
Genetic Programming and Evolvable Machines
(2010) 11:365-396
DOI: 10.1007/s10710-010-9109-y

Grammar-based Genetic Programming

A Survey

Robert I (Bob) McKay · Nguyen Xuan Hoai ·

Peter Alexander Whigham · Yin Shan ·

Michael O’Neill

Received: 23 November 2009/Revised: 10 April 2010/Published online: 1 May 2010
c©Springer Science+Business Media, LLC 2010

Abstract Grammar formalisms are one of the key representation structures in Com-

puter Science. So it is not surprising that they have also become important as a method

for formalizing constraints in Genetic Programming (GP). Practical grammar-based

GP systems first appeared in the mid 1990s, and have subsequently become an impor-

tant strand in GP research and applications. We trace their subsequent rise, surveying

the various grammar-based formalisms that have been used in GP and discussing the

contributions they have made to the progress of GP. We illustrate these contributions

with a range of applications of grammar-based GP, showing how grammar formalisms

contributed to the solutions of these problems. We briefly discuss the likely future de-

velopment of grammar-based GP systems, and conclude with a brief summary of the

field.

Keywords Genetic Programming · Evolutionary Computation · Grammar · Context

Free · Regular

1 Introduction

Various algorithms that might loosely be called Genetic Programming (GP) were de-

scribed in the 1980s and even earlier (the closest to modern GP being the work of

Bob McKay
School of Computer Science and Engineering, Seoul National University, Korea
Correspondence to: E-mail: rimsnucse@gmail.com

N.X. Hoai
Department of Computer Science, Le Quy Don University, Hanoi, VietNam

P.A. Whigham
Department of Information Science, University of Otago, Dunedin, NZ

Y. Shan
Medicare Australia, Canberra, Australia

M.O’Neill
Complex & Adaptive Systems Lab, School of Computer Science and Informatics, University
College Dublin, Ireland E-mail: m.oneill@ucd.ie

2

Cramer [11] and of Hicklin [32]). However it was the research of Koza [47] which

clearly defined the field and established it as an important sub-field of evolutionary

computation. In the remainder of this paper, we refer to this archetypical – and still

widely used – form of GP as ”standard” GP.

Grammars are core representation structures in Computer Science. They are widely

used to represent restrictions on general domains, limiting the expressions that may

be used. They can be used to define the legal expressions of a computer language, to

impose type restrictions, or to describe constraints on interactions within systems. So

it is not surprising that grammars have played an important role in the development of

GP. They have been used in GP almost from its inception. Indeed the idea was implicit

in ch. 19 of Koza’s first book [47]. At first, grammar-based approaches formed a small

segment of the GP world, but their role has expanded to the point where Grammatical

Evolution (GE [67,68]) is now one of the most widely applied GP methods.

We aim to give a flavour of the history and applications of grammar-based GP,

from the emergence of the first fully-fledged systems in the mid 1990s (throughout

the paper, to speak generically of the field, we will use the term Grammar Guided

Genetic Programming – GGGP). We then examine the pros and cons of GGGP to

try to understand why it has become so influential, and delineate some of the issues

we think will be important in the future. The field continues to develop, so we have

arbitrarily limited the survey up to the end of 2008, as a practical dividing line.

In section 2 we introduce the most straightforward version, tree-structured Chom-

sky grammar GP. In section 3, we examine some linearised versions based on these

grammars. We follow this, in section 4, with some alternative approaches that use dif-

ferent or extended grammar models. Section 5 concludes the historical review with a

consideration of other population-based stochastic algorithms using grammars to repre-

sent GP problem spaces. Having considered the different forms of grammar-based GP,

we then look, in section 6, at the range of areas in which GGGP techniques have been

applied. We explain the role of GGGP in section 7, and examine its advantages (and

disadvantages) relative to other GP methods, in section 8. We attempt, in section 9,

to forecast the important future directions of the field, and present our conclusions in

section 10.

1.1 Terminology

In the following sections the term genotype refers to the structure operated on by

genetic operators such as crossover and mutation. Hence for tree based GGGP the

genotype is a derivation tree in the language defined by a grammar, while for a linear

representation such as GE the genotype is a linear string which is then decoded into a

derivation tree. The term phenotype refers to the structure that is directly executed to

produce the behaviour of an individual. Hence for both tree based GGGP and GE, the

phenotype refers to the expression tree (GP-style tree) which is directly evaluated. The

grammar defines the interpretation of the genotype space, and in tree-based systems

directly defines the set of valid derivation trees (i.e. genotypes). In some representations,

such as GE and TAG, the genotype is first decoded to a context-free derivation tree,

before further transformation to an expression tree. In these cases, we refer to this

intermediate stage as an ”intermediate state”.

3

Table 1 English Grammar Fragment

Sent → Sub Pred PP → Prep NP Prep → ”on” |”under”
Sub → NP Adjs → Adj Adjs Noun → ”cat” |”dog”
Pred → Verb PP Adjs → Adj |”floor” |”mat”
NP → Det Noun Verb → ”sat” |”stood” Adj → ”big” |”small”
NP → Det Adjs Noun Det → ”a” |”the” |”red” |”black”

Fig. 1 Typical Parse Trees from Example Grammar

2 Tree Based Grammar Guided Genetic Programming

The first fully-fledged GGGP systems were independently implemented at about the

same time by three different research groups. Whigham [102] proposed the CFG-GP

system, in which a context-free gramar (CFG) was used to generate the population,

consisting of derivation trees of the CFG. Geyer-Schulz [22] derived his very similar

GGGP system for learning knowledge rules for expert systems; it differs mainly in

the algorithm used to initialise the population [4]. Wong and Leung [108] proposed

the LOGENPRO system, which uses PROLOG Definite Clause Grammars (DCGs)

to generate (logic) programs to learn first order relations. DCGs are somewhat more

expressive than CFGs, being able to generate some context-sensitive languages, which

can be important for some applications. This is the primary difference between the

systems; in other respects, LOGENPRO and CFG-GP are very similar.

GGGP Example: we illustrate GGGP using a generalisation of Dawkins’ example [13]

for explaining evolution: hidden string matching. We use CFG-GP, but very little

change would be needed for LOGENPRO or Geyer-Shulz’ system. In Genetic Algorithm

string matching, the requirement is to match a hidden string, and the (minimising)

fitness function is the number of mismatches. In our example, the requirement is to

match a hidden sentence – perhaps ”the cat sat on the mat”. The (minimising) fitness

function is the number of edit operations required to match the words of the sentences,

and the GGGP system is only permitted to evaluate syntactically valid sentences. This

would be a difficult problem to encode in standard GP.

The five basic components of a GGGP system are as follows:

4

Fig. 2 Subtree Crossover restricted by Example Grammar

1. Program Representation: Each program is a derivation tree generated by a

grammar G; the grammar defines a language L whose terms are expressions cor-

responding to those used in ’standard’ GP. In our example, G is the fragment of

English grammar shown in table 1.1

2. Population Initialisation: Whigham [102] proposed a simple algorithm to gen-

erate random derivation trees up to a depth bound, based on a procedure for

labeling the production rules with the minimum tree depth required to produce a

string of terminals. Bohm and Geyer-Schultz [4] derived an algorithm for initialising

the population based on the derivation-step-uniform distribution. The initialisation

procedure for LOGENPRO was based on prolog grammar generation. In our ex-

1 Reproduced under the Creative Commons Licence; available from
https://sc.snu.ac.kr/sclab/doku.php?id=commons.

5

Fig. 3 Subtree Mutation restricted by Example Grammar

ample, we might initially generate parse trees for sentences such as ”the cat sat

under a mat” or ”the big red dog stood on the floor”, as in figure 1.

3. Fitness evaluation: Fitness evaluation is carried out on the individuals by reading

the expression tree from the leaves of the grammar derivation tree, then evaluating

it as in standard GP. In our example, using edit distance, the distance from the first

sentence to the target is 2 (replacing ”under” with ”on” and ”a” with ”the”), and

from the second it is 5 (deleting ”big” and ”red”, substituting ”dog” with ”cat”,

”stood” with ”sat” and ”floor” with ”mat”).

4. Parameters: As in standard GP – population size, number of generations, maxi-

mal tree depth, and operator probabilities.

5. Genetic Operators: The genetic operators are the selection mechanism, repro-

duction, crossover, and mutation. Selection and reproduction are as in standard

GP. Crossover and mutation are slight variants of those used in standard GP.

Crossover: two internal nodes of the derivation tree, labelled with the same non-

terminal symbol of the grammar, are chosen at random and the two sub-derivation

trees underneath them exchanged. In other words, the crossover acts the same as

standard GP subtree crossover, with the additional constraint that crossover points

are required to have the same grammar label. For example, we might select the left-

most NP of the left tree and the rightmost of the right tree as crossover points, as

seen in figure 2.1 The result of crossover is the child sentences ”the floor sat under

a mat” and ”the big red dog stood on the cat”.2

2 Recombinations in biological systems are usually homologous - the genetic materials are
not exchanged completely randomly, but between genes with similar function [81]. By analogy,
we term crossovers exchanging subtrees rooted at the same symbols ’homologous crossovers’.

6

Mutation: selects an internal node at random. The subtree rooted at that node is

deleted, and replaced by a new one, randomly generated according to the grammar,

starting from the same nonterminal. For example, we might select the second of

the previous child subtrees for mutation, and choose the first NP node in it as a

mutation point, generating a new NP at this point, such as ”the cat stood on the

cat”. This process is illustrated in figure 3.1

Subsequent to these systems, there have been a number of similar GGGP systems

using derivation trees from a grammar as the representation for individuals. Gruau [25]

presented some strong arguments for using context-free grammars to set language bias

on individuals. His system is very similar to Whigham’s CFG-GP, with differences

mainly lying in some additional constraints imposed on using the grammar. The initial

maximum individual size is constrained by an upper bound to recursive grammar

applications. He introduces two additional data structures, lists and sets. The two

structures support different crossover operators. These extensions, introduced to allow

specific restrictions in the laguage bias, complicated the model and may have been

more readily introduced via a more expressive grammar.

Keijzer & Babovic [43] and Ratle & Sebag [77] introduced a grammar guided genetic

programming system similar to the preceding systems, but with a different initialisa-

tion process, to solve some industrial problems. The resulting system was known as

dimensionally-aware genetic programming.

Some recent variants are very similar to the above systems, but use different no-

tations to represent CFGs. Tanev et al [97] represent the CFG in Backus-Naur Form

(BNF). MacCallum [51] introduced a perl-based system, in which perl tree notation is

used to represent grammars equivalent to CFGs.

3 Linearised GGGP

Linear representations offer a number of seductive advantages over tree-based represen-

tations, and especially the highly constrained tree-based representations arising from

Chomsky grammars. Most obviously, linear representations permit the application of a

vast background of both theory and practice from the much wider fields of evolution-

ary computation with fixed-length linear representations, notably Genetic Algorithms

(GA) and Evolution Strategies (ES). Thus linear representations have become increas-

ingly important in the non-grammar-based GP world, including such approaches as

linear GP [35], machine coded GP [61], stack-based GP [94] and Cartesian Genetic

Programming [58]. Hence it is not surprising that there have been a number of ap-

proaches to linearising the representation of programs in GGGP. All use a genotype to

phenotype mapping, where the genotype is a linear sequence, and an intermediate state

is constructed in the form of a derivation tree of the grammar, which is then further

decoded to an expression tree. The work of Johnson and Feyock [39] prefigured these

approaches by several years, but was not widely available and so did not influence the

subsequent development of the field.

In the early work of Keller & Banzhaf [46] a grammar was used during repair of

the genoptye-phenotype mapping to ensure the syntactic correctness of the phenotypic

program. In this approach the genotype contained a series of codons (represented by a

predetermined number of bits) to encode a symbol of the output language. The order

of the codons determined the symbol order for the output program. However, it was

7

Table 2 Grammar for Rational Polynomials

Exp → Poly / Poly Trm → Coef * Prod Coef → ”x0” |”x1”
Poly → Trm Prod → Var Var → ”v0”|”v1”
Poly → Trm + Poly Prod → Var * Prod

only after the grammar-based repair operation that the syntactic correctness of the

program could be guaranteed.

In Paterson & Livesey [76,75] and Freeman [19], the genotype was a fixed string

used to encode the indices for derivation rules in G. In these methods, the translation

from a genotype to an intermediate state is carried out from left to right, and the

intermediate state (G derivation tree) is built correspondingly. At each step, if there is

still an incomplete branch in the intermediate state marked by a nonterminal A, a gene

(number of bits) is read and intepreted as a key, indicating which, among the rules in

the rule set P of G having left hand side A, will be used to extend that branch of the

intermediate state. If the intermediate state is completed while there are still unused

genes in the genotype, they are ignored (considered as introns). In the event that

the translation uses all the genes, but the intermediate state is still incomplete, some

random or default sub-derivation trees are used to complete it. Because the genotype

is now a linear string, the system can simply use any genetic operators from GAs.

The most widely used linear GGGP system is grammatical evolution (GE) [68,

16]. It is an extension of the GGGP systems with a linear representation described

above. Three innovations were incorporated in GE: variable length (although these

had been previously considered by Johnson and Feyock [39]), redundancy using the

MOD mapping rule, and the wrapping operation. The chromosome in GE typically

has variable length rather than being fixed, although fixed-length instances have been

adopted [66,53]. Each codon is typically an 8-bit binary number (integer codons are also

widely adopted), which is used, as in the previous systems, to determine the rule for a

nonterminal symbol when it is expanded. However the modulo operator is now used to

map the number to the defined range of production rules from the given nonterminal.

An illustration of the mapping process is provided in Fig. 4. The wrapping operation

can be used when the translation from genotype to intermediate state has run out

of genes while the intermediate state is still incomplete. The translation process re-

uses the gene from left to right. If the number of wrappings exceeds a predetermined

maximal bound, then the translation finishes and the (invalid) individual is assigned a

very poor fitness. This introduces an upper bound on the size of any individual, since

it is possible that a finite linear genome can map to an infinite number of production

applications.

If we look again at the example grammar adopted in Fig. 4 we can immeadiately

appreciate the potential benefits of adopting a grammar-based form of GP. Consider if

we wanted to modify the form of the solutions generated by GE in this case. With some

simple changes to the grammar the form of expression generated can be dramatically

altered.

The example grammar provided in table 2 would have the effect of changing the

expressions in Fig. 4 from arithmetic combinations of coefficients and variables, to more

complex structures of rational polynomials. Recall that the original rules for <expr>

simply generated arithmetic combinations of <coef>*<prod>.

Since it was proposed there has been a wide range of on-going research to develop,

extend, and apply GE in many ways, including studying the effect of GE crossover

8

Fig. 4 An illustration of the Grammatical Evolution mapping from a linear binary (or integer)
chromosome. The integer values are used in the mapping function to decide which production
rule from the grammar to apply to the current non-terminal symbol. This results in the gen-
eration of a derviation sequence, which can be maintained as a derivation tree. The derivation
tree is then reduced to the standard GP syntax tree. Note that search operators can be applied
to both the linear chromosome and derivation tree.

on the phenotype [70], alternatives to the MOD rule in genotype-phenotype transla-

tion [45], an alternative mapping process that evolves the order in which nonterminals

are expanded in addition to how they are expanded [65], different search strategies [73,

64,63], new representations based on the GE representation aiming to reduce the effects

of positional dependence [87], implementation of GAs through GE using an attribute

grammar [86], the use of a meta-grammar with GE to improve its evolvability [69] and

9

to implement a GA [62,29]. Harper and Blair [27] showed how to use grammars to

dynamically define functions, obviating the need for special-purpose mechanisms such

as Automatically Defined Functions [48].

There are two key issues with the GE representation. Firstly, an apparently valid

genotype may code for an infeasible (i.e. not fitness calculable) phenotype. Although

the problem can be handled by assigning these individuals a poor fitness values, it

introduces a source of irregularity into the search space, and constitutes an obstacle for

evolution and search on the GE representation if the proportion of genotypes coding

for infeasible phenotypes is large. As such it is common to adopt repair during the

genotype-phenotype mapping to ensure that all remaining nonterminals are mapped

to terminals. Approaches include the use of default production rules which fire after

the maximum number of wraps has been reached (originally adopted by Paterson

and Livesey [76]), or the use of a dynamic grammar, which removes all nonterminal

expanding rules from the grammar [30]. By using the equivalent of ramped-half-and-

half initialisation with derivation trees (dubbed sensible initialisation), one can ensure

the validity of at least the initial population [85].

Secondly, GE may not fulfil the locality principle, of small changes in genotype

resulting in small changes in phenotype [84]. Although it is easy to define GE opera-

tors that make small changes on the genotype, the resulting phenotype changes may be

larger. A change at one position may change the expressiveness (coding or non-coding),

or meaning (if there is more than one nonterminal in the grammar) of genes that lie

after that position. In the extreme, this may change the corresponding phenotype from

feasible to infeasible, or create a search process that is no better than random sampling.

However, the extent of this effect depends on the relationship between the particular

grammar, the genetic operators and the fitness function, and is clearly an issue with

any complex genotype-phenotype mapping. Recent advances to address this issue have

focused on the development of search operators towards the derivation trees that are

produced during the genotype-phenotype mapping process. The result of these opera-

tions of crossover and mutation on the derivation tree (similar to those in tree-based

GGGP) can be reverse-mapped back to the underlying genotypic binary strings [26].

Since the genotype remains the binary (or integer) string representation, these new

operators may be readily combined with string-based operators, giving the best of

both worlds in terms of available operators, though at the cost of losing some of the

analytical understanding deriving from GA theory.

4 Alternative Grammar Representations

A number of alternative grammar-based representations have been used, in addition

to those using Context Free Grammars. Most either extend the class of grammars into

the domain of Context Sensitive Grammars, or incorporate semantic knowledge into

the grammar representation, or both.

4.1 Semantic Grammars

Hussain and Brown [37] noted that their NGAGE system for developmental generation

of neural networks could also be used as a representation for general Genetic Program-

ming, though it is not clear that they ever applied the system in this way. Vanyi and

10

Zvada [100] implemented an attribute-grammar system to augment context-free GGGP.

Their emphasis lay in the use of attributes to cache information required for evolution-

ary and evaluation operators, and thus speed up those operators; it does not appear

that the system was ever used to incorporate problem-specific semantic information,

or otherwise extended beyond CFG problem domains.

Bruhn and Geyer-Schulz [7] used CFGs with linear constraints for their represen-

tation; the constraints are a form of semantic attribute, making this the first use of

attribute grammars to handle semantic information.

De la Cruz et al. [14] further considered evolution based on attribute grammars,

considering semantic restrictions in the context of a symbolic regression problem, and

demonstrating search speed-up when semantic constraints were incorporated. Their

representation used a GE-like transformation of the attribute grammar search space.

Ortega et al [72] investigated Christiansen grammars [8], which have equivalent ex-

pressive power to attribute grammars, but provide a more condensed representation for

semantic constraints, and so may offer a cleaner search. They also use a GE-like lineari-

sation. They demonstrated improved convergence on some artificial Boolean problems,

though further clarification of the role of semantic constraint is needed. With Dal-

loum [2], they achieved good results on location allocation problems.

Cleary and O’Neill adopted attribute grammars with GE in their application to

knapsack problems [9]. The attribute grammars ensured that the constraints of the

problem domain were adhered to as the solutions were being generated during the

mapping process.

4.2 Logic Grammars

Wong and Leung based their system, LogenPro [108], on logic grammars (Definite

Clause Grammars – DCGs). These extend CFGs in two ways.

1. They support logical variables in grammar productions. Thus extended, DCGs

provide limited context sensitivity. This was used in [108] to limit a search space

of recursive solutions; any recursion the system generated could be guaranteed to

terminate.

2. They allow prolog predicates to be intermixed with grammar productions; these ad-

ditional predicates can incorporate semantic information, and thus give expressive

power similar to (though in general greater than) attribute grammars. Wong and

Leung used them in [108] to incorporate the semantics of Automatically Defined

Functions (ADFs) into LogenPro.

In principle, they also permit the incorporation of semantic domain knowledge

into LogenPro, though we are not aware of specific instances where this has been

used. Consider, for example, the dimensionally-aware GP applications of Ratle and

Sebag [77]; to incorporate the dimensional knowledge into their system, Ratle and

Sebag pre-process the domain knowledge into a huge CFG. This knowledge can be

very succinctly expressed in a DCG (see section 8 for details).

Ross [83] further extended this work, replacing DCGs with Definite Clause Trans-

lation Grammars, in which the semantics of the grammar are defined in a parallel

structure to the syntax. This offers a key advantage in re-usability: the bulk of the

problem semantics is written as annotations to the grammar, so the separate code to

implement a fitness function is typically small - often less than ten lines of prolog.

11

Re-targeting to a new domain may involve very little effort – writing a grammar for

the domain, together with semantic annotations.

Keijzer et al. [44] combined logic grammars with Grammatical Evolution in their

ALP (Adaptive Logic Programming) system. ALP modifies a standard logic program-

ming engine with an evolutionary-driven search engine.

4.3 Tree Adjoining Grammar Representation

The grammar representations previously mentioned are all closely related to the Chom-

sky grammars of the 1950s. The differences between them relate essentially to the

sub-class of formal languages that they can represent, and the means by which they

may incorporate semantic constraints. However another form of representation, Tree

Adjoining Grammars (TAGs), has become increasingly important in Natural Language

Processing (NLP) since its introduction in the 1970s by Joshi et al. [40]. The aim of

TAG representation is to more directly represent the structure of natural languages

than is possible in Chomsky languages, and in particular, to represent the process by

which natural language sentences can be built up from a relatively small set of basic

linguistic units by inclusion of insertable sub-structures. Thus ’The cat sat on the mat’

becomes ’The big black cat sat lazily on the comfortable mat which it had comman-

deered’ by insertion of the elements ’big’, ’black’, ’lazily’, ’comfortable’, ’which it had

commandeered’. In CFG representation, the relationship between these two sentences

can only be discerned by detailed analysis of their derivation trees; in TAG representa-

tion, the derivation tree of the latter simply extends the frontier of the former. To put

it another way, the edit distance between the derivation trees of these closely related

sentences is much smaller in TAG representation than in CFG representation.

The valuable properties which TAG representation introduces into NLP are ar-

guably also of value in GP; in a series of papers, Nguyen has introduced two TAG-based

GGGP systems, using both linear [33], and tree-structured [34] TAG representation.

4.4 Other Extensions of GP using Grammars

The typical grammar-based GP model is readily extended to test new GP ideas. For

example, Wong and Leung [107] showed how logic grammars could readily emulate

Automatically Defined Functions. McKay [54] used Ross’ similar system to investigate

partial function evaluation in GP. But Chomsky grammars are not the only source

of such progress. Nguyen et al. [60] used TAGs to investigate biologically inspired

operators in GP. McKay et al. [55] extended this to investigate the interaction between

evolution, development and lifetime evaluation, applying evolutionary developmental

systems in a form of layered learning.

In all these cases – and many others – the work could have used another GP

formalism. The grammar simply made it easy to encode the extension, where other

forms of GP would have required major re-coding to implement the same extension.

5 Alternative Population-based Stochastic Search Algorithms

GGGP is, in essence, a class of population-based stochastic search strategies (evolu-

tionary algorithms) applied to a class of representations (grammar-based). Just as we

12

may try different representations, as described in sections 2 to 4, so we may also try a

range of search strategies. We outline some of these experiments.

5.1 Probabilistic Model-Building Algorithms

Of the various alternative search strategies, by far the largest research effort to data has

focused on algorithms that build a probabilistic model of the search space, then sample

from that model to generate individuals to test for fitness. The fittest models are then

used to update the probabilistic model. Algorithms falling into this class are known

under a wide range of names, the most popular being ”Estimation of Distribution

Algorithms” (EDA) and ”Ant Colony Algorithms” (ACO).3 For detailed background

in this area, and a survey of publications up to 2005, we refer the interested reader to

Shan et al [89]. For the sake of convenience, we refer to the general field as EDA-GP.

Whigham [103] built what would today be seen as a hybrid GP/EDA-GP system.

It used a stochastic CFG, in which the success of individuals gradually biased the

probabilities of productions, although the search still used mutation and crossover

operators as well. At the time, PBIL [3], the first EDA, had only just been published,

so the connection was not recognised. Tanev [95] used a similar strategy, based on

stochastic CSGs, to handle change in a dynamic GP system.

Ratle and Sebag [78,80] introduced SG-GP, the first pure grammar-based EDA-

GP system, using CFGs; it was quickly followed by two others (both described as ant

systems). Abbass et al [1,88] introduced Ant-TAG, which used tree adjoining grammars

(TAG). Generalised Ant Programming (GAP) [42] used a stochastic CFG in a similar

way.

All these systems used simple probability structures, in which only the probability

tables are learnt, the grammar structure is not updated. This creates a dilemma. Too

simple an initial grammar may make the problem impossible to solve; either because it

does not represent important dependencies in the solution, so that it cannot converge

to a state that generates the solution with high probability; or because it represents

the wrong dependencies, so that the solution cannot be generated at all. On the other

hand, a complex initial grammar leads to a tough parameter learning problem – the

algorithm may converge too slowly to be useful.

Thus many of the more recent systems incorporate some form of grammar learning.

Program Evolution with Explicit Learning (PEEL) [90] inferred both grammar struc-

ture and probabilities, though in a very limited way. Bosman and de Jong [5] introduced

a system with similar structure-learning capabilities. Both use simple heuristics to up-

date the grammar.

Grammar Model-based Program Evolution (GMPE) [91] takes a more systematic

approach, using grammar learning methods from Natural Language Processing (NLP)

to learn CFG structure. Hasegawa and Iba’s PAGE (Programming with Annotated

Grammar Estimation) [28] also use NLP methods, but in this case to learn grammars

with latent annotations – a form of semantic grammar.

Research in these areas has been relatively successful, with authors demonstrating

substantial improvements over evolutionary algorithms in terms of the number of fit-

ness evaluations required to find a solution. However the computational complexity of

3 While there may be substantial differences between EDA and ACO in general, in their
application to GP search spaces, the differences have been largely a matter of terminology.

13

the learning algorithms involved – especially in the more complex structure-learning

algorithms – means that the running time of these algorithms are often long compared

to a GP system. In the current state of the art, they are thus best-suited to problem

domains with very expensive fitness evaluation, or in machine learning, to problems

where the primary constraint is data availability rather than computation time.

5.2 Evolutionary Developmental Systems

EDS have seen an explosion of growth in the last few years. In biology, Lindenmayer

systems (a form of CFG) remain the almost universal mechanism for abstractly repre-

senting developmental processes, and have been widely used also in artificial EDS. In

artificial chemistry, bracketed grammars (a restricted form of CFG) have been used to

generate and control the evolution of artifical chemicals as form of functions [18].

In a different direction, McKay et al. [55] combined evolutionary/developmental

search and layered learning in an algorithm (DTAG3P) that was successful on some

difficult problems. However the integration of layered learning in this system means that

its performance is not directly comparable with that of GP and other similar systems.

This may be viewed either as a disadvantage (DTAG3P requires more information than

standard GP) or as an advantage (DTAG3P is able to use this additional structured

information when it is available, whereas GP is not).

5.3 Other Search Strategies

The linear representation of Grammatical Evolution lends itself to ready adoption of

search strategies from combinatorial optimisation. A wide range have been tried, with

mixed success. O’Sullivan and Ryan [73] compared simulated annealing, hill climbing,

and random and genetic search; genetic search performed substantially better overall,

suggesting that its trade-off of exploration and exploitation is far better suited to GP

search spaces than either the highly exploitative methods of simulated annealing and

hill climbing, or the pure exploration of random search. O’Neill and Brabazon [63]

didn’t fare much better with differential evolution, though the performance of particle

swarm algorithms [64] was closer to that of evolutionary algorithms. Taken together,

though, these results suggest that it is not easy to improve on the performance of

evolutionary search for the problem spaces that arise in grammar-based GP.

5.4 Meta-Evolution

Hyperheuristics is now an important sub-area of evolutionary computing. It has re-

ceived limited attention in GP, but three of the systems described here may be seen

as learning hyperheuristics. Meta-GE uses a meta-grammar [69], which learns a gram-

mar to describe solutions to an optimisation problem. GMPE [91] not only learns

solutions to a problem, but also learns a grammar describing the solution space. Sim-

ilarly, DTAG3P learns a grammar controlling the development of a series of solutions

to problems of different sizes. All three systems exhibit an important characteristic:

unlike most learning algorithms (which learn a solution to a specific problem), they

learn a general method, allowing them to rapidly generate solutions to a new problem.

14

6 Applications

Grammatical approaches to GP have yielded a large and varied range of real-world

applications. We present some highlights, in an eclectic mix from Ecological Modelling

and Medicine to Finance and Design.

Evolutionary computation has demonstrated huge potential in design, creating so-

lutions competing with, or even improving, those of human experts, and resulting

in patentable inventions [50]. Coupling an evolutionary algorithm to a grammar rep-

resentation is a particularly powerful departure for evolutionary design [36], with a

wide range of applications including Architecture [31], Circuits [52,41] and Neural

Networks [24]. They feature a variety grammars, including variants of Lindenmayer

systems [31], Graph Grammars [17], and Shape Grammars [21,71].

Wong and Leung [109] demonstrated the flexibility of their LogenPro engine on two

medical datasets, mining production rules describing fracture admissions into a Hong

Kong hospital, and diagnostic rules concerning scoliosis (curvature of the spine).

Computational finance presents significant real-world challenges to machine learn-

ing, arising from complexity, noise and constant change. Grammatical GP methods

have proven particularly successful in financial modelling. For example, Brabazon and

O’Neill have applied GE to develop rules for trading systems, and in more traditional

classification problems such as credit rating or predicting corporate failure [6]. Tsakonas

et al [98] applied neural logic networks created by grammar-guided GP to bankruptcy

prediction.

Ecological modelling uses spatial, temporal and spatio-temporal models, at a va-

riety of scales. They are often expressed as partial differential or difference equations,

symbolic rules, process models or finite-state machines. Early examples exploiting the

language bias of GGGP modelled species distribution spatially [105,56] and spatio-

temporally [93]. Other work has modelled the time-series rainfall-runoff relationship

for a number of catchments [106]. More recently, methods incorporating difference

equations and the evolution of an equation component (such as the grazing term of a

phytoplankton model) have been demonstrated [101]. These methods have been used

to explore the quality of interpolated ecological time-series data [57].

Further illustrating the diversity of application, grammatical forms of GP have

been applied in Bioinformatics (e.g., evolving regular expressions [49]), Software Cost

Estimation [92], Robot Control [96], Music [15,10], Logic Programming [44], fuzzy

control [74] and solving differential equations [99].

7 The Role of Grammar-Based GP

Grammars bring a number of benefits to GP. Undoubtedly the most important is a

flexible means of search space restriction. Right from the early days of GP, Koza [47]

emphasised the importance of closure: that every individual that could be created

by the genetic operations must be capable of evaluation if expensive repair strategies

are to be avoided. That is, the semantic restrictions of the search space must map

onto syntactic restrictions. Of course, the simplest way to ensure this is to have no

semantic restrictions: to guarantee that every feasible combinations of symbols can be

interpreted. This was the original, and still a common, solution. But it is burdensome. It

means that semantics must be provided for syntactic combinations such as 1+FALSE.

15

This is generally manageable for relatively simple problems, but it can rapidly become

unwieldy.

One option – commonly used in other areas of evolutionary computation – uses

repair operators. Uninterpretable combinations are repaired so they can be evaluated.

This works well for simple restrictions, but has rarely been attempted in GP, probably

because of its complexity. One notable exception, partially grammar-based, is the linear

GP of Keller & Banzhaf [46], which adopted a repair strategy to ensure the syntactic

correctness of the programs generated by the system.

The alternative, providing a flexible mechanism to impose restrictions on the search

space, was rapidly adopted – first, in the form of Strongly Typed Genetic Programming

(STGP) [59], and subsequently and more flexibly in a widening range of grammar

representations. The genetic operators only need to be designed consistently with the

syntactic requirements, so closure can be guaranteed without a need for repair. The

complexity of possible restrictions depends on the form of grammar. For many problem

domains, CFGs are sufficient. For example, CFGs are commonly used to define typing

restrictions on languages – i.e. they implement STGP. However they are also used to

represent more complex restrictions. One common use is through a form of incremental

learning, where users gradually modify their grammars (typically via specialisation) as

they increase their understanding of the problem domain.

We illustrate the value of this approach, encoding domain knowledge to reduce the

search space to a feasible complexity, through an example, based on Ratle and Sebag’s

work on dimensionally-correct GP [79]. They use an idea from physics – that valid

physical formulas must be dimensionally correct – to vastly prune the search space.

They do so by imposing dimensional correctness through grammatical restrictions.4

Ratle and Sebag learnt complex physical formulate such as

u(t) =
F

K
(1 − e

−

Kt
C2) (1)

u(t) =
F

K1

+
Ft

C1

+
F

K2

(1 − e
−

Kt
C2) (2)

However we will illustrate with an example based on the well-known Ideal Gas Law,

which we hope will be familiar to our readers, in the form

P =
RT

V
(3)

We can imagine a situation (in fact, fairly much that faced by the originators of

these laws [20]), where a number of experiments have been conducted measuring the

pressure, volume and temperature of a given amount of gas, and the data is available

in tabular form. We might wish to find the form of an equation that would predict the

pressure of the gas, given the temperature and volume - i.e. a formula such as equa-

tion 3. Today, we could just apply GP. In fact, almost any form of GP would work for

equation 3, but for most there is little prospect of success with more complex formulae

such as equations 1 and 2. However we might recognise that evolving in the space of

general expressions is unnecessary, and that any physically realistic equation could be

constructed as a sum of terms formed from multiplication, division and exponentiation.

This could be readily expressed by a context-free grammar such as in table 3.1

4 While the ideas here are due to Ratle and Sebag, we use an equivalent representation closer
to the logic grammars of Wong and Leung.

16

Table 3 Context Free Grammar for Ideal Gas Law

Exp → Trm Trm → Trm Mul Trm Add → ”+” |”-”
Exp → Trm Add Trm Trm → Var Mul → ”*” |”/”

Trm → Const Var → ”T” |”V”

Table 4 Logic Grammar for Ideal Gas Law

Exp(d) → Trm(d) Trm(d1 ⊕ d2) → Trm(d1) Mul Trm(d2)
Exp(d) → Trm(d) Add Trm(d) Trm(d) → Var(d)

Trm(0) → Const

Add → ”+” |”-” Mul → ”*” |”/”
Var(1,2,-2) → ”T” Var(0,2,0) → ”V”

Of course, in this case we also need a mechanism to deal with the generation

of constants from the Const nonterminal: any mechanisms that might be used in a

standard GP may also be used here.

Again, this grammar readily finds the Ideal Gas Law; but as before, this restriction

is inadequate to solve Ratle and Sebag’s examples. But one may apply more semantic

knowledge about physics: that valid formulae must be dimensionally correct. Since P –

i.e. force per unit area – has dimensionality mst−2∗s−2 = ms−1t−2, we may infer that

the right hand side has the same dimensionality. V – the volume – has dimensionality

s3, and T – the temperature – dimensionality ms2t−2. This imposes a very strong

semantic restriction. It can’t be converted in a general way to an equivalent context-

free restriction, but it is readily represented in a context sensitive language such as the

logic grammar shown in table 4.1 We represent the dimensionality of an expression by

a vector d = (m, s, t), where each of m, s, t is the dimensionality of the corresponding

physical quantity; ⊕ represents vector addition. This grammar would be called with

the nonterminal Exp(1,-1,-2), representing an expression restricted to dimensionality

ms2t−2. With restrictions such as these,5 Ratle and Sebag were able to solve problems

such as equations 1 and 2 – problems which are far into the infeasible region for

knowledge-free applications of GP.

It is worth pointing out the simplicity and generality of this solution, requiring only

nine lines of very simple grammar productions. Note that, once coded, this grammar

may be used to impose a similar dimensional constraint on any other physical problem;

only the nonterminal with which it is called – here exp(1,-1,-2) – needs to be changed

for a different problem. To impose a similar restriction in a non-grammar GP system

would require many pages of complex code – if it could be written at all.

The most similar work we are aware of, using a non-grammar GP, is the series of

papers of Rodriguez-Vazquez and Fleming, culminating in [82], where they evolve a

model from a class known as ”rational models”, i.e. of the form shown in equation 4

y(k) =

∑num

i=1
Pni(k)θni

∑
den

j=1
Pdj

(k)θdj

(4)

where each Pm is itself a polynomial of degree m in the arguments. This constraint,

while much less complex than the dimensional constraint of Ratle and Sebag, must

5 Actually, Ratle and Sebag also impose reasonable bounds on the allowable dimensionality
of sub-expressions – also readily expressible in logic grammars – but these are distractions to
our illustrative purposes here.

17

have required substantial coding, and at the time was seen as an important part of

the contribution of these papers. An equivalent grammar requires only a few lines of

productions, as seen in table 2.

It is important to note the user perspective here. The only additional complexity

in using GGGP for these problems is the requirement to provide the grammar. The

semantic interpretation of the symbols is provided in the same way as in a standard GP

system (in the case of Ross’ DCTG-GP, it is substantially simpler than for a standard

GP system).

8 Characteristics, Assumptions and Limitations of Grammars in

Evolutionary Computation

The important place of grammars in modern Evolutionary Computation suggests that

grammars bring some valuable advantages; however there are also associated costs.

Here, we delineate these benefits and costs, and the assumptions that underly the

marriage of grammars and evolutionary computation methods.

8.1 Characteristics of Grammar Systems in Evolutionary Computation

We consider, first, the use of grammars as representation languages for GP in general,

looking at their general characteristics; then we look more specifically at the charac-

teristics of specific grammar representations.

8.1.1 General Characteristics: Grammar as GP Representation

1. Declarative Search Space Restriction

Perhaps the most obvious consequence of using grammars in GP is the ability it

provides to restrict the search space. This has been the primary justification for

the use of GGGP almost from the start. The main benefit of restricting the search

space is to reduce the search cost to the minimum necessary to find a solution, but

it comes with the concomitant risk that the solution may not be within the search

space defined by the grammar, or perhaps more insidious, that the solution may

be isolated by the grammar constraints and may be difficult to reach.

One common use in GP has been to impose type restrictions; when used in this

way, it is equivalent to Strongly Typed Genetic Programming (STGP) [59].

Another common use is to exclude solutions of a particular form - for some prob-

lems, solutions of particular forms may have high fitness but low usefulness, so the

simplest way to ensure that they do not confuse the search is to exclude them from

the search space entirely.

In most GGGP systems, the grammar is one of the inputs to the system - provided

in Backus-Naur Form or a similar formalism. Thus the search space is readily

altered, simply by changing the grammar used. A common mode of operation with

GGGP systems is to start with a very general grammar, and then to iteratively

refine the grammar to narrow the search space as the results of earlier searches

are obtained. This interactive style of use permits the user to influence the search

process to a greater degree than is possible with many other forms of GP.

18

While narrowing of the search space – i.e. controlling the language bias – is the

commonest mode of operation for these purposes, it is worth noting that the same

search space (language) may be defined by a number of different grammars. Hence

it also possible to change the search space structure – its connectivity and overall

fitness landscape – without changing the space itself. Thus it is possible to use

change of grammar to alter the search bias, not only the language bias.

2. Problem Structure

A number of GP problem domains are themselves directly grammar-related. For

example, protein motifs are essentially regular expressions delineating (with some

level of reliability) a family of proteins. It is not surprising that grammar-based GP

systems have figured prominently in motif discovery research.

3. Homologous Operators

To the extent that a grammar reflects the semantic structure of the domain, the

homologous operators provided by GGGP replace one component of a solution with

another having similar function. This homology reduces the likelihood of generating

semantically meaningless code segments, and hence improves search.

4. Flexible Extension

Many proposed extensions to GP can be readily implemented as grammar con-

straints. Practically, this makes GGGP systems powerful research tools for studying

GP mechanisms, since proposed innovations can often be simply incorporated in a

grammar and tested, where adding the same innovation to a classical GP system

might require extensive recoding.

These advantages of grammar-based approaches carry with them some disadvan-

tages, which we discuss below.

1. Feasibility Constraints

As with standard GP, grammar guided genetic programming is still far from resem-

bling GA in its representational flexibility, despite some significant efforts in this

direction. In tree-based GGGP systems using Chomsky grammars, it is even more

difficult than in GP to design new operators, especially those making small local

changes to the genotype. In these systems, any new operator has to meet not only

the general requirements of tree consistency, but also any additional constraints

imposed by the grammar. Thus subtree mutation and subtree crossover remain

largely unchallenged in these areas.

Some more recent representations alleviate this problem. TAG-based GP systems

are an exception in this area (because of reduced constraint on allowable operators),

and a wide range of new operators have been defined for them. This is also the case

for linear GGGP systems (including, we believe, the recent extensions of GE) – it

is easy to design new operators, including local operators, in the genotype space.

2. Repair Mechanisms

When the genetic operators generate infeasible individuals, there are a number of

possible options. Simply discarding the infeasible solutions is an acceptable ap-

proach if the level of infeasibility is low, or the cost of generating new individuals

is small compared to the evaluation cost. However this isn’t always the case in

GP. A better alternative is repair; this is the method adopted in some versions of

GE. It carries with it the potential risk of reducing the homology of crossover and

mutation.

19

In Chomsky-grammar tree-based systems, repair may be very difficult, and we are

not aware of any systems using it. Repair is generally avoided by guaranteeing

feasibility by severely restricting the genetic operators.

TAG grammar systems avoid the problem in another way: feasibility is relatively

easy to guarantee without much restriction on the GP operators, so repair is un-

necessary.

3. Limited Flexibility

While GGGP systems are very useful for exploring new ideas when they can be

incorporated into a grammar, the situation may sometimes be reversed when the

extension is too complex to be encoded in this way. Then, it may be necessary to

build the extension, not only into the underlying system, but also into any grammar

that uses the extension.

4. Turing Incompleteness

The Turing completeness of a GGGP system depends upon the semantics of the

grammar used, so that GGGP may deal with both Turing-complete and Turing-

incomplete problems. Because of their general-purpose orientation, GGGP systems

typically do not intrinsically offer any additional support for specific computational

paradigms (recursion, iteration etc) such as is provided in some other GP systems.

In a sense, this is just an instance of the preceding point.

8.1.2 Characteristics of Specific Grammar Representations

1. Incorporating Semantics

A number of GGGP systems – Ross’ DCTG-based system [83] and attribute-

grammar systems [38,110] – incorporate semantics along with the syntax of the

grammar. As a result, these systems are highly retargetable. Applying them to a

new problem requires only specification of the new grammar and semantics, and

definition of the fitness function. Since the semantics may incorporate much of the

complexity of the fitness function, and the latter is the only component requiring

programming, the programming cost of targetting a new problem is generally small

- in the case of DCTG-GP, quite typically ten or twenty lines of code. In incre-

mental learning, where the grammar and semantics may be altered by the user to

guide search, it is often the case that no re-programming is required at all.

2. Operators

As discussed above, defining new operators – including local search operators and

biologically motivated operators – is extremely difficult in Chomsky-grammar tree

GGGP systems because of the constrained search space, so most tree-based GGGP

systems rely solely on subtree mutation and crossover. The linearization transfor-

mation of GE and like systems makes it easy to define such new operators, and

to control their effect in the genotype space, but the relatively uncontrolled re-

scaling resulting from the linearization transformation means that the effects in

the phenotype space may be very different. The importance of this effect varies

from grammar to grammar.

One of the key advantages claimed for TAG-based grammar systems [34] is the ease

with which new operators may be defined. This, combined with the lack of disrup-

tion of the genotype-phenotype transformation, means that many of the advantages

of the GA representation can be recaptured for GP.

3. Long-Distance Dependencies

One of the key benefits of grammar-based GP is the homology of the operators,

20

which can be viewed as providing less disruptive, and more meaningful, transfor-

mation of building blocks. In standard GGGP, the building blocks are connected

sub-graphs of the derivation tree. While connectedness is clearly an important as-

pect of building blocks, it is arguable that many of the important structures in

human-generated programs are not locally connected, and require long-distance

dependencies just like those in natural language. The TAG transformation permits

local dependencies in the genotype space (ie the TAG derivation tree) to map to

long-distance dependencies in the intermediate phenotype space (CFG derivation

trees) in a controlled way, corresponding to the structure of the grammar. For exam-

ple, in TAG representation, the number dependence between ’cat’ and ’sits’ in ’The

cat which has just had a very filling lunch sits on the mat’ is a local dependence,

whereas it is long-distance in the corresponding CFG representation.

4. Solution Models

Grammars can define not only the very general search spaces required to describe

the problem domain, but also more restricted spaces, even down to a single solution.

Hence grammars, in common with some other representations, provide a mechanism

to delineate the gradually narrowing set of potential solutions. However grammars

were specifically designed as a way to represent constrained contextual relationships

within families of trees, so it is not surprising that they have shown strengths in this

area, providing the ability to incrementally learn the structure of problem solution

spaces.

5. Opportunities for Search Space Transformation

Since the publication of the messy GA [23] search space transformation has been

a core area of GA research. Outside grammar-based GP, it appears to have been

less studied in the GP literature, perhaps because the constraints imposed by GP

tree structure limit the available transformations. On the other hand, a wide range

of transformations have been proposed for grammar-based representations, trans-

forming the grammar derivation trees to linear strings. They rely on the restrictions

imposed by the grammar rules, by imposing a numbering system on the productions

of the grammar. These transformations offer the advantages of a linear genotype –

ability to apply the wide range of tools and methods developed for GAs, and re-

duced constraint allowing much more flexible genetic operators. They also appear

to offer parsimony advantages, with less bloat than is observed in tree-based GP

systems.

However these advantages may come at a cost. For one thing, the operators may no

longer be homologous after the linearization transformations. An alteration early

in the genotype may change the interpretation of the subsequent genotype, so

that (depending on the grammar) the proportion of highly disruptive operators

may be higher than in the underlying tree-based representation; this in turn alters

the exploration/exploitation balance of the algorithm, increasing the exploratory

behaviour, potentially at the expense of fine-grained search later in the process.

8.2 Assumptions and Limitations

The underlying assumption of all evolutionary applications about the search space

include:

– That there is sufficient correlation between fitness and semantics, so that non-

random search is useful

21

– That there is sufficient correlation between distance in the genotype and phenotype

(semantic) spaces that evolutionary search is able to take advantage of the first

correlation

– That these relationships are nevertheless sufficiently uneven (that is, the fitness

landscape is sufficiently rough) that deterministic search methods do not perform

well

Of course, these assumptions carry over to grammar-related applications: grammar-

based GP systems will only perform well if the languages to be learnt satisfy these

requirements.

Grammar-based GP systems impose further assumptions: since all known to us rely

on expression-tree semantics (i.e. the same representation as standard GP) for fitness

evaluation, they incorporate the assumption that the mapping between grammar space

and expression trees also generates a correlation between the distance metrics. Since

this mapping depends not only on the representation, but also on the specific grammar,

there is considerable room for variation: one method may perform better than another

with a specific grammar, yet may perform worse for the same problem if the grammar

is changed, even if the language defined by the grammar remains fixed.

A concern is sometimes expressed, that grammar-based GP is weaker than GP, in

that it can only be used for problems that can be represented by a grammar. This

is almost entirely a misconception: grammar-guided GP is a direct generalisation of

expression-tree GP; as Whigham showed [104], for any expression tree domain, there is

a grammar in which crossover and mutation directly map to those in the expression-tree

representation, so that the course of evolution in each will be identical. Only minute dif-

ferences remain: the grammar-based and expression tree initialisations may be slightly

different (though it would not be difficult to build an exact replica of expression tree

representation); and for fitness functions defined directly on the expression-tree shape

(usually, GP test problems rather than real problems), it is slightly more complex to

define the fitness function.

The ability to encode knowledge about the problem remains one of the strongest

justifications for the use of grammar-based GP. Perhaps the clearest demonstration

of this remains Ratle and Sebag’s work described in section 7, in which the grammar

constraint reduces the search space size by many orders of magnitude, turning a clearly

infeasible problem into a feasible one. It is worth emphasising that this is not merely

a matter of computational complexity, but also of data complexity. The grammar

constraint not only reduces the search space size, it also reduces the VC dimensionality

of the corresponding solution. Without the constraints imposed by the grammar, even

if a search algorithm such as standard GP were able to find a solution of the complexity

found by Ratle and Sebag’s system, it would not be justified in accepting it: the data

size required to justify acceptance of a formula of such complexity would be simply

astronomical, without the grammar constraints.

Thus the representational strength of the language is important: most GGGP sys-

tems can accept at least context-free grammar languages; this is enough to encode a

great deal of meta-knowledge about the solution space. Nevertheless, there remains

an important place for representation languages (such as TAG and logic grammars)

which can extend into the context-sensitive domain, and others (such as DCTG and

attribute grammars) which can encode semantic knowledge. There is, as yet, no general

consensus on the appropriate language power for real-world problems.

22

However this ability to reduce the search space through syntactic (and/or seman-

tic) constraints comes with some concomitant risk. There is the obvious risk that the

constraints may render the solution inaccessible: if the grammar is wrongly chosen, the

solution may not even lie within the search space defined by the grammar. But there

are more subtle risks as well. The constrained nature of the search space can render

search more difficult. The grammar space is generally sparser than the corresponding

expression-tree search space. Thus neighbourhoods may be sparser, and they may be

less connected (that is, not only may there be fewer nodes in the search graph, but

there may be proportionately even fewer links). Thus reachability of the solution may

be an issue. This has already been shown by Daida [12] to be an important issue in

expression-tree GP. While it has been little explored in grammar-based GP, it seems

clear that the same issue can arise, but to an even greater degree, in grammar-based

GP systems.

Two approaches perhaps alleviate this: linear and TAG-based grammar methods

can claim some greater degree of connectivity. There has been some investigation [34,

84], but further study of these representational issues is clearly desirable.

9 Future Directions

There is an expectation of review papers, that they will point the way to the future

and outline what research directions will be important. These predictions are almost

guaranteed to be wrong. The most important contributions of the future will be the

innovative ideas that no-one foresees today. Thus cautioned, we here outline our vision

of the medium-term future of grammar-based GP – say five to ten years.

Of course, we anticipate that grammar-based GP will share in much of the general

future of the GP field. Progress in general understanding of GP behaviour, and advances

in GP technology, will generally translate directly into grammar-based GP (just as they

have in the past). Since others are addressing these issues elsewhere in this volume,

we concentrate on those aspects which are specific to grammar-based GP. In our view,

they fall into three main areas: problem representation, algorithms and applications.

9.1 Grammars and Problem Representation

Research on different kinds of grammar will undoubtedly be important. We have al-

ready seen the basic CFG model extended to various CSGs; to stochastic grammars;

and to a variety of semantic grammars. We don’t expect this process to stop, and we

do anticipate that some of these new grammars will have important properties for GP.

Having chosen a grammar, one may represent its parse trees in various ways, either

directly, or in a linearised form as in GE. We expect that alternative transformations

for CFGs will continue to be explored, while transformations and linearisations for

CSGs and semantic grammars are wide open for research.

Incorporating problem semantics into search is currently an active area of research

in GP – both in representation of prior semantic knowledge, and incorporating that

representation into the definition of the problem space, and in semantically-aware op-

erators that either incorporate prior knowledge or that adapt to the semantics of the

problem space as it is explored. In all of these areas, grammar representations offer

23

the opportunity to directly represent the semantics, and to tie it to the syntax of the

problem domain. We expect grammar-based GP to figure solidly in work in these areas.

There has been limited work so far on the fitness landscapes of various GGGP

representations. We expect work in this area to expand substantially. In GGGP, it is a

relatively trivial matter to rapidly change the problem representation; while there is a

lot of practical experience in choosing grammars that work well, it would be desirable

to have a much better theoretical understanding of the fitness-landscape effects of

changing grammar representation.

Grammar representations entail a complex genotype-phenotype mapping; its con-

tinuity (causality) is important to the effectiveness of GP – a discontinuous mapping

may represent a smooth phenotype landscape by a rough genotype landscape. There

is plenty of room for increased understanding in this area to supplement the limited

existing work, and to inform our choice of grammar representations and operators.

GGGP users typically experiment with grammar representations to find the most

appropriate one for the problem domain. While experienced practitioners of each rep-

resentation form have some tacit understanding of how to choose grammars, there is

little explicit knowledge. More explicit knowledge may lead to more structured method-

ologies (and interactive software support) to incrementally find good representations

for new problem domains, and even to partial or complete automation of the process.

GGGP has seen only limited application to Turing-complete problem domains. In

some ways, this is surprising. A key difficulty in these domains is the need to evolve

two interlinked structures in parallel – in recursion, the epistasis between recursion and

termination steps; in iteration, epistasis between increment and termination condition.

Such dependencies are also common in human languages (for example, number- or

gender-agreement in English), so many context-sensitive grammars provide mechanisms

to support them, representing the common aspect by a single value. But this potential

has seen only limited exploration so far.

9.2 Alternative Population-based Stochastic Algorithms

The wider field of evolutionary algorithms has seen a huge increase in alternatives

to the classical evolutionary algorithms in the past decade. This ferment is gradually

spilling over into GP, with a range of non-classical algorithms being proposed. One

key reason is the same as for GA: a desire to handle local and non-local dependencies

between different components of the genome. Grammars offer substantial advantages.

Non-local dependencies in an expression tree representation may become local in a

suitably chosen grammar. Thus we expect GGGP to be relatively more important in

application of non-classical algorithms than in the overall field of GP. We have already

seen this in EDA-GP, where grammar models now form the bulk of new work. We

anticipate a substantial flowering of work on application of other search strategies to

grammar models.

9.2.1 Evolutionary Developmental Systems

We anticipate that grammar-based systems will increase in importance in EDS. This

is particularly likely to manifest itself in evolution of semantic grammars to control

development. A key issue in biological development, largely unrealised in current EDS,

is the interaction of the developmental process with the environment. This is important

24

both for exogenous influence on development (e.g. the sex-determination of crocodile

embryos by temperature) and for feedback mechanisms outside the control of genetics

(e.g. the feedback-tuned co-development of lens and eye shape in higher animals). We

believe semantic grammars have a role to play in this. A second potential area of

application lies in the area of artificial chemistry, in extending the work of [18] to make

use of more complex grammars, in particular stochastic grammars.

9.3 Applications

9.3.1 Real-world Applications

While GGGP methods have been widely applied by practitioners and experts in the

field they are little-known in the wider domains of engineering and science. There is

thus a need to make these methods better known outside the relatively small GGGP

community. One important factor is the required level of user knowledge. GAs have be-

come widely known because they are so easy to implement, and require little knowledge

to use reasonably competently. GP has had more limited exposure, perhaps because of

the general need to program a fitness function – but some applications, such as sym-

bolic regression, can be used off-the-shelf, and in any case programming to this level

is becoming a fairly widely-distributed skill, so that GP applications by non-experts

are becoming more common. GGGP use, on the other hand, requires some familiarity

with writing grammars. While this skill is widespread among computer scientists and

linguists, it is not so common in other areas. Thus interactive mechanisms to support

grammar development may be necessary if GGGP is to reach its full potential audience.

Grammars offer particular advantages for design problems, because they can di-

rectly represent many of the design constraints. We expect to see substantial work in

this area, both in learning solutions to problem spaces described by grammars (i.e.

continuing past directions), and in learning the grammars themselves (i.e. learning to

describe particular classes of solutions).

9.3.2 Dynamic Environments

Dynamic optimisation is currently one of the hottest areas in evolutionary computation.

But optimisation problems aren’t the only problems that change. In many real-world

applications of GP, the objective also changes over time. Unlike optimisation problems,

however, GP problems may vary in both their parameterisation and in their structure.

Representations that can directly represent – and therefore explicitly change – the

problem structure may be useful here. So we anticipate a flowering of research on

GGGP application to dynamic problems. We also expect an important focus will lie in

methods to adapt the grammar as the problem changes.

10 Summary and Conclusions

Grammars offer many advantages in GP, resulting in their wide use. The most obvi-

ous lies in delineating the search space clearly, and avoiding unproductive search in

infeasible regions. Yet this may be only scratching the surface. Homologous crossover

and mutation seem important in supporting productive search, while grammar-based

25

methods are yielding fruit in understanding the relationship between genetic operators

and representations and in the traversal of different classes of fitness landscape. It also

seems clear that much future work is required to gain a better understanding of the

different effects of different grammar representations of the same problem domain. For

example, the many-to-one mapping provided by grammar genotype-phenotype map-

pings may contribute substantially to the success of GGGP systems, but at present

this relationship is not well understood. Grammar-based methods also offer important

advantages in research, because of the ease with which they may be tailored to explore

specific hypotheses.

A wide variety of grammar representations have been applied, using a number

of different search strategies, to a great array of problems. We have only scratched

the surface in this paper. We expect this to increase in the future, particularly if

more human-engineered systems, supporting the users in developing suitable problem

grammars, become available.

The field is still developing rapidly, with many important directions currently being

explored. Perhaps the key areas are in representation and in search. In representation,

there is important current work on alternative linearization transformations, and on

alternative grammar representations. In alternative search algorithms (especially EDA

and ant-based algorithms), grammar representations offer clear advantages, and as

a result grammar-based systems form one of the main threads. We look forward to

substantial further progress in these areas over the coming decade.

Acknowledgment

The authors thank Kwong Sak Leung, Man Leung Wong and Brian Ross for insightful

discussions that helped to form their perspectives on grammar-based GP. Thanks are

also due to the anonymous referees, who helped us to shape the discussion more com-

prehensibly. Seoul National University Institute for Computer Technology provided

some of the research facilities for this study, which was also supported by a Korea Re-

search Foundation Grant funded by the Korean Government (KRF-2008-313-D00943).

MO’N thanks Science Foundation Ireland for support under Grant No. 08\IN.1\I1868.

References

1. Abbass, H. A., Hoai, N. X., and McKay, R. I. AntTAG: A new method to com-
pose computer programs using colonies of ants. In The IEEE Congress on Evolutionary
Computation (2002), pp. 1654–1659.

2. abu Dalhoum, A. L., al Zoubi, M., de la Cruz, M., Ortega, A., and Alfonseca,

M. A genetic algorithm for solving the p-median problem. In 2005 European Simulation
and Modeling Conference (ESM2005) (Oporto, 2005).

3. Baluja, S. Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning, tech. report cmu-cs-94-163.
Tech. rep., Carnegie Mellon University, 1994.

4. Bohm, W., and Geyer-Schulz, A. Exact uniform initialization for genetic programming.
In Foundations of Genetic Algorithms IV (University of San Diego, CA, USA, 3–5 Aug.
1996), R. K. Belew and M. Vose, Eds., Morgan Kaufmann, pp. 379–407.

5. Bosman, P. A. N., and de Jong, E. D. Grammar transformations in an EDA for
genetic programming. In Special session: OBUPM - Optimization by Building and Using
Probabilistic Models, GECCO (Seattle, Washington, USA, June 2004).

6. Brabazon, A., and O’Neill, M. Biologically Inspired Algorithms for Financial Mod-
elling. Natural Computing Series. Springer, 2006.

26

7. Bruhn, P., and Geyer-Schulz, A. Genetic programming over context-free languages
with linear constraints for the knapsack problem: First results. Evolutionary Computation
10, 1 (Spring 2002), 51–74.

8. Christiansen, H. A survey of adaptable grammars. SIGPLAN Not. 25, 11 (1990),
35–44.

9. Cleary, R., and O’Neill, M. An attribute grammar decoder for the 01 multiconstrained
knapsack problem. In Evolutionary Computation in Combinatorial Optimization – Evo-
COP 2005 (Lausanne, Switzerland, 30 Mar.-1 Apr. 2005), G. R. Raidl and J. Gottlieb,
Eds., vol. 3448 of LNCS, Springer Verlag, pp. 34–45.

10. Costelloe, D., and Ryan, C. Towards models of user preferences in interactive musical
evolution. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and evo-
lutionary computation (London, 7-11 July 2007), D. Thierens, H.-G. Beyer, J. Bongard,
J. Branke, J. A. Clark, D. Cliff, C. B. Congdon, K. Deb, B. Doerr, T. Kovacs, S. Ku-
mar, J. F. Miller, J. Moore, F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O. Stanley,
T. Stutzle, R. A. Watson, and I. Wegener, Eds., vol. 2, ACM Press, pp. 2254–2254.

11. Cramer, N. L. A representation for the adaptive generation of simple sequential pro-
grams. In Proceedings of an International Conference on Genetic Algorithms and the
Applications (Carnegie-Mellon University, Pittsburgh, PA, USA, 24-26 July 1985), J. J.
Grefenstette, Ed., pp. 183–187.

12. Daida, J. M., Li, H., Tang, R., and Hilss, A. M. What makes a problem GP-hard?
validating a hypothesis of structural causes. In Genetic and Evolutionary Computation –
GECCO-2003 (Chicago, 12-16 July 2003), E. Cantú-Paz, J. A. Foster, K. Deb, D. Davis,
R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman,
J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska, and
J. Miller, Eds., vol. 2724 of LNCS, Springer-Verlag, pp. 1665–1677.

13. Dawkins, R. The blind watchmaker. Penguin Harmondsworth, 1991.
14. de la Cruz EcheandÃ-a, M., de la Puente, A. O., and Alfonseca, M. Attribute

grammar evolution. In Artificial Intelligence and Knowledge Engineering Applications: A
Bioinspired Approach (2005), vol. 3562 of Lecture Notes in Computer Science, Springer,
pp. 182–191.

15. de la Puente, A. O., Alfonso, R. S., and Moreno, M. A. Automatic composition
of music by means of grammatical evolution. In Proceedings of the 2002 conference on
APL (Madrid, Spain, 2002), ACM Press, pp. 148–155.

16. Dempsey, I., O’Neill, M., and Brabazon, A. Foundations in Grammatical Evolution
for Dynamic Environments. Springer, 2009.

17. Ehrig, H., Pfender, M., and Schneider, H. Graph-grammars: an algebraic approach.
In In Proceedings of IEEE Conference on Automata and Switching Theory (1973),
pp. 167–180.

18. Fontana, W. Algorithmic chemistry. In Artificial Life II (1991), C. Langton, C. Taylor,
J. Farmer, and S. Rasmussen, Eds., vol. 2, Addison-Wesley, pp. 159–209.

19. Freeman, J. J. A linear representation for gp using context free grammars. In Proceedings
of Genetic Programming 1998 (1998), Morgan Kaufmann, pp. 72–77.

20. Gay-Lussac, J. L. Recherches sur la dilatation des gaz et des vapeurs. Annales de
Chimie 63, 137 (1802).

21. Gero, J. Evolutionary learning of novel grammars for design improvement. AIEDAM
8, 2 (1994), 83–94.

22. Geyer-Schulz, A. Fuzzy Rule-based Expert Systems and Genetic Machine Learning,
2 ed., vol. 3 of Studies in Fuzziness. Physica Verlag, Heidelberg, Germany, 1996.

23. Goldberg, D., Korb, B., and Deb, K. Messy genetic algorithms: Motivation, analysis
and first results. Complex Systems 3 (1989), 493–530.

24. Gruau, F. Automatic Definition of Modular Neural Networks. Adaptive Behavior 3, 2
(1994), 151–183.

25. Gruau, F. On using syntactic constraints with genetic programming. In Advances
in Genetic Programming 2, P. J. Angeline and K. E. Kinnear, Jr., Eds. MIT Press,
Cambridge, MA, USA, 1996, ch. 19, pp. 377–394.

26. Harper, R., and Blair, A. A structure preserving crossover in grammatical evolution.
In Proceedings of the 2005 IEEE Congress on Evolutionary Computation (Edinburgh,
UK, 2-5 Sept. 2005), D. Corne, Z. Michalewicz, M. Dorigo, G. Eiben, D. Fogel, C. Fonseca,
G. Greenwood, T. K. Chen, G. Raidl, A. Zalzala, S. Lucas, B. Paechter, J. Willies, J. J. M.
Guervos, E. Eberbach, B. McKay, A. Channon, A. Tiwari, L. G. Volkert, D. Ashlock,
and M. Schoenauer, Eds., vol. 3, IEEE Press, pp. 2537–2544.

27

27. Harper, R., and Blair, A. Dynamically defined functions in grammatical evolution. In
Proceedings of the 2006 IEEE Congress on Evolutionary Computation (Vancouver, 6-21
July 2006), IEEE Press, pp. 9188–9188.

28. Hasegawa, Y., and Iba, H. Estimation of distribution algorithm based on probabilistic
grammar with latent annotations. Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on (25-28 Sept. 2007), 1043–1050.

29. Hemberg, E., Gilligan, C., O’Neill, M., and Brabazon, A. A grammatical genetic
programming approach to modularity in genetic programming. In In Proceedings of the
Tenth European Conference on Genetic Programming 2007 (Valencia, Spain, 11-13 April
2007), vol. LNCS, Springer.

30. Hemberg, M., and O’Reilly, U.-M. Extending grammatical evolution to evolve digital
surfaces with genr8. In Genetic Programming 7th European Conference, EuroGP 2004,
Proceedings (Coimbra, Portugal, 5-7 Apr. 2004), M. Keijzer, U.-M. O’Reilly, S. M. Lucas,
E. Costa, and T. Soule, Eds., vol. 3003 of LNCS, Springer-Verlag, pp. 299–308.

31. Hemberg, M., OReilly, U.-M., Menges, A., Jonas, K., da Costa Gonalves, M.,

and Fuchs, S. R. Genr8: Architects’ experience with an emergent design tool. In The
Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, J. Romero and
P. Machado, Eds. Springer Berlin Heidelberg, 2007, pp. 167–188.

32. Hicklin, J. Application of the genetic algorithm to automatic program generation. Mas-
ter’s thesis, University of Idaho, Moscow, ID, 1986.

33. Hoai, N. X. Solving the symbolic regression with tree-adjunct grammar guided genetic
programming: The preliminary results. In Australasia-Japan Workshop on Intelligent
and Evolutionary Systems (University of Otago, Dunedin, New Zealand, 19-21st Nov.
2001), N. Kasabov and P. Whigham, Eds.

34. Hoai, N. X., McKay, R. I. B., and Essam, D. Representation and structural difficulty
in genetic programming. IEEE Transactions on Evolutionary Computation 10, 2 (Apr.
2006), 157–166.

35. Holmes, P., and Barclay, P. J. Functional languages on linear chromosomes. In
Genetic Programming 1996: Proceedings of the First Annual Conference (Stanford Uni-
versity, CA, USA, 28–31 July 1996), J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L.
Riolo, Eds., MIT Press, p. 427.

36. Hornby, G. S. Functional scalability through generative representations: the evolution
of table designs. Environment and Planning B: Planning and Design 31, 4 (July 2004),
569–587.

37. Hussain, T. S., and Browse, R. A. Attribute grammars for genetic representations of
neural networks and syntactic constraints of genetic programming. In Workshop on Evo-
lutionary Computation. Held at the 12 Candadian Conference on Artificial Intelligence
(Vancouver, Canada, 17 June 1998).

38. Hussain, T. S., and Browse, R. A. Basic properties of attribute grammar encoding. In
Late Breaking Papers at the Genetic Programming 1998 Conference (University of Wis-
consin, Madison, Wisconsin, USA, 22-25 July 1998), J. R. Koza, Ed., Stanford University
Bookstore.

39. Johnson, C. M., and Feyock, S. A genetics-based technique for the automated ac-
quisition of expert system rule bases. In Proceedings of the IEEE/ACM International
Conference on Developing and Managing Expert System Programs (1991), IEEE Com-
puter Society Press, pp. 78–82.

40. Joshi, A., Levy, L., and Takahashi, M. Tree adjunct grammars. J. Comput. Syst. Sci.
10 (1975), 136–163.

41. Karpuzcu, U. R. Automatic verilog code generation through grammatical evolution.
In Genetic and Evolutionary Computation Conference (GECCO2005) workshop pro-
gram (Washington, D.C., USA, 25-29 June 2005), F. Rothlauf, M. Blowers, J. Branke,
S. Cagnoni, I. I. Garibay, O. Garibay, J. Grahl, G. Hornby, E. D. de Jong, T. Kovacs,
S. Kumar, C. F. Lima, X. Llorà, F. Lobo, L. D. Merkle, J. Miller, J. H. Moore, M. O’Neill,
M. Pelikan, T. P. Riopka, M. D. Ritchie, K. Sastry, S. L. Smith, H. Stringer, K. Takadama,
M. Toussaint, S. C. Upton, and A. H. Wright, Eds., ACM Press, pp. 394–397.

42. Keber, C., and Schuster, M. G. Option valuation with generalized ant programming.
In Proceedings of the Genetic and Evolutionary Computation Conference (2002), Morgan
Kaufmann Publishers Inc., pp. 74–81.

43. Keijzer, M., and Babovic, V. Dimensionally aware genetic programming. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (Orlando, Florida,
USA, 13-17 July 1999), W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, Eds., vol. 2, Morgan Kaufmann, pp. 1069–1076.

28

44. Keijzer, M., Babovic, V., Ryan, C., O’Neill, M., and Cattolico, M. Adaptive logic
programming. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001) (San Francisco, California, USA, 7-11 July 2001), L. Spector, E. D.
Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk,
M. H. Garzon, and E. Burke, Eds., Morgan Kaufmann, pp. 42–49.

45. Keijzer, M., O’Neill, M., Ryan, C., and Cattolico, M. Grammatical evolution rules:
The mod and the bucket rule. In Genetic Programming, Proceedings of the 5th European
Conference, EuroGP 2002 (Kinsale, Ireland, 3-5 Apr. 2002), J. A. Foster, E. Lutton,
J. Miller, C. Ryan, and A. G. B. Tettamanzi, Eds., vol. 2278 of LNCS, Springer-Verlag,
pp. 123–130.

46. Keller, R. E., and Banzhaf, W. Genetic programming using genotype-phenotype
mapping from linear genomes into linear phenotypes. In Genetic Programming 1996:
Proceedings of the First Annual Conference (Stanford University, CA, USA, 28–31 July
1996), J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds., MIT Press,
pp. 116–122.

47. Koza, J. R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

48. Koza, J. R. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press, Cambridge Massachusetts, May 1994.

49. Koza, J. R., Andre, D., Bennett III, F. H., and Keane, M. Genetic Programming 3:
Darwinian Invention and Problem Solving. Morgan Kaufman, Apr. 1999.

50. Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., and Lanza, G.

Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer
Academic Publishers, 2003.

51. MacCallum, R. M. Introducing a perl genetic programming system: and can meta-
evolution solve the bloat problem? In Genetic Programming, Proceedings of EuroGP’2003
(Essex, 14-16 Apr. 2003), C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa,
Eds., vol. 2610 of LNCS, Springer-Verlag, pp. 364–373.

52. McConaghy, T., and Gielen, G. Canonical form functions as a simple means for ge-
netic programming to evolve human-interpretable functions. In GECCO 2006: Proceed-
ings of the 8th annual conference on Genetic and evolutionary computation (Seattle,
Washington, USA, 8-12 July 2006), M. Keijzer, M. Cattolico, D. Arnold, V. Babovic,
C. Blum, P. Bosman, M. V. Butz, C. Coello Coello, D. Dasgupta, S. G. Ficici, J. Foster,
A. Hernandez-Aguirre, G. Hornby, H. Lipson, P. McMinn, J. Moore, G. Raidl, F. Roth-
lauf, C. Ryan, and D. Thierens, Eds., vol. 1, ACM Press, pp. 855–862.

53. McGee, R., O’Neill, M., and Brabazon, A. The syntax of stock selection: Gram-
matical evolution of a stock picking model. In IEEE World Congress on Computational
Intelligence WCCI 2010 (Barcelona, Spain, 2010), IEEE Press.

54. McKay, B. Partial functions in fitness-shared genetic programming. In Proceedings of
the 2000 Congress on Evolutionary Computation CEC00 (La Jolla Marriott Hotel La
Jolla, California, USA, 6-9 July 2000), IEEE Press, pp. 349–356.

55. McKay, R. I., Hoang, T. H., Essam, D. L., and Nguyen, X. H. Developmental evalua-
tion in genetic programming: the preliminary results. In Proceedings of the 9th European
Conference on Genetic Programming (Budapest, Hungary, 10 - 12 Apr. 2006), P. Collet,
M. Tomassini, M. Ebner, S. Gustafson, and A. Ekárt, Eds., vol. 3905 of Lecture Notes in
Computer Science, Springer, pp. 280–289.

56. McKay, R. I. B. Variants of genetic programming for species distribution modelling –
fitness sharing, partial functions, population evaluation. Ecological Modelling 146, 1-3
(2001), 231–241.

57. McKay, R. I. B., Hoang, T. H., Mori, N., and Nguyen, X H an d Essam, D. L.

Model-building with interpolated temporal data. Ecological Informatics 1, 3 (2006),
259–268.

58. Miller, J. F., and Thomson, P. Cartesian genetic programming. In Proceedings of the
European Conference on Genetic Programming (London, UK, 2000), Springer-Verlag,
pp. 121–132.

59. Montana, D. J. Strongly typed genetic programming. Evolutionary Computation 3, 2
(1995), 199–230.

60. Nguyen, X. H., McKay, R. I. B., Essam, D. L., and Abbass, H. A. Genetic transposi-
tion in tree-adjoining grammar guided genetic programming: the relocation operator. In
2004 Asia-Pacific Conference on Simulated Evolution and Learning (October 2004).

29

61. Nordin, P., Banzhaf, W., and Francone, F. D. Efficient evolution of machine code for
CISC architectures using instruction blocks and homologous crossover. In Advances in
Genetic Programming 3, L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline,
Eds. MIT Press, Cambridge, MA, USA, June 1999, ch. 12, pp. 275–299.

62. O’Neill, M., and Brabazon, A. mGGA: The meta-grammar genetic algorithm. In Pro-
ceedings of the 8th European Conference on Genetic Programming (Lausanne, Switzer-
land, 30 Mar. - 1 Apr. 2005), M. Keijzer, A. Tettamanzi, P. Collet, J. I. van Hemert, and
M. Tomassini, Eds., vol. 3447 of Lecture Notes in Computer Science, Springer, pp. 311–
320.

63. O’Neill, M., and Brabazon, A. Grammatical differential evolution. In Proceedings
of the International Conference on Artificial Intelligence (Las Vegas, NV, USA, 2006),
CSEA Press, pp. 231–236.

64. O’Neill, M., and Brabazon, A. Grammatical swarm: The generation of programs by
social programming. Natural Computing 5, 4 (2006), 443–462.

65. O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S. M., and Keenan, P. pi
grammatical evolution. In Genetic and Evolutionary Computation – GECCO-2004, Part
II (Seattle, WA, USA, 26-30 June 2004), K. Deb, R. Poli, W. Banzhaf, H.-G. Beyer,
E. Burke, P. Darwen, D. Dasgupta, D. Floreano, J. Foster, M. Harman, O. Holland, P. L.
Lanzi, L. Spector, A. Tettamanzi, D. Thierens, and A. Tyrrell, Eds., vol. 3103 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 617–629.

66. O’Neill, M., Hemberg, E., Gilligan, C., Bartley, E., McDermott, J., and

Brabazon, A. Geva: Grammatical evolution in java. SIGEVOlution 3, 2 (2008), 17–23.
67. O’Neill, M., and Ryan, C. Grammatical evolution. IEEE Transactions on Evolutionary

Computation 5, 4 (Aug. 2001), 349–358.
68. O’Neill, M., and Ryan, C. Grammatical Evolution: Evolutionary Automatic Program-

ming in a Arbitrary Language, vol. 4 of Genetic programming. Kluwer Academic Pub-
lishers, 2003.

69. O’Neill, M., and Ryan, C. Grammatical evolution by grammatical evolution: The
evolution of grammar and genetic code. In Genetic Programming 7th European Confer-
ence, EuroGP 2004, Proceedings (Coimbra, Portugal, 5-7 Apr. 2004), M. Keijzer, U.-M.
O’Reilly, S. M. Lucas, E. Costa, and T. Soule, Eds., vol. 3003 of LNCS, Springer-Verlag,
pp. 138–149.

70. O’Neill, M., Ryan, C., Keijzer, M., and Cattolico, M. Crossover in grammatical
evolution. Genetic Programming and Evolvable Machines 4, 1 (Mar. 2003), 67–93.

71. O’Neill, M., Swafford, J. M., McDermott, J., Byrne, J., Brabazon, A., Shotton,

E., McNally, C., and Hemberg, M. Shape grammars and grammatical evolution for
evolutionary design. In GECCO 2009: Genetic and Evolutionary Computation Confer-
ence (Montreal, Canada, 2009), ACM.

72. Ortega, A., de la Cruz, M., and Alfonseca, M. Christiansen grammar evolution:
Grammatical evolution with semantics. Evolutionary Computation, IEEE Transactions
on 11, 1 (Feb. 2007), 77–90.

73. O’Sullivan, J., and Ryan, C. An investigation into the use of different search strategies
with grammatical evolution. In Genetic Programming, Proceedings of the 5th European
Conference, EuroGP 2002 (Kinsale, Ireland, 3-5 Apr. 2002), J. A. Foster, E. Lutton,
J. Miller, C. Ryan, and A. G. B. Tettamanzi, Eds., vol. 2278 of LNCS, Springer-Verlag,
pp. 268–277.

74. Otero-Rodriguez, J., Garcia-Carbajal, S., and Sanchez-Ramos, L. Fuzzy control
applied to a gas transport network in a siderurgycal environment. In 7th International
Conference in Information Processing and Management of Uncertainty in Knowledge
Based Systems (Paris, 1998), pp. 403–410.

75. Paterson, N., and Livesey, M. Evolving caching algorithms in C by genetic program-
ming. In Genetic Programming 1997: Proceedings of the Second Annual Conference
(Stanford University, CA, USA, 13-16 July 1997), J. R. Koza, K. Deb, M. Dorigo, D. B.
Fogel, M. Garzon, H. Iba, and R. L. Riolo, Eds., Morgan Kaufmann, pp. 262–267.

76. Paterson, N. R., and Livesey, M. Distinguishing genotype and phenotype in genetic
programming. In Late Breaking Papers at the Genetic Programming 1996 Conference
Stanford University July 28-31, 1996 (Stanford University, CA, USA, 28–31 July 1996),
J. R. Koza, Ed., Stanford Bookstore, pp. 141–150.

77. Ratle, A., and Sebag, M. Genetic programming and domain knowledge: Beyond the
limitations of grammar-guided machine discovery. In Parallel Problem Solving from Na-
ture - PPSN VI 6th International Conference (Paris, France, 16-20 Sept. 2000), M. Schoe-

30

nauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, Eds.,
vol. 1917 of LNCS, Springer Verlag, pp. 211–220.

78. Ratle, A., and Sebag, M. Avoiding the bloat with probabilistic grammar-guided ge-
netic programming. In Artificial Evolution 5th International Conference, Evolution Ar-
tificielle, EA 2001 (Creusot, France, Oct. 29-31 2001), P. Collet, C. Fonlupt, J.-K. Hao,
E. Lutton, and M. Schoenauer, Eds., vol. 2310 of LNCS, Springer Verlag, pp. 255–266.

79. Ratle, A., and Sebag, M. Grammar-guided genetic programming and dimensional con-
sistency: application to non-parametric identification in mechanics. Applied Soft Com-
puting 1, 1 (2001), 105–118.

80. Ratle, A., and Sebag, M. A novel approach to machine discovery: Genetic program-
ming and stochastic grammars. In Proceedings of Twelfth International Conference on
Inductive Logic Programming (Sydney, Australia, July 9-11, 2002 2003), S. Matwin and
C. Sammut, Eds., vol. 2583 of LNCS, Springer Verlag, pp. 207–222.

81. Ridley, M. Evolution. Blackwell Science, London, 1996.
82. Rodŕıguez-Vázquez, K., and Fleming, P. J. Use of genetic programming in the iden-

tification of rational model structures. In Proceedings of the European Conference on
Genetic Programming (London, UK, 2000), vol. 1802 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 181–192.

83. Ross, B. J. Logic-based genetic programming with definite clause translation grammars.
New Generation Computing 19, 4 (2001), 313–337.

84. Rothlauf, F., and Oetzel, M. On the locality of grammatical evolution. Working Paper
11/2005, Department of Business Administration and Information Systems, University
of Mannheim, D-68131 Mannheim, Germany, Dec. 2005.

85. Ryan, C., and Azad, R. M. A. Sensible initialisation in grammatical evolution. In
GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic and Evolu-
tionary Computation Conference (Chigaco, 11 July 2003), A. M. Barry, Ed., AAAI,
pp. 142–145.

86. Ryan, C., Nicolau, M., and O’Neill, M. Genetic algorithms using grammatical evo-
lution. In Genetic Programming, Proceedings of the 5th European Conference, EuroGP
2002 (Kinsale, Ireland, 3-5 Apr. 2002), J. A. Foster, E. Lutton, J. Miller, C. Ryan, and
A. G. B. Tettamanzi, Eds., vol. 2278 of LNCS, Springer-Verlag, pp. 278–287.

87. Ryan, C., O’Neill, M., and Azad, A. No coercion and no prohibition - A position
independent encoding scheme for evolutionary algorithms. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001) (San Francisco, California,
USA, 7-11 July 2001), L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, Eds., Morgan
Kaufmann, p. 187.

88. Shan, Y., Abbass, H., McKay, R. I., and Essam, D. AntTAG: a further study. In
Proceedings of the Sixth Australia-Japan Joint Workshop on Intelligent and Evolutionary
Systems (Australian National University, Canberra, Australia, 30 Nov. 2002), R. Sarker
and B. McKay, Eds.

89. Shan, Y., McKay, R., Essam, D., and Abbass, H. A survey of probabilistic model build-
ing genetic programming. In Scalable Optimization via Probabilistic Modeling, M. Pe-
likan, K. Sastry, and E. Cantu-Paz, Eds., vol. 33 of Studies in Computational Intelligence.
Springer Verlag, Berlin, Germany, 2006, pp. 121–160.

90. Shan, Y., McKay, R. I., Abbass, H. A., and Essam, D. Program evolution with explicit
learning: a new framework for program automatic synthesis. In Proceedings of the 2003
Congress on Evolutionary Computation CEC2003 (Canberra, 8-12 Dec. 2003), R. Sarker,
R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, Eds., IEEE
Press, pp. 1639–1646.

91. Shan, Y., McKay, R. I., Baxter, R., Abbass, H., Essam, D., and Hoai, N. X. Gram-
mar model-based program evolution. In Proceedings of the 2004 IEEE Congress on
Evolutionary Computation (Portland, Oregon, 20-23 June 2004), IEEE Press, pp. 478–
485.

92. Shan, Y., McKay, R. I., Lokan, C. J., and Essam, D. L. Software project effort
estimation using genetic programming. In Proceedings of International Conference on
Communications Circuits and Systems (2002).

93. Shan, Y., Paull, D., and McKay, R. I. Machine learning of poorly predictable ecological
data. Ecological Modelling 195, 1-2 (15 May 2006), 129–138. Selected Papers from the
Third Conference of the International Society for Ecological Informatics (ISEI), August
26–30, 2002, Grottaferrata, Rome, Italy.

31

94. Spector, L., and Stoffel, K. Ontogenetic programming. In Genetic Programming
1996: Proceedings of the First Annual Conference (Stanford University, CA, USA, 28–31
July 1996), J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds., MIT Press,
pp. 394–399.

95. Tanev, I. Implications of incorporating learning probabilistic context-sensitive grammar
in genetic programming on evolvability of adaptive locomotion gaits of snakebot. In
Proceedings of GECCO 2004 (eattle, Washington, USA, June 2004).

96. Tanev, I. Genetic programming incorporating biased mutation for evolution and adap-
tation of snakebot. Genetic Programming and Evolvable Machines 8, 1 (2007), 39–59.

97. Tanev, I., and Shimohara, K. On role of implicit interaction and explicit communi-
cations in emergence of social behavior in continuous predators-prey pursuit problem.
In Genetic and Evolutionary Computation – GECCO-2003 (Berlin, 12-16 July 2003),
E. Cantú-Paz, J. A. Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer,
R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A. Pot-
ter, A. C. Schultz, K. Dowsland, N. Jonoska, and J. Miller, Eds., vol. 2724 of LNCS,
Springer-Verlag, pp. 74–85.

98. Tsakonas, A., Dounias, G., Doumpos, M., and Zopounidis, C. Bankruptcy prediction
with neural logic networks by means of grammar-guided genetic programming. Expert
Systems With Applications 30, 3 (Apr. 2006), 449–461. Intelligent Information Systems
for Financial Engineering.

99. Tsoulos, I. G., and Lagaris, I. E. Solving differential equations with genetic program-
ming. Genetic Programming and Evolvable Machines 7, 1 (Mar. 2006), 33–54.

100. Vanyi, R., and Zvada, S. Avoiding syntactically incorrect individuals via parameterized
operators applied on derivation trees. Evolutionary Computation, 2003. CEC ’03. The
2003 Congress on 4 (8-12 Dec. 2003), 2791–2798 Vol.4.

101. Whigham, P., Dick, G., and Recknagel, F. Exploring seasonal patterns using process
modelling and evolutionary computation. Ecological Modelling 195, 1-2 (2006), 146–152.

102. Whigham, P. A. Grammatically-based genetic programming. In Proceedings of the
Workshop on Genetic Programming: From Theory to Real-World Applications (Tahoe
City, California, USA, 9 July 1995), J. P. Rosca, Ed., pp. 33–41.

103. Whigham, P. A. Inductive bias and genetic programming. In First International Con-
ference on Genetic Algorithms in Engineering Systems: Innovations and Applications,
GALESIA (Sheffield, UK, 12-14 Sept. 1995), A. M. S. Zalzala, Ed., vol. 414, IEE, pp. 461–
466.

104. Whigham, P. A. Grammatical Bias for Evolutionary Learning. PhD thesis, School
of Computer Science, University College, University of New South Wales, Australian
Defence Force Academy, Canberra, Australia, 14 Oct. 1996.

105. Whigham, P. A. Induction of a marsupial density model using genetic programming and
spatial relationships. Ecological Modelling 131, 2-3 (2000), 299–317.

106. Whigham, P. A., and Crapper, P. F. Time series modelling using genetic program-
ming: An application to rainfall-runoff models. In Advances in Genetic Programming
3, L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline, Eds. MIT Press,
Cambridge, MA, USA, June 1999, ch. 5, pp. 89–104.

107. Wong, M. L., and Leung, K. S. Applying logic grammars to induce sub-functions in
genetic programming. In 1995 IEEE Conference on Evolutionary Computation (Perth,
Australia, 29 Nov. - 1 Dec. 1995), vol. 2, IEEE Press, pp. 737–740.

108. Wong, M. L., and Leung, K. S. Evolutionary program induction directed by logic
grammars. Evolutionary Computation 5, 2 (summer 1997), 143–180.

109. Wong, M. L., and Leung, K. S. Data Mining Using Grammar Based Genetic Program-
ming and Applications, vol. 3 of Genetic Programming. Kluwer Academic Publishers,
Jan. 2000.

110. Zvada, S., and Vanyi, R. Improving grammer based evolution algorithms via attributed
derivation trees. In Genetic Programming 7th European Conference, EuroGP 2004,
Proceedings (Coimbra, Portugal, 5-7 Apr. 2004), M. Keijzer, U.-M. O’Reilly, S. M. Lucas,
E. Costa, and T. Soule, Eds., vol. 3003 of LNCS, Springer-Verlag, pp. 208–219.

