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Abstract—A notable weakness of the literature concerning
foraging inspired algorithms is that little attempt is typically
made to rigorously identify the similarities and differences
between newly proposed algorithms and existing ones. This has
led to a critique from a growing number of researchers that
greater efforts need to be made to consolidate the literature on
foraging algorithms (and that of metaheuristics more generally)
by applying a more critical perspective when assessing the worth
of both current and new metaheuristics. An important part of
this process is the development of taxonomies which allow us
to tease out the similarities and differences between new and
existing algorithms.

This paper focusses on this issue and introduces a number of
taxonomies which can be used for this purpose. It also illustrates
that most foraging algorithms can be encapsulated in a high level
metaframework, with differing operationalisations of elements of
this framework giving rise to alternative algorithms with distinct
search characteristics.

I. INTRODUCTION

Computation abounds in nature. The realisation of this fact
has led to the development of the field of natural computing
(NC) in which inspiration is taken from natural processes in
order to design powerful algorithms for diverse applications
including optimisation, classification, clustering, design and
model-induction. Well-known subfields of natural computing
include evolutionary algorithms, neural networks, artificial
immune systems to name but a few, with Fig. 1 providing an
illustrative taxonomy. A comprehensive discussion of natural
computing algorithms is provided in [6].

One significant grouping of NC algorithms are those in-
spired by the workings of social systems and social phenomena
such as the flocking and schooling behavior of fish and the
behaviors observed in social insects such as ants. These social
systems exhibit a number of characteristics which facilitate
problem-solving including, self-organisation, flexibility, ro-
bustness, and direct/indirect communication between mem-
bers of the population. These social algorithms are typically
population-based like their evolutionary computation counter-
parts, and they generally operate by allowing the population
of problem-solvers to communicate their relative success in
solving the problem to each other.

An important subset of social algorithms derive their design
inspiration from the foraging activities of various organisms.
An interesting aspect of foraging is that it takes place in a
dynamic environment as food location, and quality, changes
over time as a result of factors such as consumption and

degradation due to environmental influences. This suggests
that higher-quality food foraging strategies need to be adaptive
to changing conditions and to feedback based on their degree
of past success. This aspect of foraging makes it particu-
larly interesting as a source of inspiration for the design
of algorithms for dynamic environments. Many real-world
problems are ‘hard’ precisely because they occur in a dynamic
environment.

A. Foraging Algorithms

As noted by Yeakle and Dunne (2015) [41], the behaviour
of all evolutionarily successful organisms is constrained by
two requirements. They must pass on their genetic material
and they must acquire the necessary energy (from food) to
do so. Foraging behaviours play a key role in determining
evolutionary success.

The challenge facing organisms when actively foraging is
‘how best to search for resources (good regions) when their
location is not known with certainty a priori?’. The same
problem is faced when designing search algorithms.

The observation that foraging typically requires organisms
to undertake a search process has in turn led to the design of
several families of search algorithms which draw metaphorical
inspiration from a range of real-world foraging behaviours.
Most of these algorithms embed a social foraging metaphor,
with information being spread between organisms during the
foraging process. While social foraging was long thought to be
confined to higher-level animals such as primates, it is now
known that co-operative foraging behaviours exist in many
species of mammals, fish, birds, insects and even simpler
organisms [23].

Families of algorithms include ant colony optimisation
algorithms [4], [13], [14], [15], [16], honey bee algorithms
[2], [5], [19], [20], [29], [37] and bacteria foraging algorithms
[26], [27], [28].

Indeed, inspiration has been drawn from the foraging ac-
tivities of a large number of organisms for the purposes
of algorithmic design. Other significant families of these
algorithms include those inspired by the echolocation process
of bats echolocation, in which pulses of acoustic energy are
emitted and the resulting echo is resolved into an ‘image’
of the surrounding environment, with the bat algorithm be-
ing developed by [38]. Like many other foraging inspired
algorithms, the bat algorithm has produced very competitive
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results on both benchmark optimisation problems and across
a variety of applications. A detailed review of applications of
the bat algorithm is provided in [40] and some extensions of
the canonical algorithm are discussed in [12].

A variety of animals, including some species of birds, en-
gage in social roosting whereby large numbers of conspecifics
gather together to roost, either overnight or for longer periods.
It has been claimed that these roosts can serve as information
centres [42] to spread knowledge concerning the location of
food resources in the environment. A paper by [9] draws
inspiration from the social roosting and foraging behaviour of
the common raven in designing the raven roosting optimisation
(RRO) algorithm.

A number of studies have employed a fish school metaphor
to develop algorithms for optimisation and clustering, with [1],
[3], [18], [33] providing a sample of this work. Algorithms
adopting this approach include fish school search (FSS) [3],
the artificial fish swarm algorithm (AFSA) [22], and the fish
algorithm [6]

Dominance hierarchies amongst group living animals can
influence their decision-making and foraging behaviours. One
example of this is provided by wolves, and a number of
studies including [21], [24], [25], [36] have drawn inspiration
from wolf pack foraging behaviours to design optimisation
algorithms.

Obviously it is not possible to provide a detailed coverage
of the entire literature on foraging inspired algorithms in a
single paper. Readers requiring a comprehensive overview of
this literature are referred to [10].

B. Focus of This Paper

A notable characteristic of the literature concerning foraging
inspired algorithms is that little attempt is typically made to
rigorously identify the similarities and differences between
newly proposed algorithms and existing ones. Indeed, this
critique is more broadly leveled at the entire field of meta-
heuristics by Kenneth Sorensen [32] amongst others, and it
is accepted that a more critical perspective is required when
assessing the worth of new and existing metaheuristics.

An important tool in sharpening our understanding of exist-
ing and proposed algorithms is the development of taxonomies
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which allow us to tease out the similarities and differences
between them. In this paper we contribute to this work by
introducing a number of taxonomies (Sect. II) which can be
used for this purpose. We also illustrate that most foraging
algorithms can be encapsulated in a high level metaframework
(Sect. III), with differing operationalisations of elements of this
framework giving rise to alternative algorithms with distinct
search characteristics. Finally, some conclusions are discussed
in Sect. IV.

II. TAXONOMIES OF FORAGING ALGORITHMS

Given the large number of foraging inspired algorithms
which have been proposed, it is not an easy task to create a
taxonomy which encompasses all of them satisfactorily. In the
subsections below we present a number of taxonomies which
can be used to segment the population of extant algorithms. By
definition, each focuses attention on one facet of the algorithms
and therefore each taxonomy will have its own strengths and
weaknesses.

A. Tree of Life

In Fig. 2, we divide the algorithms into three main classes,
initially distinguishing between those inspired by the foraging
activities of vertebrates and those arising from the foraging ac-
tivities of invertebrates. In both of these classes the organisms
possess a central nervous system. The third class of algorithms
correspond to those inspired by the foraging activities of
non neuronal organisms, in other words, organisms without
a central nervous system or brain. In each of the three classes,
we further subdivide the algorithms, based on their domain or
kingdom.

Classifying the algorithms using this taxonomy provides a
high level perspective and helps illustrate the wide variety of
life forms whose foraging activities have inspired computa-
tional algorithms. It also helps highlight some gaps, such as
life forms whose foraging activities have not yet been explored
as a possible source of inspiration for algorithmic design.

Perhaps the most curious grouping identified is that of non
neuronal life. In fact, the foraging activities of most life on
earth are not driven by neuronal based decision processes. The



vast majority of life forms, including the plant, bacteria, fungi
and protist kingdoms of life, do not have a brain or other
nervous system hardware.

Despite the absence of neuronal tissue, these apparently
simple organisms live in environments that are no less complex
than those faced by organisms with a brain. Traditionally,
it was assumed that only higher-order animals were capable
of complex decision making. However, non neuronal organ-
isms face the same basic challenges as animals in foraging
for resources, and dealing with competitors, predators and
pathogens. This raises the question as to what mechanisms
these organisms use for sensing their local environment,
internal state, and subsequently taking adaptive actions that
enhance their survival. Study of the foraging activities of
these organisms, and of their decision-making processes such
as quorum-based decision making, may uncover interesting,
novel, approaches for algorithmic design.

The drawback of a taxonomy based on the tree of life is that
it does not highlight the possible commonalities and overlaps
between algorithms, as it does not provide granular detail
on the search mechanisms embedded in each algorithm. This
makes it difficult to critique new algorithms in terms of their
degree of similarity or differentiation from existing algorithms.
Below, we outline a number of alternative taxonomies which
consider these mechanisms.

B. Solitary and Social Foraging

Foraging algorithms can be divided between those where
each agent in the population forages alone with no social
interaction with other individuals, and algorithms where there
is some communication between the agents (social foraging).
The vast majority of algorithms developed to date are based
on a social foraging metaphor.

C. Foraging Capabilities

Foraging capabilities can be considered across several di-
mensions, including:

i. the sensory mechanisms available to organisms;

ii. the learning / memory capabilities available to organ-

isms; and

iii. the communication mechanisms available to organisms.
These dimensions can be used in isolation or in conjunction
with each other to create a variety of taxonomies for distin-
guishing between algorithms.

1) Sensory Mechanism: Taking one of these dimensions,
in Table I we provide an illustration, using three families
of foraging algorithms, of a taxonomy based on the pri-
mary sensory modality from which metaphorical inspiration
is drawn for that algorithm: chemical sensing in the case of
ant colony algorithms and bacteria foraging algorithms; and
visual (observation of a waggle dance) in the case of honey
bee algorithms.

Although various families of foraging inspired algorithms
have produced good results on real world optimisation prob-
lems, the developed algorithms are based on very simplified
models of actual underlying foraging processes, typically

embedding a single sensory modality, and static social learning
and information integration processes. Real world foraging be-
haviours are usually based on multimodal sensory information
and multiple strategies for use of social learning. Foraging
algorithms also typically lack a clear concept of ‘perception’
and ‘selective attention’ both of which are important elements
of the extraction of information from the environment by real
world organisms.

It is also notable that on close examination, the ways in
which sensory mechanisms are implemented in algorithms can
sometimes be quite similar, despite claims that they arise from
different sensory modalities.

2) Memory Mechanism: The way that memories are cre-
ated and maintained during the search process vary between
algorithmic families. Table II illustrates the use of memory
mechanisms as a taxonomy for classifying foraging algorithms
using three sample algorithms.

In general, memory of good locations found in the past
may be maintained by individuals in the population based
on their own personal experience or by a subset of the
population, for example dominant animals, who decide where
the entire population or pack will forage next. Memory can
also be maintained externally in the environment itself where
for example, a trail to food is marked by early foragers
allowing subsequent foragers to travel directly to the food
source. In some algorithmic implementations, an external
memory structure is created (which may not be biologically
plausible) whereby the location of good resources once found,
is maintained in an external store and the contents of this store
are ‘visible’ to subsequent foragers. The implementation of
¢%*st in the particle swarm optimisation algorithm which stores
the best location ever found by the population is an example
of an external storage mechanism. An additional dimension
of creating a memory mechanism is how many past locations
should be recorded, i.e., how far back should the memory
extend? Having a more comprehensive memory mechanism
could potentially be useful when attempting to adapt to a
moving optimum location in a dynamic environment.

3) Communication Mechanism: Another taxonomy that can
be used to distinguish between algorithms is to categorise
them based on their mechanism(s) for social communication
of information about food finds. Four scenarios can be distin-
guished. An agent may:

i. take up position at the food resource and broadcast an

easily localisable signal to fellow foragers;

ii. generate a chemical or visible trail between the food
resource and a central location, and then induce fellow
foragers to follow this trail to the food;

iii. return to a central location and provide directions to
fellow foragers on how to find the food resource; or

iv. return to a central location, recruit fellow foragers, and
lead them back to the food site.

The economic balance of benefits and costs of the four op-
tions vary. Broadcasting an advertisement for a food resource
from its location is relatively easy, and the related signal can
be optimised for maximum range and localisation. The major



Foraging Inspired
Algorithms
—
| | | | | |
Vertebrates Invertebrates
Non Neuronal
(with backbone) (without backbone)

Wolf Pack Search

= and Grey Wolf b Ant Algorithms Bacteria Inspired

Algorithms Algorithms
Spider Monkey Honey Bee Slime Mould
Algorithm Algorithms Algorithms

. Bioluminescent .
m  Bat Algorithm = Insect Algorithms = Plant Algorithms

Bird Foraging

Algorithms m  Spider Algorithms

Fish Foraging

Algorithms = \\/orm Algorithm

Fig. 2. Classification of foraging algorithms based on tree of life

TABLE I
MAPPING OF SENSORY MODALITIES TO ANT COLONY OPTIMISATION ALGORITHMS (ACO), BACTERIA FORAGING OPTIMISATION ALGORITHMS
(BFOA), AND HONEY BEE OPTIMISATION ALGORITHMS (HBOA)

Sensory Modality ACO BFOA HBOA

Vision X X v

Sound X X X

Chemical v v X

Touch X X X

Magnetism X X X

Electric X X X
TABLE II

MAPPING OF MEMORY MECHANISMS OF ANT COLONY OPTIMISATION ALGORITHMS (ACQO), BACTERIA FORAGING OPTIMISATION ALGORITHMS
(BFOA), AND HONEY BEE OPTIMISATION ALGORITHMS (HBOA)

Memory Mechanism ACO BFOA HBOA
Personal Memory Maintained By Individual X X v
Populational Memory Maintained by Dominant Individual X X X
Memory Maintained in the Environment 4 v X
Memory Maintained in External Structure in Algorithm X X X




cost (risk) is that of eavesdropping as both intraspecific and
interspecific competitors could use the signals to locate the
advertised food resource. Predators could also use the signal
to find the animal advertising the food resource.

The use of chemically-mediated trails are common in
species of ants, termites, and stingless bees. These trails can
create large aggregations of foragers at a food find within a
short period. One risk of such trails is their interception by
eavesdroppers and predators. Some insects such as stingless
bees reduce this risk by creating a broken (as distinct from a
continuous) trail wherein pheromone is only laid down every
5-10 metres.

Perhaps the best-known example of recruitment at a central
location (such as a hive) and providing directions to fellow
foragers is provided by the honeybee dance [31], [35]. The
private nature of this dance (it is performed within the hive)
minimises the risk of eavesdropping by non-hive members.
The system is costly in that it imposes a significant cognitive
burden on both senders and receivers (to produce and to
process the information in the dance) and the waggle dances
are also an energetically expensive display.

The final mechanism of ‘communication, recruitment at a
central location and subsequently leading followers back to
the food site’, creates fewer eavesdropper risks than broadcast
signals from the food site. However, a potential leader requires
a mechanism for locating likely recruits, the ability to find the
food again, and sufficient compensation for the extra time and
energy that leading imposes on it.

In bacteria foraging optimisation algorithms, an important
mechanism is the recruitment of conspecifics to good resource
locations via emission of a simulated attractant chemical by a
bacterium, akin to broadcasting a food signal (communication
mechanism 1). In ant colony optimisation, the communication
is via a chemical trail (mechanism ii), whereas in honey bee
optimisation algorithms, the emphasis is placed on provision
of detailed information as to location via a simulation of the
dance process (mechanism iii). Table III illustrates the use
of communication mechanisms as a taxonomy for classifying
foraging algorithms.

4) Stochastic Mechanisms in Foraging Algorithms: In vir-
tually all implementations of foraging algorithms a stochastic
component is incorporated. Generally, the inclusion of stochas-
tic mechanisms is essential in order to ensure good search
performance. These mechanisms can be designed to promote
exploitation and/or exploration. An example of the former is
embedded in the canonical bees algorithm which intensifies
search around already discovered good locations by randomly
selecting trial locations within a defined hypersphere around
the good location. In the case of exploration, the canonical
bacteria foraging optimisation algorithm provides an example
where the location of stochastically selected foragers are
occasionally reinitialised to a new random locations, thereby
increasing the degree of exploration in the search process. The
inclusion of a suitably designed stochastic mechanism can help
reduce the risk of a search process stagnating prematurely.
Another approach to inclusion of a stochastic mechanism is

to allow the weights assigned to different elements of the
foraging strategy, such as the degree of reliance on private
versus public information, to be randomly selected as the
algorithm runs. This ensures that simulated foragers effectively
employ more than one (fixed) foraging strategy, and bears
some parallel with real world foragers who typically use
multiple foraging strategies, although it does not explicitly
embed context dependence. A taxonomy based on the im-
plemented stochastic mechanisms could be used to classify
foraging algorithms.

Obviously many other taxonomies could be generated in
order to compare and contrast differing foraging inspired
algorithms. The above exemplars are not intended to be
exhaustive but rather to illustrate some of the dimensions on
which algorithms can be compared and contrasted.

III. METAFRAMEWORK FOR ALGORITHMIC DESIGN

In spite of the multiplicity of foraging inspired algorithms
in the literature, a relatively compact metaframework can be
outlined which encapsulates most existing algorithms. Four
sources of information which drive foraging behaviour can be
identified as in Fig. 3.

Each individual is capable of capturing information about its
immediate environment via its sensory capabilities, the radius
of which depends on the acuity of their senses (vision, touch,
smell etc.). Individuals may also have a memory of previously
successful and unsuccessful food foraging locations which
they can refer to in deciding where to forage next. This is likely
to be particularly useful when food locations are persistent for
a period of time, or where food locations regenerate cyclically.
Information about food locations may be socially transmitted
between animals. In addition to the previous three influences,
there is also a stochastic element to animal movement when
searching for new food resources, in other words a degree of
randomness as to where an animal will forage next, regardless
of the private and public information it has.

The four components are combined to determine where the
animal will forage next, and in essence this combination forms
a foraging strategy based on a predictive model as the animal
is attempting to predict the best next location to forage at,
given the information gained so far during the search process.

A. Design of Algorithms

All foraging inspired algorithms embed each of these four
components to some degree and therefore the algorithms
have notable high level similarities. The four components
provide a useful checklist when comparing extant algorithms
or attempting to design novel algorithms. Typically, a foraging
strategy will combine sensory information, memory, and social
information, weighting each to varying degrees, and also
include an element of ‘randomness’.

While most algorithms employ a fixed search strategy based
on the above, most real-world organisms employ multiple
strategies, deciding which to apply based on environmental
context and past payoffs. This suggests that future work in
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algorithmic design could usefully include a similar multi-
strategy approach.

When designing an optimisation algorithm using metaphor-
ical inspiration from real world foraging behaviours, the
modeller faces several key decisions in operationalising the
metaframework.

« How do individuals sense the environment?

e What memory mechanism is implemented?

o Who transmits information in a group of foragers?

o How do they transmit information and who listens?

o How do individuals weight / combine private and social
information?

e Can individuals employ multiple foraging or search
strategies or do they employ a fixed strategy?

An unlimited number of specific algorithms, with differ-
ing search characteristics, can be created within this general
metaframework.

IV. DI1ScUSSION AND CONCLUSIONS

The objective of foraging is the acquisition of valuable re-
sources such as food, shelter and mates. A practical problem

when foraging is that the location of resources in the envi-
ronment is generally not known with certainty in advance.
Active foraging strategies therefore, need to embed a robust
search process. This observation has led to the development of
a rich literature running to many thousands of papers in which
several families of search and optimisation algorithms, based
on the foraging strategies of various organisms, have been
developed. These include ant colony algorithms, honey bee
algorithms and bacteria foraging algorithms, amongst others.
These algorithms have been successfully applied to many real-
world problems.

Looking at foraging inspired algorithms it is evident that
they are very simplified representations of real world foraging
behaviours. In most algorithms the actions of a single pop-
ulation of agents is simulated during the search process, so
important influences on foraging activities including predation
risk (fear) and competition for resources, are omitted. A
host of other factors which influence the choice of foraging
strategy are also generally ignored in algorithmic design. Other
important omissions include concepts in sensory ecology and
the use of multiple foraging strategies by all but the simplest



organisms. We must caution against claiming that foraging
algorithms are other than very loosely inspired by foraging
activities.

Of course, the fact that an algorithm omits important
elements of a foraging process does not in itself invalidate
its application for an optimisation, classification or other task.
An algorithm is ultimately a tool for solving (or uncovering a
sufficiently good solution to) a problem and its performance
on that task determines whether it is considered useful. It need
not necessarily be an accurate representation of the foraging
process which has inspired it to be practically useful.

We have been mindful of the commentary of [32] and
others, concerning the need to adopt a more critical perspective
when assessing the worth of new and existing metaheuristics.
In this paper we have illustrated a number of taxonomies
including the categorisation of algorithms by tree of life
classification, by primary (simulated) sensory modality, by
memory structure, and by the mechanism they use for social
communication of information. As illustrated in Sect. III,
most foraging algorithms can be encapsulated in a high level
framework, with differing operationalisations of elements of
this framework giving rise to alternative algorithms.
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