
Interactive Operators for Evolutionary Architectural Design

Jonathan Byrne
Natural Computing Research

& Applications Group
University College Dublin

jonathanbyrn@gmail.com

Erik Hemberg
Natural Computing Research

& Applications Group
University College Dublin

erik.hemberg@gmail.com

Michael O’Neill
Natural Computing Research

& Applications Group
University College Dublin
oneillm@gmail.com

ABSTRACT
In this paper we explore different techniques that allow the
user to direct interactive evolutionary search. Broadening
interaction beyond simple evaluation increases the amount
of feedback and bias a user can apply to the search. In-
creased feedback will have the effect of directing the algo-
rithm to more fruitful areas of the search space. This paper
examines whether additional feedback from the user can be
a benefit to the problem of evolutionary design. We find that
the interface between the user and the search space plays a
vital role in this process.

1. INTRODUCTION
Interaction was introduced to Evolutionary Algorithms

(EA) for problems where no objective fitness function could
be found. This allowed EAs to tackle problems that were
aesthetic in nature. Traditional interactive evolutionary com-
putation limited the users input to that of a fitness func-
tion, evaluation. The limited number of evaluations a user
is capable of means that it forms a bottleneck for the evo-
lutionary algorithm. There is an additional burden on the
algorithm to intuit what the user actually desired from their
selections. Our approach makes the assumption that when
a user finds a design they like that they want to explore that
area of the search space. Introducing a bias has been shown
to improve evolutionary search [33]. Selectively applying an
operator allows the user to bias the search toward exploring
a specific area of the search space, depending on the locality
of the operator. To enable the users to do this we allow them
to apply mutation operators directly to the individuals.
This work is based on operators that are capable of vary-

ing degrees of locality [8]. Our approach implements a novel
interface for allowing the user to direct the search using mu-
tation and we use both preexisting and newly created met-
rics to evaluate the results at different phenotypic levels.
We will now explore if these can aid an evolutionary design
process.
This paper is organised as follows. Related research in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

computer generated design and interactive evolutionary com-
putation is given in Section 2. A description of Grammat-
ical Evolution and the generative processes in GE is given
in Section 3. Our experimental setup, grammar choice and
experimental design are described in Section 4. The results
are shown and explained in Sections 5, 6 and 7. Finally, we
discuss our conclusions and future work in Section 8

2. RELATED RESEARCH
This section discusses previous work using computers for

architectural design generation and the applications of in-
teractivity in evolutionary computation.

2.1 Computer Generated Architectural Design
While computers are almost universally applied in archi-

tectural design, they are normally used for analysis rather
than design generation. In recent years software has been
developed that allows the user to explore the search space
of possible designs.

A direct approach that allows the designer to explore the
design search space is to implement a parametric system.
The user inputs their design and then modifies individual
components of that design. EIFForm was a successful at-
tempt at implementing parametric design and the results
have been used to design a structure in the inner court-
yard of Schindler house [28]. Parametric design tools have
now been introduced into more mainstream design software.
There is the Grasshopper plug-in for the Rhino modelling
system [13] and Bentley Systems have implemented a pro-
gram called Generative Components [12].

An evolutionary approach to conceptual design exploration
is implemented in GENR8 [23]. This system uses GE and
Hemberg Extended Map L-Systems (HEMLS) to generate
forms. The user can influence the growth of the L-System
through the use of tropism and fitness weighting. Objects
can be placed in the environment that either attract or repel
the design. Each design is evaluated by a series of metrics;
symmetry, undulation, size, smoothness, etc. The user is
able to weight these metrics according to their preference.

2.2 Interactive Evolutionary Computation
Human interaction was originally introduced to the evo-

lutionary process for problems where no objective fitness
function could be found. Interactive fitness functions have
allowed EC to be applied to problems such as music and
computer graphics, and to act as an exploratory tool as op-
posed to being limited to optimisation. One of the earliest
attempts to introduce human evaluation was the work by

Richard Dawkins called Biomorphs [10]. This work simu-
lated the evolution of 2-D branching structures made from
sets of genetic parameters, where the user selects the indi-
viduals for reproduction.
After Biomorphs there was an increase of research in the

field of both interactive genetic algorithms (IGA) and in-
teractive genetic programming (IGP). The seminal paper
by Karl Sims [29] showed that basic user interaction was
capable of creating complex and beautiful artwork. Sims
used human interaction to create images, three-dimensional
textures, and, by adding an extra dimension for time, an-
imation. IGAs have since been applied to fields as diverse
as music generation [5, 20], anthropomorphic symbols [11],
3-D lighting [1], and aircraft frames [25] to name a few. In-
teractivity has also been used in conjunction with GP for
form design. Aesthetic problems have a subjective element
in their evaluation that is difficult to define in an algorithmic
fitness function. This has led to the development of several
form design tools [24, 4]. A more complete list of applica-
tions of interactivity can be found in the literature by [3]
and [31]. Our approach to interactive evolution differs from
the approaches mentioned above. Instead of utilizing user
evaluations to direct the evolutionary search our approach
allows the user to manipulate the genome directly. As such,
it is categorised as active intervention [31].

3. GRAMMATICAL EVOLUTION
To evolve architecture we required a technique to generate

evolvable shapes. We used a shape grammar in conjunction
with Grammatical Evolution to accomplish this. Grammati-
cal Evolution is an evolutionary algorithm that is a grammar
based form of GP [21]. It differs from standard GP by re-
placing the parse-tree based structure of GP with a linear
genome. It generates programs by using a list of integers
(also called a chromosome) to select rules from the grammar
which are then applied to generate a program. The chromo-
some is made up of codons. Each codon in the string is used
to select a production rule from a Backus Naur Form (BNF)
grammar. The BNF represents a language in the form of
production rules. Each rule is comprised of non-terminals
that map to either terminals, non-terminals or both, de-
pending on the production rules. A simple example BNF
grammar that could be used for symbolic regression is given
in Figure 1. <expr> is the start symbol from which all pro-
grams are generated. The grammar states that <expr> can
be replaced with either one of <expr><op><expr> or <var>.
An <op> can become either +, or -, and a <var> can become
either x, or y.

<expr> ::= (<op><expr><expr>) (0)

| <var> (1)

<op> ::= + (0)

| - (1)

<var> ::= x (0)

| y (1)

Figure 1: A simple BNF grammar

The integer codons decide which rule is chosen by simply
calculating the modulus of the codon value with the number
of rules. This can be represented with the following formula:

Rule(idx) = Codon Value % Num. Rules (1)

By iterating through the codons the BNF rules are applied
and a derivation tree is built. This in turn generates a string
from the grammar which represents the program.

3.1 Generative processes in EC
As shown in the previous section, GE uses a mapping pro-

cess to create output. In GP this is called the genotype to
phenotype mapping. The genotype to phenotype mapping
is a terminology that has been adapted from the field of biol-
ogy. A genotype is an encoding upon which the evolutionary
operators of mutation and recombination act. An example
of this would be human DNA. Changes in the genotype are
translated into changes in the phenotype. A phenotype is
an observable characteristic of an individual. An example
of this in humans would be eye-color or height. Selection is
performed on the phenotype. This biological concept was
introduced to the field of EC as a method for separating the
search and solution space [2] and as a metaphor for describ-
ing the representations and mapping processes.

It could be argued that in traditional tree-based GP there
is no generative process. The trees that define the programs
are directly manipulated by the operators, therefore there
is no generative stage. Although, this is not the complete
picture. The tree itself could be viewed as a genotypic en-
coding and the output of the program as the phenotype.
Furthermore, in Genetic Algorithms there is a mapping of
the evolved integer string translating it into a meaningful
application. This highlights that a genotype to phenotype
to fitness mapping exists in all forms of evolutionary com-
putation except the most basic.

In GE there are several stages in the mapping process,
each with its own observable characteristics. As each stage
also contains a version of the final instantiation, it can be
classified as a phenotype. The three main phenotypic stages
are shown in Figure 2. The integer list is translated into a
derivation tree using a BNF grammar defined in Figure 1 and
the mod rule. The terminal rules that make up the finished
string are shaded. The string is then evaluated to produce
the final output phenotype, in this case a 3 dimensional plot
of a plane.

how well neighbouring genotypes correspond to neighbour-
ing phenotypes, also known as locality, has been described
as a key element in Evolutionary Computation. To study lo-
cality, it is necessary to define a metric on the search space.
In a genotype-phenotype mapping representation. In his
work, Rothlauf claimed that for two different search spaces
(e.g., genotypic and phenotypic search space) it is necessary
to define two different metrics [26]. As we are interested
in determining how locality is affected on the different phe-
notypic stages of the generative process, we need to use a
different metric for each one.

3.2 Mutation and Locality in GE
Standard GE mutation can be divided into two types of

events, those that are structural in nature and those that are
nodal. A nodal mutation changes a single leaf of the deriva-
tion tree. A structural mutation changes one or more inter-
nal nodes of the derivation tree (and zero or more leaves).
This can result in a change to the length of the phenotype.
This work was originally shown in [7]. In order to expose
the impact of mutation on derivation tree structure we will

+(-x(+y x))(+x y)

<e>

<o> <e> <e>

<o> <e> <e>+ <o> <e> <e>

<v>- <o> <e> <e> <v>+ <v>

X <v>+ <v> Y X

Y X

Genotype

=G

String

= P1

Output

= P2

Derivation

tree = P0

Fitness

z=

Figure 2: stages of derivation in GE

use the binary grammar as shown in Figure 1. This allows
us to condense codons (elements in the string representing
the individual) to single bits.
We can then construct genomes with binary valued codons

to construct sentences in the language described by the above
grammar. Consider all genomes of length two codons (22

of them) and draw an edge between genomes that are a
Hamming distance of one apart. If we then present the
corresponding partial derivation trees resulting from those
genomes we see the arrangement outlined in Fig. 3. In this
particular example we see that a mutation event at the first
codon impacts a non-terminal rule that corresponds to a new
derivation tree structure. Here we define a new derivation
tree structure as being one that has changed in length, that
is, it contains more non-terminal symbols than its neighbour.
Mutations from 00 to 10 (and vice versa) and from 01 to 11
(and vice versa) result in these structural changes. Whereas
the remaining mutation events result in node relabelling.
Extending the genomes by an additional codon we can visu-
alise the Hamming neighbourhood between the 23 genomes
both in terms of codon values and partial phenotype struc-
tures. These are illustrated in Fig. 4. Again, we see a clear
distinction between mutation events that result in structural
and non-structural modifications.
Mapping these codons back to the grammar we see that

structural mutations occur in the context of a single non-
terminal symbol, <e>. We can see from this grammar that
this non-terminal alone is responsible for structural changes,
as it alone can change the size of the developing struc-
ture. The rules for the <o> and <v> non-terminals are non-

Figure 3: The 2D neighbourhood for the example
grammar (i.e., using the first two codons).

Figure 4: The 3D neighbourhood for the example
grammar (i.e., using the first three codons).

structural as they simply replace an existing symbol without
changing structural length.

Effectively we can now decompose the behaviour of mu-
tation into two types of events. The first are events that are
structural in their effect and the second are those which are
nodal in their effect. By logical extension we could consider
both types of events as operators in their own right, and
therefore define a structural mutation and a nodal mutation.
It should be noted, however, that these events are only a
specialisation of standard GE mutation, as it is possible for
both types of events to occur during standard application of
GE mutation to an individual’s genome. In order to under-
stand the impact of change arising from mutation events in
GE we need metrics of distance between the different stages.
The metrics we use in this experiment are discussed in Sec-
tion 6

4. EXPERIMENTAL SETUP
The goal of the experiment is to compare whether sepa-

rating mutation events allows the user to navigate the search
space more efficiently. This experiment was run using Ar-
chitype, an interactive design generation tool based on GE.
Architype provides an interface for selecting designs for mu-
tation or crossover. The Architype interface was adapted

for this experiment as shown in Figure 5. There is a target
bridge on the right hand side and nine bridges to select from
on the left hand side. When the user selects a bridge, their
choice is saved in a green box in the top left frame and 8
mutated variations are made of it. The user can keep select-
ing bridges until they think they have matched the target.
Twenty four volunteers participated in this experiment and
the experiment itself was approved by the Ethics Committee
in ***. The grammar used in this experiment is described in
Section 4.1. The subjective nature of aesthetics makes evo-
lutionary design search a difficult area to quantify. Instead
of asking the user to find a design that they like, we specify
a target design that they must evolve towards.

Figure 5: A screen-shot of the interactive GUI

4.1 Design Grammar
The grammar was originally conceived based on a brief

provided to third year students in the *** architecture and
structural engineering course of 2010. The brief specified
that the bridge was to be composed of timber, had an op-
tional arch, a width of 2 metres and bridge a span of 10
metres. The size of the grammar meant that it could not be
appended to the paper. The grammar is available on-line
at [6]. The grammar creates graphs using networkx [14],
a python class for studying complex graphs and networks.
Three desirable characteristics for a design generator are
modularity, regularity and hierarchy [15]. We implement
these characteristics using the novel method of higher order
functions. Work in this area is discussed in greater detail
in [19].

4.2 Experimental Design
The aim of the experiment is to compare standard inte-

ger mutation against a combination of nodal and structural
mutation. There is no crossover or selection used in this ex-
periment. All variants are created exclusively by mutation
events. The mutation operators do not work probabilisti-
cally, instead they select a codon from within the coding
region of the genome and increment it by one. As a codon
is only used when choosing between rules, incrementing it
by one means that it will always encode for a new rule, thus
ensuring a genomic change in the individual. It also means
that the hamming distance between mutation events is ex-
actly one.

To avoid confusion we decided to simplify the allowed user
input. The user is limited to either the left mouse button
(LMB) exclusively, or both mouse buttons. When the input
is exclusively LMB, standard integer mutation is applied.
When the user has a choice of both buttons, the LMB causes
nodal mutation and the RMB causes structural mutation.

The user was allowed two trial runs to familiarise them-
selves with the interface and the different effects of the muta-
tion operators. Finally, after completion of the trial the user
was asked to complete six experiments. The first three of the
experiments used integer mutation to match three targets
and the next three experiments used nodal and structural
mutation to match the same three targets. A fixed random
seed was used for each experiment so that all participants
would be presented with the same initial designs. The time
of each selection and the individual selected were recorded.
The user had a time limit of five minutes to complete each
task.

Upon completion of the experiment the user was presented
with every selection they had made and was asked to se-
lect the design that most closely matched the target. After
completion of the experiment, the participant was asked to
complete a short survey. The survey may be viewed online
at [32].

5. SURVEY RESULTS
The survey results are shown in Figures 6 through 9. The

survey recorded user opinions on various aspects of the task
using the Likert scale [18]. The X axis for the histogram
represents their level of preference. Zero percent represents
strongly disagree whereas one hundered percent represents
strongly agree. The Y axis represents the numbers of user
who agreed with that preference. There is a significant num-
ber of people who felt they successfully completed the task
using the structural/nodal mutation operators (Figures 6
and 8). The users also noticed a large difference in locality
of the operators (Figure 7). The users found nodal muta-
tion generated more similar variations than integer mutation
and that structural mutation produced the least amount of
similarity.

Did you manage to complete the task with integer mutation?

Never Sometimes Always

N
o.

 O
f P

eo
pl

e

0 20 40 60 80 100

0
2

4
6

8
10

(a) Integer

Did you manage to complete the task with nodal/structural mutation?

Never Sometimes Always

N
o.

 O
f P

eo
pl

e

0 20 40 60 80 100

0
2

4
6

8
10

(b) Nodal/Structural

Figure 6: Did you manage to complete the task?

6. DISTANCE METRICS
To analyse how closely the user matched the target we

used a selection of distance metrics to evaluate the user’s
choices. Each distance metric was chosen to record the dis-
tance during a different phenotypic level of the mapping pro-
cess.

Similarity using integer mutation

Random Some Similarity Very Similar

N
o.

 O
f P

eo
pl

e

0 20 40 60 80 100

0
2

4
6

8
10

(a) Integer

Similarity using nodal mutation

Random Some Similarity Very Similar

N
o.

 O
f P

eo
pl

e

0 20 40 60 80 100

0
2

4
6

8
10

(b) Nodal

Similarity using structural mutation

Random Some Similarity Very Similar

N
o.

 O
f P

eo
pl

e

0 20 40 60 80 100

0
2

4
6

8
10

(c) Structural

Figure 7: Were the variations similar?

6.1 Tree Edit Distance
O’Reilly [22] proposed an approach, called edit distance,

with the main goal of having a metric that specifies the de-
gree of dissimilarity between two individuals in the form of
tree-like structures. The idea of edit distance is to calcu-
late the minimum cost (number of moves) that is required
to transform a given tree to a target tree step by step. For
this purpose, the author defined the use of three types of
edits: (a) Substitution: changing a node into another, (b)
Insertion: adding a node within the tree and (c) Deletion:
removing a node from the tree. O’Reilly’s approach was

Did you match the target using integer mutation

Random Some Similarity Very Similar

N
o.

 O
f P

eo
pl

e

0 20 40 60 80 100

0
2

4
6

8
10

(a) Integer

Did you match the target using structural/nodal mutation

Random Some Similarity Very Similar

N
o.

 O
f P

eo
pl

e

0 20 40 60 80 100

0
2

4
6

8
10

(b) Nodal/Structural

Figure 8: Did you match the target?

Did you enjoy using integer mutation

Random Some Similarity Very Similar

N
o.

 O
f P

eo
pl

e

0 20 40 60 80 100

0
2

4
6

8
10

(a) Integer

Did you enjoy using structural Nodal

Random Some Similarity Very Similar

N
o.

 O
f P

eo
pl

e

0 20 40 60 80 100

0
2

4
6

8
10

(b) Nodal/Structural

Figure 9: How would you describe the task?

inspired by the work reported in [27, 30]. This distance is
notable because it is closely aligned with a mutation opera-
tor defined in the same paper. In GE this metric is applied
to calculate a distance at the derivation tree stage of the
mapping.

6.2 Levenshtein Distance
Levenshtein distance is a metric for comparing two strings,

or in our case, generated computer programs. This has been
used as a metric to compare representations in GP [17] [16].
The Levenshtein distance between two strings is defined as
the minimum number of edits needed to transform one string
into the other, with the allowable edit operations being in-
sertion, deletion, or substitution of a single character. In
our study the output string is tokenised and the levenshtein
metric is applied to phenotype symbols.

6.3 Euclidean Distance
Euclidean distance is defined as the straight-line distance

between two points on the same plane. It is derived from
Pythagoras’s theorem and is given by the formula

distance =
√

(x1 − x2)2 + (y1 − y2)2.

An approach was developed for applying the euclidean
metric to our bridge designs that satisfied the mathematical
conditions expected of a metric. When comparing two de-
signs, the design with the most nodes is selected. Each node
in the larger design is then iterated through and the nearest
node in the smaller design is found. The distance between
these nodes is then added to the total distance between de-
signs.

This metric satisfies the metric conditions of non-negativity,
symmetry and the triangle inequality. As our approach only
compares point on the design the ’identity of indiscernibles’

condition is not fulfilled as the edges between nodes has no
impact on the distance. We decided not to include node
edges in the distance as sub graph isomorphism is an NP
Complete problem [9]. The Euclidean metric provides a dis-
tance for the final stage of the output, the graph representing
the bridge itself.

6.4 Distance Metric Results
The results for the distance metrics are shown in Fig-

ures 10 through 15. The Figures show the time taken (in
seconds) on the X axis and the distance from the target on
the Y axis. The smaller the value on the Y axis, the more
closely the result matched the target. The graphs show the
best result obtained from the user over the course of the run.
As shown in the graphs, there is little or no improvement
over time. This result was further confirmed by simulat-
ing the user input using random selection. A T-Test was
performed and no significant difference was found between
the user data and the randomly generated data. We only
show the results for the first target image as the other tar-
get graphs show similar results. The results are discussed
further in Section 7

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0

intTarget1Euc

time(seconds)

di
st

an
ce

Figure 10: Integer euclidean distance for target 1

7. DISCUSSION
The results from Section 6.4 appear to prove the Null hy-

pothesis, that the user is unable to direct search using inter-
active Operators and selection. This is a highly contentious
conclusion to draw as many years of interactive evolutionary
computation studies have shown the opposite. If this is not
the case then there are two possible causes for the results.

7.1 Choice of Metrics
How a human evaluates the similarity of two designs is a

subjective measurement. Our survey showed that users of-
ten based how similar they found bridges on individual fea-
tures or parts of the design, such as the handrail or the curve
of the walkway. While the metrics comparing bridges at ear-
lier stages of the mapping process (tree edit and Levenstein
distance) would have great difficulty recording small changes

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0

bothTarget1Euc

time(seconds)

di
st

an
ce

Figure 11: Nodal/Structural Euclidean distance for
target 1

0 50 100 150 200 250 300 350

0
50

10
0

15
0

20
0

intTarget1Lev

time(seconds)

di
st

an
ce

Figure 12: Integer Levenstein distance for target 1

on components, Euclidean distance should have recorded
some improvement. While the metrics are not perfect and
human selection is subjective, some improvement should
have been detectable.

7.2 Methodology
The experiment was constructed so as to facilitate pre-

cise logging of input. Pilot studies were completed to ensure
the interface was usable and that certain concerns were ad-
dressed such as saving previous designs and allowing a single
design to be repeatedly mutated. What was not addressed is
the question of how to best facilitate the user’s exploration
of the search space. On average, a user made 17 selections
during the course of an experiment. This equates to a ham-
ming distance of 17 from their original selection. To assume
that a significant improvement could be made in this short
distance was optimistic.

0 50 100 150 200 250 300 350

0
50

10
0

15
0

20
0

bothTarget1Lev

time(seconds)

di
st

an
ce

Figure 13: Integer Levenstein distance for target 1

0 50 100 150 200 250 300 350

0
20

40
60

80
10

0

intTarget1Tree

time(seconds)

di
st

an
ce

Figure 14: Integer Tree distance for target 1

Although the design selections were presented to the users
at the end of the run, many were frustrated by the inability
to go back to a good design. By forcing the user to follow a
specific evolutionary path, our experiment severely limited
the user and added to their frustration when they “lost” a
good design.
The locality of the nodal and structural operators may

not have translated into localised changes in the output.
Although the operators are localised on the derivation tree
level, the mapping process of GE could magnify the impact
it has on the bridge. There is also the problem that what
constitutes a small or a large change depends on the user’s
personal preference.
The grammar also complicated what was already a diffi-

cult task. Several participants complained of identical bridges
being generated. This was the result of very small changes
being made to the Bezier curve defining either the handrail
or the walkway. Such changes fall below the threshold of

0 50 100 150 200 250 300 350

0
20

40
60

80
10

0

bothTarget1Tree

time(seconds)

di
st

an
ce

Figure 15: Integer Tree distance for target 1

a Just Noticable Difference (JND). JND is a concept from
cognitive psychology that was developed by the founder of
psychophysics, Ernst Heinrich Weber. JND is the smallest
difference between two stimuli that is still capable of be-
ing perceived. The lack of what the user perceived as new
variations also hindered them in completing the task.

8. CONCLUSIONS AND FUTURE WORK
In this paper we explored the application of novel muta-

tion operators by the user. We discussed locality at different
stages of the GE mapping process and examined whether
this could have a beneficial effect on search. While the sur-
vey showed that the user’s found a clear difference between
the operators, the distance metrics showed no evidence of
this being beneficial to search. As shown in the discussion
section, this is the result of our approach to the interface.

It became clear from this experiment that allowing the
user to apply the operators is not enough, the user has to
be able to interact with the search space in a meaningful
way. After the feedback we received and our analysis of the
results, we intend to re-implement the interface to allow the
user to explore the search space more efficiently. We also
intend to examine whether the metrics adequately reflect
similarity and locality.

9. REFERENCES
[1] K. Aoki and H. Takagi. Interactive GA-based design

support system for lighting design in 3-D computer
graphics. Trans. of IEICE, 81:1601–1608, 1996.

[2] Wolfgang Banzhaf. Genotype-phenotype-mapping and
neutral variation—a case study in genetic
programming. In Proceedings of Parallel Problem
Solving from Nature III, volume LNCS 866, pages
322–332. Springer, 1994.

[3] Wolfgang Banzhaf. Interactive evolution. In Thomas
Back, David B. Fogel, and Zbigniew Michalewicz,
editors, Handbook of Evolutionary Computation,
chapter C2.9, pages 1–6. IOP Publishing Ltd. and
Oxford University Press, 1997.

[4] Peter J. Bentley and Una-May O’Reilly. Ten steps to
make a perfect creative evolutionary design system. In
GECCO 2001 Workshop on Non-Routine Design with
Evolutionary Systems, 2001.

[5] J. Biles. GenJam: A genetic algorithm for generating
jazz solos. In Proceedings of the International
Computer Music Conference, pages 131–131.
INTERNATIONAL COMPUTER MUSIC
ASSOCIATION, 1994.

[6] Link to the bridge grammar.
http://i.imgur.com/0vsDh.png.

[7] J. Byrne, M. O’Neill, and A. Brabazon. Structural and
nodal mutation in grammatical evolution. In
Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 1881–1882.
ACM, 2009.

[8] Jonathan Byrne, James McDermott, Edgar Galván
López, and Michael O’Neill. Implementing an intuitive
mutation operator for interactive evolutionary 3d
design. In IEEE Congress on Evolutionary
Computation, pages 1–7. IEEE, 2010.

[9] Stephen A. Cook. The complexity of theorem-proving
procedures. In Proceedings of the third annual ACM
symposium on Theory of computing, STOC ’71, pages
151–158, New York, NY, USA, 1971. ACM.

[10] Richard Dawkins. The Blind Watchmaker. Longman
Scientific and Technical, Harlow, England, 1986.

[11] N. Dorris, B. Carnahan, L. Orsini, and LA Kuntz.
Interactive evolutionary design of anthropomorphic
symbols. In CEC2004: Proceedings of the 2004
Congress on Evolutionary Computation, volume 1,
2004.

[12] Generative components.
http://www.bentley.com/getgc/.

[13] Grasshopper, generative modeling with rhino.
http://www.grasshopper3d.com/.

[14] Aric A. Hagberg, Daniel A. Schult, and Pieter J.
Swart. Exploring network structure, dynamics, and
function using networkx. In Proceedings of the 7th
Python in Science Conference, pages 11 – 15,
Pasadena, CA USA, 2008.

[15] Gregory S. Hornby. Measuring, enabling and
comparing modularity, regularity and hierarchy in
evolutionary design. In Proceedings of GECCO ’05,
2005.

[16] Christian Igel. Causality of hierarchical variable length
representations. In Proceedings of the 1998 IEEE
World Congress on Computational Intelligence, pages
324–329, Anchorage, Alaska, USA, 5-9 May 1998.
IEEE Press.

[17] R.E. Keller and W. Banzhaf. Genetic programming
using genotype-phenotype mapping from linear
genomes into linear phenotypes. In Genetic
Programming 1996: Proceedings of the First Annual
Conference, pages 116–122, Stanford University, CA,
USA, 1996. MIT Press.

[18] R. Likert. A technique for the measurement of
attitudes. Archives of Psychology, 22(140):1–55, 1932.

[19] James McDermott, Jonathan Byrne, John Mark
Swafford, Michael O’Neill, and Anthony Brabazon.
Higher-order functions in aesthetic EC encodings. In
2010 IEEE World Congress on Computational

Intelligence, pages 2816–2823, Barcelona, Spain, 2010.
IEEE Press.

[20] J.M. McDermott. Evolutionary Computation Applied
to the Control of Sound Synthesis. PhD thesis,
University of Limerick, 2008.

[21] Michael O’Neill and Conor Ryan. Grammatical
Evolution: Evolutionary Automatic Programming in
an Arbitrary Language. Kluwer Academic Publishers,
2003.

[22] Una-May O’Reilly. Using a distance metric on genetic
programs to understand genetic operators. In IEEE
International Conference on Systems, Man, and
Cybernetics: Computational Cybernetics and
Simulation, volume 5, 1997.

[23] Una-May O’Reilly and Martin Hemberg. Integrating
generative growth and evolutionary computation for
form exploration. Genetic Programming and Evolvable
Machines, 8(2):163–186, June 2007. Special issue on
developmental systems.

[24] Una-May O’Reilly and Girish Ramachandran. A
preliminary investigation of evolution as a form design
strategy. In Christoph Adami, Richard K. Belew,
Hiroaki Kitano, and Charles E. Taylor, editors,
Proceedings of the Sixth International Conference on
Artificial Life, pages 443–447, University of California,
Los Angeles, 26-29 June 1998. MIT Press.

[25] IC Parmee and CR Bonham. Towards the support of
innovative conceptual design through interactive
designer/evolutionary computing strategies. AI
EDAM, 14(01):3–16, 2000.

[26] Franz Rothlauf. Representations for Genetic and
Evolutionary Algorithms. Physica-Verlag, 2nd edition,
2006.

[27] D. Shasha and K. Zhang. Fast Parallel Algorithms for
the Unit Cost Editing Distance Between Trees. In
SPAA ’89: Proceedings of the First Annual ACM
Symposium on Parallel Algorithms and Architectures,
pages 117–126, New York, NY, USA, 1989. ACM.

[28] K. Shea, R. Aish, and M. Gourtovaia. Towards
integrated performance-driven generative design tools.
Automation in Construction, 14(2):253–264, 2005.

[29] Karl Sims. Artificial evolution for computer graphics.
In SIGGRAPH ’91: Proceedings of the 18th annual
conference on computer graphics and interactive
techniques, pages 319–328, New York, NY, USA, 1991.
ACM.

[30] M. Tacker, P. F. Stadler, E. G. Bornberg-Bauer, I. L.
Hofacker, and P. Schuster. Algorithm Indepedent
Properties of RNA Secondary Structure Predictions.
European Biophysics Journal, 25(2):115–130, 1996.

[31] Hideyuki Takagi. Interactive evolutionary
computation: Fusion of the capabilities of EC
optimization and human evaluation. Proc. of the
IEEE, 89(9):1275–1296, 2001.

[32] Link to the user survey.
http://i.imgur.com/BYRdL.png.

[33] P.A. Whigham. Grammatical Bias for Evolutionary
Learning. PhD thesis, University of New South Wales,
Australian Defence Force Academy, Canberra,
Australia, 1996.

