.6 15.9

Target 8 7:1 8:457 4.0 ± 1.9 364.7 ± 131.0 37.5 27.0

Target 9 7:2 9:273 4.8 ± 2.0 306.4 ± 86.1 28.2 36.4

Target 10 7:4 11:117 4.9 ± 2.0 282.4 ± 103.7 29.7 42.5

306 Genet Program Evolvable Mach (2013) 14:287–314

123



5.3 Discussion

The results discussed in Sect. 5.2 show that the users were able to direct search

towards a target using the new animated interface, with the exception of target 5 and

target 10. In the case of target 5, the users matched few of the mutated codons and

so followed a different mutation path that ended up in a local optima. In the case of

Time (seconds)

D
is

ta
nc

e

User Results
Random Results

Nodal
Structural

0 20 40 60 80 100 120

0
10

0
20

0
30

0
40

0
50

0
60

0

1 2 3 4 5 6 7 8 9 10

0
5

10
15

20
25

Number of Selections

N
um

be
r 

of
 O

cc
ur

en
ce

s

(a) (b)

Fig. 10 Target 2 consisted of two nodal mutations and one structural mutation and was one of the three
instances where there was more nodal selections initially than structural selections. This meant the users
chose a high locality mutation event instead of a low locality event. As the Euclidean distance from the
original caused by the mutation events was only 92, meaning that none of the mutation events had a
greatly changed the individual

Time (seconds)

D
is

ta
nc

e
User Results
Random Results

Nodal
Structural

0 20 40 60 80 100 120

0
10

0
20

0
30

0
40

0
50

0
60

0

1 42 3 5 6 7 8 9 10

0
5

10
15

20
25

Number of Selections

N
um

be
r 

of
 O

cc
ur

en
ce

s

(a) (b)

Fig. 9 Target 1 was used to introduce the user to the animated interface. As the target was a Hamming
distance of one from the original, every participant successfully matched the target with one selection.
The result shows that if a desired individual is in the immediate proximity of the current individual, the
user is capable of finding it

Genet Program Evolvable Mach (2013) 14:287–314 307

123



target 10, a large percentage of the expressed codons were mutated and so it

presented too difficult a challenge to match all the changes within the allotted time.

This evidence supports the hypothesis that the user could use such an animated

interface to mutate a design to incorporate features that they had previously seen in

other designs generated by the evolutionary algorithm. The results obtained

regarding the participants use of nodal and structural mutation show that users

Time (seconds)

D
is

ta
nc

e
User Results
Random Results

Nodal
Structural

Number of Selections

N
um

be
r 

of
 O

cc
ur

en
ce

s

0
10

0
20

0
30

0
40

0
50

0
60

0

0 20 40 60 80 100 120 1 2 3 4 5 6 7 8 9 10

0
5

10
15

20
25

(a) (b)

Fig. 11 Target 3 consisted of two nodal and two structural mutations. The participants overwhelmingly
chose a structural mutation initially and then refined their selection with higher locality nodal mutations.
This is shown in the LOESS results as a steep decrease in the distance followed by a plateau where there
was little additional improvement

Time (seconds)

D
is

ta
nc

e

User Results
Random Results

Nodal
Structural

0 20 40 60 80 100 120

0
10

0
20

0
30

0
40

0
50

0
60

0

1 2 3 4 5 6 7 8 9 10

0
5

10
15

20
25

Number of Selections

N
um

be
r 

of
 O

cc
ur

en
ce

s

(a) (b)

Fig. 12 Target 4 consists of four nodal mutations and one structural mutation. Participants
overwhelmingly started with structural mutation and then applied nodal mutations. Despite the user’s
preference for a low locality event for their first selection, the fitness initially got worse according to the
Euclidean distance. Additional selections made by the participants increased the fitness and there was
significant improvement in distance by the end of the task

308 Genet Program Evolvable Mach (2013) 14:287–314

123



started by predominantly applying a structural mutation and then moving to nodal

mutation. The result means that the participants commenced their search by making

large phenotypic changes and then fine tuning that solution with high locality

mutation events. There were three exceptions to this including target 6 which

consisted of nodal mutations exclusively.

Time (seconds)

D
is

ta
nc

e

User Results
Random Results

Nodal
Structural

0 20 40 60 80 100 120

0
10

0
20

0
30

0
40

0
50

0
60

0

1 2 3 4 5 6 7 8 9 10

0
5

10
15

20
25

Number of Selections

N
um

be
r 

of
 O

cc
ur

en
ce

s

(a) (b)

Fig. 14 Target 6 consists of seven nodal mutations and no structural mutations. This is the second of the
three instances where there were more nodal mutations made initially than structural mutations. As all the
changes that generated the target were nodal changes and 58.9 % of the user selections matched the
mutated codons, it shows that the users were capable of following an evolutionary path similar to the one
that created the target

Time (seconds)

D
is

ta
nc

e
User Results
Random Results

Nodal
Structural

Number of Selections

N
um

be
r 

of
 O

cc
ur

en
ce

s

0
10

0
20

0
30

0
40

0
50

0
60

0

0
5

10
15

20
25

0 20 40 60 80 100 120 1 2 3 4 5 6 7 8 9 10

(a) (b)

Fig. 13 Target 5 consists of five nodal mutations and one structural mutation. Although more structural
mutations were applied in initially, the proportion of nodal and structural mutations remains consistent.
The participants mutated the same codons used to create the target only 36 % of the time, resulting in a
poor score. There is no improvement made by the participants for this experiment and their results are
indistinguishable from random selection

Genet Program Evolvable Mach (2013) 14:287–314 309

123



A surprising result is that there was a definite improvement in Euclidean graph

distance for targets 8 and 9 while the overall percentage of codons matched were

low (37.5 and 28.2 % respectively). The result shows that it is possible to get close

to matching a target without following the exact same mutation path. What this also

means is that the user is following a different genotypic path to arrive at the same

phenotypic output.

Time (seconds)

D
is

ta
nc

e

User Results
Random Results

Nodal
Structural

0 20 40 60 80 100 120

0
10

0
20

0
30

0
40

0
50

0
60

0

1 2 3 4 5 6 7 8 9 10

0
5

10
15

20
25

Number of Selections

N
um

be
r 

of
 O

cc
ur

en
ce

s

(a) (b)

Fig. 16 Target 8 consists of seven nodal mutations and one structural mutation. It is the third instance
where there were more nodal mutations initially than structural mutations. Overall there was a lower
percentage of matched codons. This means that the users were not mutating the same codons that changed
to generate the target but there was still a significant decrease in distance. The result suggests the users
could match the phenotypic output but by following a different genotypic path

Time (seconds)

D
is

ta
nc

e
User Results
Random Results

Nodal
Structural

Number of Selections

N
um

be
r 

of
 O

cc
ur

en
ce

s

0
10

0
20

0
30

0
40

0
50

0
60

0

0 20 40 60 80 100 120

0
5

10
15

20
25

1 2 3 4 5 6 7 8 9 10

(a) (b)

Fig. 15 Target 7 consists of six nodal mutations and two structural mutations. There is a large drop off in
distance initially as users all selected the same structural codon for mutation. The low locality that results
from changing the structural codon is evident in the Euclidean distance. Once the distance had been
reduced the users used nodal mutations of higher locality vary the design, resulting in smaller fitness
changes

310 Genet Program Evolvable Mach (2013) 14:287–314

123



6 Conclusion

In this work a novel animated interface was presented. The initial static experiments

failed to show that the user was capable of directing search. A second animated

interface was developed that allowed the user to perform a local search on a specific

individual. The experiments showed that the user was able to use the animated

Time (seconds)

D
is

ta
nc

e

User Results
Random Results

Nodal
Structural

0 20 40 60 80 100 120

0
10

0
20

0
30

0
40

0
50

0
60

0

1 2 3 4 5 6 7 8 9 10

0
5

10
15

20
25

Number of Selections

N
um

be
r 

of
 O

cc
ur

en
ce

s

(a) (b)

Fig. 18 Target 10 consists of seven nodal mutations and four structural mutations. This was the largest
Hamming distance and over one third of the expressed codons were mutated. As the user only made four
selections on average it is unlikely the user would be able to match the target. There was no statistically
significant difference between the user results and the randomly generated sample

Time (seconds)

D
is

ta
nc

e
User Results
Random Results

Nodal
Structural

Number of Selections

N
um

be
r 

of
 O

cc
ur

en
ce

s

0
10

0
20

0
30

0
40

0
50

0
60

0

0 20 40 60 80 100 120

0
5

10
15

20
25

1 2 3 4 5 6 7 8 9 10

(a) (b)

Fig. 17 Target 9 consists of seven nodal mutations and two structural mutations. The users all applied an
initial structural mutation but it does not have the same level of improvement as seen in Fig. 15. Overall
the users matched less codons than the randomly generated sample (28 and 36 % respectively). Despite
this there still was still a significant reduction in distance. The variance of the results is much larger than
on the other targets, indicating that several participants were unable to match the target. The results for
the eighth and ninth targets support the hypothesis that different genotypic paths could lead to the same
phenotypic output

Genet Program Evolvable Mach (2013) 14:287–314 311

123



interface to match a target by directly manipulating the genotypic representation.

This result supports the hypothesis that the user is able to perform a directed local

search toward a desired individual. Examining the user generated results showed

that they moved from low locality operators to high locality operators to both

explore and exploit the search space. As the user changes are made to the genotypic

representation, the new individual can be reintroduced into the population and

evolutionary algorithm can continue iterating. The intention of this work was to

combine the interface with existing evolutionary design tools to explore the

additional benefits of combining AUI with evaluation for evolutionary architectural

design.

7 Future work

The objective nature of the target matching experiments constrained the participant

while they interacted with the new interface. It is our intention to allow a more

unrestricted usage of the interface in future experiments. The more qualitative

aspects of the interface would be examined, such as the benefit the user thinks the

interface provides, as well as how much they found it aided their search. The

application of the animated interface in conjunction with evaluation may provide

speed up convergence and should be investigated further. The interface combined

with evaluation could be used for a real world design challenge with a control group

using subjective selection exclusively. This would allow for the investigation of the

benefit provided by the interface.

This approach was developed to handle the mapping process in GE but it should

be applicable to any form of GP. We intend to make the animated interface as a

stand-alone application so that it may be applied to different GP methodologies. The

Euclidean graph distance is still at a early stage and future work will involve

developing it into a full metric. We also plan on carrying out a study comparing

similarity as measured by humans and the Euclidean graph distance.

Acknowledgments We would like to thank Andrea McMahon for her unceasing support and we would

like to thank SFI grant numbers 08/RFP/CMS1115 and 08/IN.1/I1868 for making this research possible.

References

1. M. Agarwal, J. Cagan, A blend of different tastes: the language of coffeemakers. Environ. Plan. B 25,

205–226 (1998)

2. W. Banzhaf, Genotype-phenotype-mapping and neutral variation-a case study in genetic program-

ming, in Proceedings of Parallel Problem Solving from Nature III, volume LNCS 866, pp. 322–332.

Springer, (1994)

3. P.J. Bentley, U. O’Reilly, Ten steps to make a perfect creative evolutionary design system, in

GECCO 2001 Workshop on Non-Routine Design with Evolutionary Systems (2001)

4. J. Biles, GenJam: a genetic algorithm for generating jazz solos, in Proceedings of the International
Computer Music Conference, pp. 131–131. International Computer Music Association (1994)

5. B.J. Bush, H. Sayama, Hyperinteractive evolutionary computation. Evol. Comput. IEEE Trans. 15
(3), 110 (2011)

312 Genet Program Evolvable Mach (2013) 14:287–314

123



6. J. Byrne, M. O’Neill, A. Brabazon, Structural and nodal mutation in grammatical evolution, in

proceedings of the 11th Annual conference on Genetic and evolutionary computation,

pp. 1881–1882. ACM (2009)

7. J. Byrne, J. McDermott, E.G. López, M. O’Neill, Implementing an intuitive mutation operator for

interactive evolutionary 3d design, in IEEE Congress on Evolutionary Computation, pp. 1–7. IEEE

(2010)

8. J. Byrne, J. McDermott, M. O’Neill, A. Brabazon, An analysis of the behaviour of mutation in

grammatical evolution, in Genetic Programming, Proceedings of EuroGP’2010, pp. 14–25. Springer-

Verlag (2010)

9. C. Caldwell, V. S. Johnston, Tracking a criminal suspect through face-space with a genetic algorithm,

in Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 416–421. Morgan

Kaufmann (1991)

10. C. Coia, B.J. Ross, Automatic evolution of conceptual building architectures, in Evolutionary
Computation (CEC), 2011 IEEE Congress on, pp. 1140–1147. IEEE (2011)

11. C. Coyne, Context free art. http://www.contextfreeart.org/, (2010)

12. P. Dahlstedt, Creating and exploring huge parameter spaces: Interactive evolution as a tool for sound

generation, in Proceedings of the 2001 International Computer Music Conference, pp. 235–242,

(2001)

13. R. Dawkins, The Blind Watchmaker. (Longman Scientific and Technical, Harlow, 1986)

14. I. Dempsey, M. O’Neill, and A. Brabazon. Foundations in Grammatical Evolution for Dynamic
Environments. (Springer, 2009)

15. Economic and Social Research Institute. Cityengine, GIS modeller. http://www.esri.com/software/

cityengine/, (2011)

16. B. Efron, Tibshirani R, An introduction to the bootstrap. Monographs on statistics and applied

probability. (Chapman & Hall, 1993). ISBN 9780412042317. URL http://books.google.ie/books?

id=gLlpIUxRntoC

17. J. Gips, Computer implementation of shape grammars, in NSF/MIT Workshop on Shape Compu-

tation. (Citeseer, 1999)

18. S. Gustafson, L. Vanneschi, Crossover-based tree distance in genetic programming. Evol. Comput.

IEEE. Trans. 12 (4), 506–524 (2008)

19. D.A. Hart, Toward greater artistic control for interactive evolution of images and animation, in:

Applications of Evolutionary Computing, vol. 4448 of LNCS, ed. by M. Giacobini (Springer, 2007),

pp. 527–536. ISBN 978-3-540-71804-8

20. N. Hayashida, H. Takagi, Visualized IEC: Interactive evolutionary computation with multidimen-

sional data visualization, in IECON-PROCEEDINGS, vol. 4, pp. 2738–2743, (2000)

21. N. Hayashida, H. Takagi, Acceleration of EC convergence with landscape visualization and human

intervention. Appl. Soft Comput. 1, 245–256 (2002)

22. E.A.P. Hemberg, An Exploration of Grammars in Grammatical Evolution. PhD thesis, (University

College Dublin, Ireland, 17 September 2010)

23. M. Hemberg, U. O’Reilly, A. Menges, K. Jonas, M. da Costa Goncalves, S. Fuchs, Genr8: Architect’s

experience using an emergent design tool. in The Art of Artificial Evolution, ed. by P. Machado, J.

Romero (Springer-Verlag, Berlin, 2007), pp. 167–188

24. G.S. Hornby, Measuring, enabling and comparing modularity, regularity and hierarchy in evolu-

tionary design, in Proceedings of the 2005 conference on Genetic and evolutionary computation,

pp. 1729–1736 (ACM, 2005)

25. J. Hugosson, E. Hemberg, A. Brabazon, M. O’Neill, An investigation of the mutation operator using

different representations in grammatical evolution, inProceedings of 2nd International Symposium
‘‘Advances in Artificial Intelligence and Applications’’, vol. 2 (2007), pp 409–419

26. H. Koning, J. Eizenberg, The language of the prairie: Frank Lloyd Wright’s prairie houses. Environ.

Plan. B 8, 295–323 (1981). URL http://www.envplan.com/abstract.cgi?id=b080295

27. A. Kosorukoff, Human based genetic algorithm, in Systems, Man, and Cybernetics, 2001 IEEE
International Conference, vol. 5 IEEE (2001), pp. 3464–3469

28. E.G. Lopez, J. McDermott, M. O’Neill, A. Brabazon, Defining locality as a problem difficulty

measure in genetic programming. Genet. Program. Evol. Mach. 12 (4), 365–401 (2011)

29. P. Machado, H. Nunes, J. Romero, Graph-based evolution of visual languages. Appl. Evol. Comput.

6025, 271–280 (2010)

30. P. Machado, A. Cardoso, All the truth about nevar. Appl. Intell. 16, 101–119 (2002)

Genet Program Evolvable Mach (2013) 14:287–314 313

123

http://www.contextfreeart.org/
http://www.esri.com/software/cityengine/
http://www.esri.com/software/cityengine/
http://books.google.ie/books?id=gLlpIUxRntoC
http://books.google.ie/books?id=gLlpIUxRntoC
http://www.envplan.com/abstract.cgi?id=b080295


31. J.P. McCormack, J. Cagan, C.M. Vogel, Speaking the buick language: capturing, understanding, and

exploring brand identity with shape grammars. Des. Stud. 25 (1), 1 – 29, 2004. ISSN 0142-694X. doi:

10.1016/S0142-694X(03)00023-1

32. J. McDermott, U.M. OReilly, L. Vanneschi, K. Veeramachaneni, How far is it from here to there? A

distance that is coherent with gp operators. Genet. Program. 6621, 190–202, (2011)

33. J. McDermott, J. Byrne, J.M. Swafford, M. O’Neill, A. Brabazon, Higher-order functions in aesthetic

EC encodings, in 2010 IEEE World Congress on Computational Intelligence, pp. 2816–2823,

(Barcelona, Spain, 2010. IEEE Press). doi:10.1109/CEC.2010.5586077

34. J. McDermott, J. Byrne, J.M. Swafford, M. Hemberg, C. McNally, E. Shotton, E. Hemberg, M.

Fenton, M. O’Neill, String-rewriting grammars for evolutionary architectural design. Environ. Plann.

B Plann. Des. 39 (4), 713–731, (2012). URL http://www.envplan.com/abstract.cgi?id=b38037

35. R.I. McKay, N.X. Hoai, P.A. Whigham, Y. Shan, M. ONeill. Grammar-based genetic programming:

a survey. Genet. Programm. Evol. Mach. 11 (3), 365–396 (2010)

36. G.A. Miller, The magical number seven, plus or minus two. Psychol. Rev. 63, 81–97 (1956)

37. M. O’Neill, C. Ryan, Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary

Language. (Kluwer Academic Publishers, Dordrecht, 2003). ISBN 1402074441

38. M. O’Neill, J.M. Swafford, J. McDermott, J. Byrne, A. Brabazon, E. Shotton, C. McNally, M.

Hemberg, Shape grammars and grammatical evolution for evolutionary design, in GECCO ’09:
Proceedings of the 11th Annual conference on Genetic and evolutionary computation (Montreal,

8-12 July 2009), pp. 1035–1042. ACM. doi:10.1145/1569901.1570041

39. M. O’Neill, J. McDermott, J.M. Swafford, J. Byrne, E. Hemberg, A. Brabazon, E. Shotton, C.

McNally, M. Hemberg, Evolutionary design using grammatical evolution and shape grammars:

designing a shelter. Int. J. Design Eng. 3 (1), 4–24 (2010)

40. P. Prezemyslaw, A. Lindenmayer, The Algorithmic Beauty of Plants. (Springer, New York, NY,

1990)

41. M. Pugliese, J. Cagan, Capturing a rebel: modeling the Harley-Davidson brand through a motorcycle

shape grammar. Res. Eng. Des. 13, 139–156 (2002). ISSN 0934-9839. doi:10.1007/s00163-

002-0013-1.

42. J. Romero, P. Machado, The art of artificial evolution: a handbook on evolutionary art and music.

(Springer, New York Inc, 2007)

43. Franz. Rothlauf, Representations for Genetic and Evolutionary Algorithms, 2nd edn. (Physica-Ver-

lag, Wurzburg (Wien), 2006)

44. Stichting Blender Foundation. Blender 3D. http://www.blender.org/, 2009. Last viewed 11 May

(2009)

45. G. Stiny, Introduction to shape and shape grammars. Environ. Plan. B 7 (3): 343–351 (1980)

46. H. Takagi, K. Kishi, On-line knowledge embedding for an interactive ec-based montage system, in

Knowledge-Based Intelligent Information Engineering Systems, 1999. Third International Confer-
ence, pp. 280–283. IEEE (1999)

47. Hideyuki. Takagi, Interactive evolutionary computation: fusion of the capabilities of EC optimization

and human evaluation. Proc. IEEE 89 (9), 1275–1296 (2001)

48. T. Unemi, Sbart 2.4: breeding 2d cg images and movies and creating a type of collage. In:

Knowledge-Based Intelligent Information Engineering Systems, 1999. Third International Confer-

ence, pages 288–291. IEEE (1999)

49. T. Unemi, Simulated breeding—a framework of breeding artifacts on the computer. Kybernetes 32
(1/2), 203–220 (2003)

50. E.H. Weber, De Pulsu, resorptione, auditu et tactu: annotationes anatomicae et physiologicae. (CF

Koehler, Washington, 1834)

51. P.A. Whigham, Grammatical Bias for Evolutionary Learning. PhD thesis, (University of New South

Wales, Australian Defence Force Academy, Canberra, Australia, 1996)

52. P. Wonka, M. Wimmer, F. Sillion, W. Ribarsky, Instant architecture. ACM Trans. Graph. 22 (3),

669–677, 2003. ISSN 0730-0301. doi:10.1145/882262.882324

53. Tina. Yu, Hierarchical processing for evolving recursive and modular programs using higher-order

functions and lambda abstraction. Genet. Program Evolvable Mach. 2 (4), 345–380, (2001)

314 Genet Program Evolvable Mach (2013) 14:287–314

123

http://dx.doi.org/10.1016/S0142-694X(03)00023-1
http://dx.doi.org/10.1109/CEC.2010.5586077
http://www.envplan.com/abstract.cgi?id=b38037
http://dx.doi.org/10.1145/1569901.1570041
http://dx.doi.org/10.1007/s00163-002-0013-1
http://dx.doi.org/10.1007/s00163-002-0013-1
http://www.blender.org/
http://dx.doi.org/10.1145/882262.882324

	A methodology for user directed search in evolutionary design
	Abstract
	Introduction
	Related research
	Grammars for architectural design
	Interactive evolutionary computation
	Online knowledge embedding
	Visualised IEC
	Human based genetic algorithm


	Grammatical evolution
	A component-based view of mutation in GE
	Higher-order function grammar

	Application of nodal and structural mutation using a static interface
	Experimental design
	Euclidean graph distance
	Results
	Choice of metrics
	Methodology


	An animated search interface for interactive evolutionary architectural design
	Experimental setup
	Results
	Discussion

	Conclusion
	Future work
	Acknowledgments
	References


