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Abstract—A notable weakness of the literature concerning
foraging inspired algorithms is that little attempt is typically
made to rigorously identify the similarities and differences
between newly proposed algorithms and existing ones. This has
led to a critique from a growing number of researchers that
greater efforts need to be made to consolidate the literature on
foraging algorithms (and that of metaheuristics more generally)
by applying a more critical perspective when assessing the worth
of both current and new metaheuristics. An important part of
this process is the development of taxonomies which allow us
to tease out the similarities and differences between new and
existing algorithms.

This paper focusses on this issue and introduces a number of
taxonomies which can be used for this purpose. It also illustrates
that most foraging algorithms can be encapsulated in a high level
metaframework, with differing operationalisations of elements of
this framework giving rise to alternative algorithms with distinct
search characteristics.

I. INTRODUCTION

Computation abounds in nature. The realisation of this fact

has led to the development of the field of natural computing

(NC) in which inspiration is taken from natural processes in

order to design powerful algorithms for diverse applications

including optimisation, classification, clustering, design and

model-induction. Well-known subfields of natural computing

include evolutionary algorithms, neural networks, artificial

immune systems to name but a few, with Fig. 1 providing an

illustrative taxonomy. A comprehensive discussion of natural

computing algorithms is provided in [6].

One significant grouping of NC algorithms are those in-

spired by the workings of social systems and social phenomena

such as the flocking and schooling behavior of fish and the

behaviors observed in social insects such as ants. These social

systems exhibit a number of characteristics which facilitate

problem-solving including, self-organisation, flexibility, ro-

bustness, and direct/indirect communication between mem-

bers of the population. These social algorithms are typically

population-based like their evolutionary computation counter-

parts, and they generally operate by allowing the population

of problem-solvers to communicate their relative success in

solving the problem to each other.

An important subset of social algorithms derive their design

inspiration from the foraging activities of various organisms.

An interesting aspect of foraging is that it takes place in a

dynamic environment as food location, and quality, changes

over time as a result of factors such as consumption and

degradation due to environmental influences. This suggests

that higher-quality food foraging strategies need to be adaptive

to changing conditions and to feedback based on their degree

of past success. This aspect of foraging makes it particu-

larly interesting as a source of inspiration for the design

of algorithms for dynamic environments. Many real-world

problems are ‘hard’ precisely because they occur in a dynamic

environment.

A. Foraging Algorithms

As noted by Yeakle and Dunne (2015) [41], the behaviour

of all evolutionarily successful organisms is constrained by

two requirements. They must pass on their genetic material

and they must acquire the necessary energy (from food) to

do so. Foraging behaviours play a key role in determining

evolutionary success.

The challenge facing organisms when actively foraging is

‘how best to search for resources (good regions) when their

location is not known with certainty a priori?’. The same

problem is faced when designing search algorithms.

The observation that foraging typically requires organisms

to undertake a search process has in turn led to the design of

several families of search algorithms which draw metaphorical

inspiration from a range of real-world foraging behaviours.

Most of these algorithms embed a social foraging metaphor,

with information being spread between organisms during the

foraging process. While social foraging was long thought to be

confined to higher-level animals such as primates, it is now

known that co-operative foraging behaviours exist in many

species of mammals, fish, birds, insects and even simpler

organisms [23].

Families of algorithms include ant colony optimisation

algorithms [4], [13], [14], [15], [16], honey bee algorithms

[2], [5], [19], [20], [29], [37] and bacteria foraging algorithms

[26], [27], [28].

Indeed, inspiration has been drawn from the foraging ac-

tivities of a large number of organisms for the purposes

of algorithmic design. Other significant families of these

algorithms include those inspired by the echolocation process

of bats echolocation, in which pulses of acoustic energy are

emitted and the resulting echo is resolved into an ‘image’

of the surrounding environment, with the bat algorithm be-

ing developed by [38]. Like many other foraging inspired

algorithms, the bat algorithm has produced very competitive
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Fig. 1. An overview of some of the key groupings of natural computing algorithms

results on both benchmark optimisation problems and across

a variety of applications. A detailed review of applications of

the bat algorithm is provided in [40] and some extensions of

the canonical algorithm are discussed in [12].
A variety of animals, including some species of birds, en-

gage in social roosting whereby large numbers of conspecifics

gather together to roost, either overnight or for longer periods.

It has been claimed that these roosts can serve as information
centres [42] to spread knowledge concerning the location of

food resources in the environment. A paper by [9] draws

inspiration from the social roosting and foraging behaviour of

the common raven in designing the raven roosting optimisation

(RRO) algorithm.
A number of studies have employed a fish school metaphor

to develop algorithms for optimisation and clustering, with [1],

[3], [18], [33] providing a sample of this work. Algorithms

adopting this approach include fish school search (FSS) [3],

the artificial fish swarm algorithm (AFSA) [22], and the fish

algorithm [6]
Dominance hierarchies amongst group living animals can

influence their decision-making and foraging behaviours. One

example of this is provided by wolves, and a number of

studies including [21], [24], [25], [36] have drawn inspiration

from wolf pack foraging behaviours to design optimisation

algorithms.
Obviously it is not possible to provide a detailed coverage

of the entire literature on foraging inspired algorithms in a

single paper. Readers requiring a comprehensive overview of

this literature are referred to [10].

B. Focus of This Paper
A notable characteristic of the literature concerning foraging

inspired algorithms is that little attempt is typically made to

rigorously identify the similarities and differences between

newly proposed algorithms and existing ones. Indeed, this

critique is more broadly leveled at the entire field of meta-

heuristics by Kenneth Sörensen [32] amongst others, and it

is accepted that a more critical perspective is required when

assessing the worth of new and existing metaheuristics.
An important tool in sharpening our understanding of exist-

ing and proposed algorithms is the development of taxonomies

which allow us to tease out the similarities and differences

between them. In this paper we contribute to this work by

introducing a number of taxonomies (Sect. II) which can be

used for this purpose. We also illustrate that most foraging

algorithms can be encapsulated in a high level metaframework

(Sect. III), with differing operationalisations of elements of this

framework giving rise to alternative algorithms with distinct

search characteristics. Finally, some conclusions are discussed

in Sect. IV.

II. TAXONOMIES OF FORAGING ALGORITHMS

Given the large number of foraging inspired algorithms

which have been proposed, it is not an easy task to create a

taxonomy which encompasses all of them satisfactorily. In the

subsections below we present a number of taxonomies which

can be used to segment the population of extant algorithms. By

definition, each focuses attention on one facet of the algorithms

and therefore each taxonomy will have its own strengths and

weaknesses.

A. Tree of Life

In Fig. 2, we divide the algorithms into three main classes,

initially distinguishing between those inspired by the foraging

activities of vertebrates and those arising from the foraging ac-

tivities of invertebrates. In both of these classes the organisms

possess a central nervous system. The third class of algorithms

correspond to those inspired by the foraging activities of

non neuronal organisms, in other words, organisms without

a central nervous system or brain. In each of the three classes,

we further subdivide the algorithms, based on their domain or

kingdom.

Classifying the algorithms using this taxonomy provides a

high level perspective and helps illustrate the wide variety of

life forms whose foraging activities have inspired computa-

tional algorithms. It also helps highlight some gaps, such as

life forms whose foraging activities have not yet been explored

as a possible source of inspiration for algorithmic design.

Perhaps the most curious grouping identified is that of non

neuronal life. In fact, the foraging activities of most life on

earth are not driven by neuronal based decision processes. The



vast majority of life forms, including the plant, bacteria, fungi

and protist kingdoms of life, do not have a brain or other

nervous system hardware.

Despite the absence of neuronal tissue, these apparently

simple organisms live in environments that are no less complex

than those faced by organisms with a brain. Traditionally,

it was assumed that only higher-order animals were capable

of complex decision making. However, non neuronal organ-

isms face the same basic challenges as animals in foraging

for resources, and dealing with competitors, predators and

pathogens. This raises the question as to what mechanisms

these organisms use for sensing their local environment,

internal state, and subsequently taking adaptive actions that

enhance their survival. Study of the foraging activities of

these organisms, and of their decision-making processes such

as quorum-based decision making, may uncover interesting,

novel, approaches for algorithmic design.

The drawback of a taxonomy based on the tree of life is that

it does not highlight the possible commonalities and overlaps

between algorithms, as it does not provide granular detail

on the search mechanisms embedded in each algorithm. This

makes it difficult to critique new algorithms in terms of their

degree of similarity or differentiation from existing algorithms.

Below, we outline a number of alternative taxonomies which

consider these mechanisms.

B. Solitary and Social Foraging

Foraging algorithms can be divided between those where

each agent in the population forages alone with no social

interaction with other individuals, and algorithms where there

is some communication between the agents (social foraging).

The vast majority of algorithms developed to date are based

on a social foraging metaphor.

C. Foraging Capabilities

Foraging capabilities can be considered across several di-

mensions, including:

i. the sensory mechanisms available to organisms;

ii. the learning / memory capabilities available to organ-

isms; and

iii. the communication mechanisms available to organisms.

These dimensions can be used in isolation or in conjunction

with each other to create a variety of taxonomies for distin-

guishing between algorithms.

1) Sensory Mechanism: Taking one of these dimensions,

in Table I we provide an illustration, using three families

of foraging algorithms, of a taxonomy based on the pri-

mary sensory modality from which metaphorical inspiration

is drawn for that algorithm: chemical sensing in the case of

ant colony algorithms and bacteria foraging algorithms; and

visual (observation of a waggle dance) in the case of honey

bee algorithms.

Although various families of foraging inspired algorithms

have produced good results on real world optimisation prob-

lems, the developed algorithms are based on very simplified

models of actual underlying foraging processes, typically

embedding a single sensory modality, and static social learning

and information integration processes. Real world foraging be-

haviours are usually based on multimodal sensory information

and multiple strategies for use of social learning. Foraging

algorithms also typically lack a clear concept of ‘perception’

and ‘selective attention’ both of which are important elements

of the extraction of information from the environment by real

world organisms.
It is also notable that on close examination, the ways in

which sensory mechanisms are implemented in algorithms can

sometimes be quite similar, despite claims that they arise from

different sensory modalities.
2) Memory Mechanism: The way that memories are cre-

ated and maintained during the search process vary between

algorithmic families. Table II illustrates the use of memory

mechanisms as a taxonomy for classifying foraging algorithms

using three sample algorithms.
In general, memory of good locations found in the past

may be maintained by individuals in the population based

on their own personal experience or by a subset of the

population, for example dominant animals, who decide where

the entire population or pack will forage next. Memory can

also be maintained externally in the environment itself where

for example, a trail to food is marked by early foragers

allowing subsequent foragers to travel directly to the food

source. In some algorithmic implementations, an external

memory structure is created (which may not be biologically

plausible) whereby the location of good resources once found,

is maintained in an external store and the contents of this store

are ‘visible’ to subsequent foragers. The implementation of

gbest in the particle swarm optimisation algorithm which stores

the best location ever found by the population is an example

of an external storage mechanism. An additional dimension

of creating a memory mechanism is how many past locations

should be recorded, i.e., how far back should the memory

extend? Having a more comprehensive memory mechanism

could potentially be useful when attempting to adapt to a

moving optimum location in a dynamic environment.
3) Communication Mechanism: Another taxonomy that can

be used to distinguish between algorithms is to categorise

them based on their mechanism(s) for social communication

of information about food finds. Four scenarios can be distin-

guished. An agent may:

i. take up position at the food resource and broadcast an

easily localisable signal to fellow foragers;

ii. generate a chemical or visible trail between the food

resource and a central location, and then induce fellow

foragers to follow this trail to the food;

iii. return to a central location and provide directions to

fellow foragers on how to find the food resource; or

iv. return to a central location, recruit fellow foragers, and

lead them back to the food site.

The economic balance of benefits and costs of the four op-

tions vary. Broadcasting an advertisement for a food resource

from its location is relatively easy, and the related signal can

be optimised for maximum range and localisation. The major



Fig. 2. Classification of foraging algorithms based on tree of life

TABLE I
MAPPING OF SENSORY MODALITIES TO ANT COLONY OPTIMISATION ALGORITHMS (ACO), BACTERIA FORAGING OPTIMISATION ALGORITHMS

(BFOA), AND HONEY BEE OPTIMISATION ALGORITHMS (HBOA)

Sensory Modality ACO BFOA HBOA

Vision � � �

Sound � � �

Chemical � � �

Touch � � �

Magnetism � � �

Electric � � �

TABLE II
MAPPING OF MEMORY MECHANISMS OF ANT COLONY OPTIMISATION ALGORITHMS (ACO), BACTERIA FORAGING OPTIMISATION ALGORITHMS

(BFOA), AND HONEY BEE OPTIMISATION ALGORITHMS (HBOA)

Memory Mechanism ACO BFOA HBOA

Personal Memory Maintained By Individual � � �

Populational Memory Maintained by Dominant Individual � � �

Memory Maintained in the Environment � � �

Memory Maintained in External Structure in Algorithm � � �



cost (risk) is that of eavesdropping as both intraspecific and

interspecific competitors could use the signals to locate the

advertised food resource. Predators could also use the signal

to find the animal advertising the food resource.

The use of chemically-mediated trails are common in

species of ants, termites, and stingless bees. These trails can

create large aggregations of foragers at a food find within a

short period. One risk of such trails is their interception by

eavesdroppers and predators. Some insects such as stingless

bees reduce this risk by creating a broken (as distinct from a

continuous) trail wherein pheromone is only laid down every

5-10 metres.

Perhaps the best-known example of recruitment at a central

location (such as a hive) and providing directions to fellow

foragers is provided by the honeybee dance [31], [35]. The

private nature of this dance (it is performed within the hive)

minimises the risk of eavesdropping by non-hive members.

The system is costly in that it imposes a significant cognitive

burden on both senders and receivers (to produce and to

process the information in the dance) and the waggle dances

are also an energetically expensive display.

The final mechanism of ‘communication, recruitment at a

central location and subsequently leading followers back to

the food site’, creates fewer eavesdropper risks than broadcast

signals from the food site. However, a potential leader requires

a mechanism for locating likely recruits, the ability to find the

food again, and sufficient compensation for the extra time and

energy that leading imposes on it.

In bacteria foraging optimisation algorithms, an important

mechanism is the recruitment of conspecifics to good resource

locations via emission of a simulated attractant chemical by a

bacterium, akin to broadcasting a food signal (communication

mechanism i). In ant colony optimisation, the communication

is via a chemical trail (mechanism ii), whereas in honey bee

optimisation algorithms, the emphasis is placed on provision

of detailed information as to location via a simulation of the

dance process (mechanism iii). Table III illustrates the use

of communication mechanisms as a taxonomy for classifying

foraging algorithms.

4) Stochastic Mechanisms in Foraging Algorithms: In vir-

tually all implementations of foraging algorithms a stochastic

component is incorporated. Generally, the inclusion of stochas-

tic mechanisms is essential in order to ensure good search

performance. These mechanisms can be designed to promote

exploitation and/or exploration. An example of the former is

embedded in the canonical bees algorithm which intensifies

search around already discovered good locations by randomly

selecting trial locations within a defined hypersphere around

the good location. In the case of exploration, the canonical

bacteria foraging optimisation algorithm provides an example

where the location of stochastically selected foragers are

occasionally reinitialised to a new random locations, thereby

increasing the degree of exploration in the search process. The

inclusion of a suitably designed stochastic mechanism can help

reduce the risk of a search process stagnating prematurely.

Another approach to inclusion of a stochastic mechanism is

to allow the weights assigned to different elements of the

foraging strategy, such as the degree of reliance on private

versus public information, to be randomly selected as the

algorithm runs. This ensures that simulated foragers effectively

employ more than one (fixed) foraging strategy, and bears

some parallel with real world foragers who typically use

multiple foraging strategies, although it does not explicitly

embed context dependence. A taxonomy based on the im-

plemented stochastic mechanisms could be used to classify

foraging algorithms.

Obviously many other taxonomies could be generated in

order to compare and contrast differing foraging inspired

algorithms. The above exemplars are not intended to be

exhaustive but rather to illustrate some of the dimensions on

which algorithms can be compared and contrasted.

III. METAFRAMEWORK FOR ALGORITHMIC DESIGN

In spite of the multiplicity of foraging inspired algorithms

in the literature, a relatively compact metaframework can be

outlined which encapsulates most existing algorithms. Four

sources of information which drive foraging behaviour can be

identified as in Fig. 3.

Each individual is capable of capturing information about its

immediate environment via its sensory capabilities, the radius

of which depends on the acuity of their senses (vision, touch,

smell etc.). Individuals may also have a memory of previously

successful and unsuccessful food foraging locations which

they can refer to in deciding where to forage next. This is likely

to be particularly useful when food locations are persistent for

a period of time, or where food locations regenerate cyclically.

Information about food locations may be socially transmitted

between animals. In addition to the previous three influences,

there is also a stochastic element to animal movement when

searching for new food resources, in other words a degree of

randomness as to where an animal will forage next, regardless

of the private and public information it has.

The four components are combined to determine where the

animal will forage next, and in essence this combination forms

a foraging strategy based on a predictive model as the animal

is attempting to predict the best next location to forage at,

given the information gained so far during the search process.

A. Design of Algorithms

All foraging inspired algorithms embed each of these four

components to some degree and therefore the algorithms

have notable high level similarities. The four components

provide a useful checklist when comparing extant algorithms

or attempting to design novel algorithms. Typically, a foraging

strategy will combine sensory information, memory, and social

information, weighting each to varying degrees, and also

include an element of ‘randomness’.

While most algorithms employ a fixed search strategy based

on the above, most real-world organisms employ multiple

strategies, deciding which to apply based on environmental

context and past payoffs. This suggests that future work in



TABLE III
MAPPING OF COMMUNICATION MECHANISMS TO ANT COLONY OPTIMISATION ALGORITHMS (ACO), BACTERIA FORAGING OPTIMISATION

ALGORITHMS (BFOA), AND HONEY BEE OPTIMISATION ALGORITHMS (HBOA)

Communication Mechanism ACO BFOA HBOA

Broadcast Signal From Resource � � �

Generate Chemical or Visible Signal en Route to / from Resource � � �

Return to Central Location and Provide Information on Location � � �

Return to Central Location and Lead Followers to Resource � � �

Fig. 3. Four primary components of foraging behaviour

algorithmic design could usefully include a similar multi-

strategy approach.

When designing an optimisation algorithm using metaphor-

ical inspiration from real world foraging behaviours, the

modeller faces several key decisions in operationalising the

metaframework.

• How do individuals sense the environment?

• What memory mechanism is implemented?

• Who transmits information in a group of foragers?

• How do they transmit information and who listens?

• How do individuals weight / combine private and social

information?

• Can individuals employ multiple foraging or search

strategies or do they employ a fixed strategy?

An unlimited number of specific algorithms, with differ-

ing search characteristics, can be created within this general

metaframework.

IV. DISCUSSION AND CONCLUSIONS

The objective of foraging is the acquisition of valuable re-

sources such as food, shelter and mates. A practical problem

when foraging is that the location of resources in the envi-

ronment is generally not known with certainty in advance.

Active foraging strategies therefore, need to embed a robust

search process. This observation has led to the development of

a rich literature running to many thousands of papers in which

several families of search and optimisation algorithms, based

on the foraging strategies of various organisms, have been

developed. These include ant colony algorithms, honey bee

algorithms and bacteria foraging algorithms, amongst others.

These algorithms have been successfully applied to many real-

world problems.

Looking at foraging inspired algorithms it is evident that

they are very simplified representations of real world foraging

behaviours. In most algorithms the actions of a single pop-

ulation of agents is simulated during the search process, so

important influences on foraging activities including predation

risk (fear) and competition for resources, are omitted. A

host of other factors which influence the choice of foraging

strategy are also generally ignored in algorithmic design. Other

important omissions include concepts in sensory ecology and

the use of multiple foraging strategies by all but the simplest



organisms. We must caution against claiming that foraging

algorithms are other than very loosely inspired by foraging

activities.

Of course, the fact that an algorithm omits important

elements of a foraging process does not in itself invalidate

its application for an optimisation, classification or other task.

An algorithm is ultimately a tool for solving (or uncovering a

sufficiently good solution to) a problem and its performance

on that task determines whether it is considered useful. It need

not necessarily be an accurate representation of the foraging

process which has inspired it to be practically useful.

We have been mindful of the commentary of [32] and

others, concerning the need to adopt a more critical perspective

when assessing the worth of new and existing metaheuristics.

In this paper we have illustrated a number of taxonomies

including the categorisation of algorithms by tree of life

classification, by primary (simulated) sensory modality, by

memory structure, and by the mechanism they use for social

communication of information. As illustrated in Sect. III,

most foraging algorithms can be encapsulated in a high level

framework, with differing operationalisations of elements of

this framework giving rise to alternative algorithms.
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[16] Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization, MIT
Press, Cambridge, Massachusetts.

[17] Gandomi, A., Yang, X.S., Alavi, A. and Talatahari, S. (2013). Bat
algorithm for constrained optimization tasks, Neural Computing and
Applications, 22(6):1239–1255.

[18] He, D., Qu, L. and Guo, X. (2009). Artificial Fish-school Algorithm
for Integer Programming, In: Proceedings of IEEE International
Conference on Information Engineering and Computer Science
(ICIECS), pp. 1–4, IEEE Press.

[19] Karaboga, D. (2005). An idea based on honeybee swarm for nu-
merical optimization, Technical Report TR06, Engineering Faculty,
Computer Engineering Department, Erciyes University, http://mf.
erciyes.edu.tr/abc/pub/tr06 2005.pdf.

[20] Karaboga, D. and Akay, B. (2009). A survey: algorithms simulating
bee intelligence, Artificial Intelligence Review, 31(1-4):61–85.

[21] Li, H., Xiao, R. and Wu, H. (2016). Modelling for combat task
allocation problem of aerial swarm and its solution using wolf
pack algorithm, International Journal of Innovative Computing and
Applications, 7(1):50–59.

[22] Li, X., Shao, Z. and Qian, J. (2002). An optimizing method based
on autonomous animats: fish swarm algorithm, Systems Engineering
Theory and Practice, 22:32–38 (in Chinese).

[23] Lonnstedt, O., Ferrari, M. and Chivers, D. (2014). Lionfish predators
use flared fin displays to initiate cooperative hunting, Biology Letters,
10:20140281

[24] Mirjalili, S. (2015). How effective is the Grey Wolf Optimizer in
training multi-layer perceptrons, Applied Intelligence, 43(1):150–
161.

[25] Mirjalili, S., Mirjalili, S, M. and Lewis, A. (2014). Grey Wolf
Optimizer, Advances in Engineering Software, 69:46–61.

[26] Müller, S., Airaghi, S., Marchetto, J. and Koumoutsakos, P. (2000).
Optimization algorithms based on a model of bacterial chemotaxis,
In: Proceedings of the 6th International Conference on the Simula-
tion of Adaptive Behavior: From Animals to Animats (SAB 2000),
pp. 375–384, Cambridge, Massachusetts: MIT Press.

[27] Passino, K. (2000). Distributed Optimization and Control Using Only
a Germ of Intelligence, In: Proceedings of the IEEE International
Symposium on Intelligent Control, pp. 5-13, IEEE Press.

[28] Passino, K. (2002). Biomimicry of Bacterial Foraging for Dis-
tributed Optimization and Control, IEEE Control Systems Magazine,
22(3):52–67.

[29] Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and
Zaidi, M. (2006). The Bees Algorithm - A novel tool for complex
optimisation problems, In: Proceedings of International Production
Machines and Systems (IPROMS 2006), pp. 454–459, Elsevier, UK.

[30] Premaratne, U., Samarabandu, J. and Sidhu, T. (2009). A New
Biologically Inspired Optimization Algorithm, In: Proceedings of
the Fourth International Conference on Industrial and Information
Systems (ICIIS 2009), pp. 279–284, IEEE Press.

[31] Seeley, T. (1995). The Wisdom of the Hive, Cambridge, MA: Harvard
University Press.
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