
Towards Effective Semantic Operators for Program Synthesis in
Genetic Programming

Stefan Forstenlechner
Natural Computing Research & Applications Group

School of Business
University College Dublin

Dublin, Ireland
stefan.forstenlechner@ucdconnect.ie

David Fagan
Natural Computing Research & Applications Group

School of Business
University College Dublin

Dublin, Ireland
david.fagan@ucd.ie

Miguel Nicolau
Natural Computing Research & Applications Group

School of Business
University College Dublin

Dublin, Ireland
miguel.nicolau@ucd.ie

Michael O’Neill
Natural Computing Research & Applications Group

School of Business
University College Dublin

Dublin, Ireland
m.oneill@ucd.ie

ABSTRACT
The use of semantic information in genetic programming operators
has shown major improvements in recent years, especially in the
regression and boolean domain. As semantic information is domain
specific, using it in other areas poses certain problems. Semantic
operators require being adapted for the problem domain they are
applied to. An attempt to create a semantic crossover for program
synthesis has been made with rather limited success, but the results
have provided insights about using semantics in program synthesis.
Based on this initial attempt, this paper presents an improved ver-
sion of semantic operators for program synthesis, which contains a
small but significant change to the overall functionality, as well as a
novel measure for the comparison of the semantics of subtrees. The
results show that the improved semantic crossover is superior to
the previous semantic operator in the program synthesis domain.

CCS CONCEPTS
• Computing methodologies → Genetic programming;

KEYWORDS
Genetic Programming, Program Synthesis, Semantics, Operators

ACM Reference Format:
Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael O’Neill.
2018. Towards Effective Semantic Operators for Program Synthesis in Ge-
netic Programming. In GECCO ’18: Genetic and Evolutionary Computation
Conference, July 15–19, 2018, Kyoto, Japan.ACM, NewYork, NY, USA, 8 pages.
https://doi.org/10.1145/3205455.3205592

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205592

1 INTRODUCTION
Semantic information has been used in Genetic Programming (GP)
to develop more advanced operators that, instead of doing random
syntactic changes, incorporate the behaviour of an individual into
deciding how to adapt and improve a solution. Most research in the
area of semantics and GP was performed in the boolean and regres-
sion domains [1, 10, 15, 17] and has proven that semantic operators
achieve better performance than operators that only work on a
syntactic level. As semantics are dependent on the problem domain,
an operator cannot be applied to another domain without changes,
such as adapting measures to compare semantics between subtrees.
Recently, steps were taken to harness the benefits of semantics in
the domain of program synthesis [5]. Whereas the boolean domain
and regression domain only operate on a single data type, boolean
and numerical values respectively, program synthesis operates on
a range of different data types at the same time and even data struc-
tures. Therefore measuring, for example, semantic similarity is a
more complex task. Although the crossover operator in [5] has
given interesting insights about semantics in the program synthesis
domain, several shortcomings of the approach used in that paper
have been identified as well. To further improve the performance of
GP operators in program synthesis, this paper strives towards more
effective semantic operators by addressing these shortcomings.

The rest of the paper is structured in the following way. Section 2
gives an overview of semantics and semantic operators, especially
how semantics have been used in program synthesis so far. Section 3
describes in detail how new effective semantic operators have been
created that address previous shortcomings. Section 4 outlines the
experimental setup, which is discussed in Section 5. Conclusion
and future work are discussed in Section 6.

2 RELATEDWORK
In this section, semantics and some semantic operators introduced
to GP are outlined, as well as a detailed description of the Semantic
Crossover for Program Synthesis (SCPS) [5] is given, which is going
to be improved in this paper.

1119

https://doi.org/10.1145/3205455.3205592
https://doi.org/10.1145/3205455.3205592

GECCO ’18, July 15–19, 2018, Kyoto, Japan Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael O’Neill

2.1 Semantics
Semantics can be defined as “the behavior of a program, once it is
executed on a set of data” [17]. In the regression domain, a program
is an arithmetic expression, which returns a vector of real values,
when executed on data. Similarly, in the boolean domain, the se-
mantics is a vector of boolean values. This semantic information
can then be used in diverse ways to improve the performance of
GP. Most approaches are based on new crossover [1, 10, 12, 14, 15]
or mutation [2, 13] operators, but also semantic selection operators
have been created [6, 7]. The downside of semantic operators, in
most cases, is that as semantics are problem domain specific, oper-
ators based on semantics are domain specific as well. In contrast,
conventional GP operators operate on a syntactic level, hence they
can be used regardless of the problem domain.

Two important properties of semantics that contribute to perfor-
mance improvements are semantic diversity and locality [15, 17].
While a high semantic diversity is necessary for covering the search
space, semantic locality, which means a small change in a program
corresponds to a small change in semantics and therefore fitness,
is essential for the search performance [15].

A more direct approach of applying semantics has been intro-
duced with Geometric Semantic Genetic Programming (GSGP) [11].
On the one hand, GSGP uses tailored semantic operators to guar-
antee that solutions incrementally become better or at least are
not able to become worse. On the other hand, this approach has
multiple limitations, e.g. it is restricted to a small range of problem
domains and solutions increase in size rapidly if no operator is used
to simplify the solutions. A complete survey about semantics and
how semantics has been applied is available in [17].

2.2 Semantics with Traces in Program
Synthesis

Semantics being domain specific means we need to specify seman-
tics for each domain and also tweak the semantic operators. For
program synthesis, Forstenlechner et al. [5] have used the trace of
a program as its semantics, as traces describe the behaviour of a
program. A trace logs variable state changes of the execution of a
program. Similar to a GP solution in regression, which produces a
vector of real values as output for the whole solution but also for
subtrees, traces are available for all subtrees that are executable.
This is important as many semantic operators exchange subtrees
of a GP tree and need to be able to evaluate semantics of subtrees
instead of a whole solution.

A short example of a program, the corresponding GP tree and
its trace is shown in Figure 1, which is used to explain how the
semantics for program synthesis has been defined in [5]. The figure
shows a short program that only consists of two statements. The
GP tree is a derivation tree that is generated when using a grammar-
based variant of GP. The bottom of the figure shows the variable
settings at different states during the execution of the program
referenced with numbers from 1* to 3*. It should be noted that in
contrast to regression or boolean solutions, the output may not only
be a single vector of some values but actually multiple vectors, as
a program contains multiple variables that undergo state changes.
The variable setting 1* contains the initial setting, which might be
the training data. In this example, it consists of only three cases. The

Code: x = b > a

a = a * b

1* <code> <statement> 3*

1* <statement> 2* 2* <int_assign> 3*

1* <bool_assign> 2* <int_var> = <int>

a <int_var> <int_op> <int_var>

a * b

<bool_var> = <bool>

x <int_var> <comp_op> <int_var>

b > a

1*

a b x

0 3 False

-4 1 False

2 3 False

2*

a b x

0 3 True

-4 1 True

2 3 True

3*

a b x

0 3 True

-4 1 True

6 3 True

Figure 1: A sample of a code with its corresponding deriva-
tion tree and its trace for three different inputs. The state
of the variables before running the code is shown in vari-
able setting 1*. While the variable setting 3* shows the state
of the variables after executing code, 2* displays the inter-
mediate state after executing the first statement and before
the second one. The numbers 1*-3* are also shown within
the derivation tree to indicate the semantics before and af-
ter executing a certain node.

variable setting 2* shows the state of the variables after executing
the first line of the code, but before executing the second line. 2* is
the semantic output of the subtree to the left of the root node. The
variable setting 3* contains the state of the variable after executing
both lines of code and is the semantics of the whole tree. Depending
on the statement that is executed a variable can change its stored
value in all, some or even no cases. Variable x is changed in all
instances after executing the first statement, while variable a has
only been changed in one of three cases.

1* to 3* are also shown within the GP tree to indicate at which
point a certain variable state is established. A number to the left
indicates the variable setting before and to the right after executing
the node. Not every node has a number with a variable setting. To
evaluate the semantic change when exchanging a subtree on the
lower levels that cannot be executed on its own, the first parent
node that can be executed is used.

2.3 Semantic Operators
A variety of semantic operators has been introduced to GP and
have shown to improve performance compared to conventional
operators. This study focuses on crossover and mutation, but also
selection operators are able to harness semantic information [6, 7].

As stated previously most research around semantics has been
conducted in the regression and boolean problem domain. A se-
ries of operators have been introduced, some of which have been
adapted and improved over time [12, 14]. One of which leads to
the Most Semantic Similarity based Crossover (MSSC) [15] in the
regression domain. This crossover operator selects multiple pairs
of subtrees, one from each parent, and chooses the pair that is most
semantically similar. The most semantically similar pair is the one

1120

Towards Effective Semantic Operators for Program Synthesis in Genetic Programming GECCO ’18, July 15–19, 2018, Kyoto, Japan

that has semantics, real-valued output vectors, whose mean abso-
lute difference is smallest compared to the other pairs. At the same
time, the semantics of a subtree pair is not allowed to be equivalent,
because if they would be equivalent, the change would have no
impact on the overall fitness.

Most semantic operators are based on the principle that the
change that is being made has to change the semantics and if possi-
ble should be similar at the same time. Semantic mutation operators
were created in a similar way, but instead of selecting a subtree from
a second parent, it was generated at random, as in conventional
mutation operators [2, 13].

2.4 Semantic Crossover for Program Synthesis
A step towards using semantic information in operators within the
program synthesis domain was taken by Forstenlechner et al. [5]
by introducing semantic crossover for program synthesis (SCPS).
This operator is based on MSSC by Nguyen et al. [15]. Due to
the difference in problem domains, not only a different semantic
measure had to be used, but also the crossover itself was adapted to
fit the needs of the problem domain and semantic measure better.
The pseudocode of the semantic crossover for program synthesis is
shown in Algorithm 1.

The main difference, and maybe the main drawback, is how the
overall crossover process has been changed from MSSC to SCPS.
MSSC chooses Max_Tries pairs of subtrees from both parents, the
semantics of the subtree pairs are compared, and the most semanti-
cally similar pair is chosen for crossover. SCPS chooses one subtree
from the first parent and multiple from the second parent. Then
it compares the semantics of all subtrees selected from the second
parent with the one from the first parent. Finally, SCPS chooses the
one that is most semantically similar. Even the semantic measure
only uses a single type of variable for the semantic comparison.
Variables with other data types were not part of the comparison.
The reason was that multiple different distance measures have been
used depending on the type of variable compared (e.g. Levenshtein
distance for string, Hamming distance for bool). Therefore, the
semantic similarity or difference for a pair of subtrees can hardly be
compared to a different pair of subtrees. That lead to the drawback
that, if the subtree selected from the first parent was at a position
within a statement that had no effect on the semantics of the state-
ment, no matter what it is replaced with the semantics would not
change. This lead to SCPS having to choose one of the subtrees
selected from the second parent at random and was not regarded
as a semantic crossover, but rather a random crossover. According
to the results in [5], the percentage of this fallback to random cross-
over occurring was rather high on all problems tackled and even
up to around 50% on one problem.

Another conclusion that was drawn from [5] is that the semantic
similarity measure used in SCPS was rather complex. Different
similarity measures were proposed, one for each data type. In a
semantic comparison, each variable from the two traces was com-
pared with the according similarity measure to get a value for each
variable that indicates the semantic similarity. These values were
then used to find the subtree from the second parent that was most
semantically similar to the first one but not equivalent. This seems
to be a rather complex procedure considering the high amount of

Algorithm 1 Semantic Crossover for Program Synthesis (SCPS)
[5]

select crossover point from first parent
select Max_Tries possible subtrees from second parent
if no subtrees of same type as crossover point available then
return do nothing

end if
get semantics of every selected subtree from second parent
calculate semantic differences for every selected subtree per type
if differences then

select random type
select most semantically similar subtree based on selected type

else
select random subtree for crossover from second parent

end if
crossover with selected subtree

crossover operations not even finding a single subtree that is se-
mantically different. Forstenlechner et al. even stated in the future
work section, that a simpler check might actually suffice.

3 EFFECTIVE SEMANTIC OPERATORS FOR
PROGRAM SYNTHESIS

In this section, we present novel semantic operators which use
semantic information more effectively as previously presented op-
erators using insights about their shortcomings and addressing
them. A semantic crossover is described in the next section, fol-
lowed by a mutation operator that acts on a similar principle.

3.1 Effective Semantic Crossover for Program
Synthesis

An adapted version of SCPS [5] that fixes the issues discussed in Sec-
tion 2.4 has been created and named Effective Semantic Crossover
for Program Synthesis (ESCPS). Pseudocode for ESCPS is shown in
Algorithm 2. The first small but important change is that similar to
MSSC a pair of subtrees is selected. One subtree from each parent.
The semantic information from the subtree of the first parent has
already been collected during the fitness evaluation, so no further
overhead is required for that part.

Algorithm 2 Effective Semantic Crossover for Program Synthesis
(ESCPS)

repeat
select subtree from first parent
select subtree of matching type from second parent
calculate semantics of second subtree
compare semantics for partial change
if partial change found? then

do crossover between subtrees
return

end if
until successful crossover or maximum tries
check all subtree pairs again for any difference
do crossover with the first pair that shows any difference

1121

GECCO ’18, July 15–19, 2018, Kyoto, Japan Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael O’Neill

To be able to compare the semantics of the two subtrees, the
semantics of the subtree from the second parent has to be evaluated
based on the variable setting before executing the subtree from the
first parent. This ensures that both subtrees have been executed on
the same state of variables. It is important to note that this is not
a fitness evaluation. The pseudocode that describes the process of
establishing the semantics of the subtree from the second parent,
which has also been used for SCPS, is shown in Algorithm 3.

Algorithm 3 Calculate semantics for a subtree from the second
parent

input1, output1← semantics of subtree from first parent
set variables to input1
output2← execute subtree from second parent

In the next step, the semantics of the two subtrees are compared.
As explained in Section 2.4, the previous measure for similarity was
rather complex and still was unable to find many subtrees that pro-
duced different semantics. Therefore, a simpler semantic measure
that is easier to use and implement for various data types has been
established that checks for a partial change. As the semantics of a
subtree is a vector of values for each variable, the measure checks
for every variable if there is at least one difference between the
semantics from the subtrees in a single entry in the vector, but the
vectors are not allowed to be completely different. Or to put it in
other words, at least one entry has to be different and at least one
entry has to be identical. This provides the information that the
subtrees are not equivalent but have some similarity.

If a partial change has been found, the two subtrees are used for
crossover. No further steps need to take place. This can reduce the
number of semantic comparisons that need to take place compared
to SCPS and even MSSC, which reduces the computational effort.
Although in the worst-case scenario the number of semantic com-
parisons will be identical to SCPS and MSSC. As it is still possible
to not find a partial change after a maximum number of tries and
to avoid falling back to random crossover right away, an additional
second semantic measure is used. The second semantic measure
checks for any change in the semantics between two subtrees. As
multiple pairs of subtrees and the corresponding semantics have
already been calculated. The same subtrees are checked with the
second measure and the first pair of subtrees that shows any differ-
ence is selected for crossover. The intention is to avoid falling back
to random crossover and use the semantic information gathered in
the previous loop.

Only if both semanticmeasures fail to find a partial or any change,
crossover falls back to the default behaviour, which is selecting
subtrees at random. So, one subtree pair that has been selected
within the loop is used for crossover.

3.2 Effective Semantic Mutation for Program
Synthesis

As semantics can be used in an equivalent way in mutation as it
is used in crossover, an Effective Semantic Mutation for Program
Synthesis (ESMPS) operator has been created as well. It works on
the same principle as the ESCPS described above. Like conventional

Table 1: Experimental parameter settings

Parameter Setting
Runs 100
Generations 300
Population size 1000
Selection Lexicase
Crossover probability 0.9
Mutation probability 0.05
Elite size 1
Node limit 250
Variables per type 3
Max execution time 1 second
Max_Tries 10

subtree mutation, a new random subtree is generated, but the se-
mantics of the new subtree is evaluated to decide if it should be
used. Again, a maximum number of tries can be set to do so and
first ESMPS checks for a partial change as long as the maximum
number of tries has not been exceeded. Afterwards, it falls back to
check for any change, before it has no other choice than to fall back
to random mutation. The Pseudocode would be very similar to Al-
gorithm 2, except the third line would be replaced with “generating
a random subtree”, which would be used in line four instead of the
“second subtree”.

4 EXPERIMENTAL SETUP
The goal of the experiments is to show that semantic operators are
able to outperform conventional operators even in the program
synthesis domain as well as that the semantic operators do not
have to fall back to random crossover or mutation as it was often
the case in [5]. For this purpose, a tree-based grammar guided
genetic programming system (GGGP) [4] is used that was developed
for program synthesis problems. It uses multiple grammars, one
grammar for each available data type, and automatically combines
them depending on the data types required for a problem at hand.
The number of variables per type available to the program and a
maximum execution time have to be set beforehand. The parameter
settings have been taken from [4] and are summarized in Table 1.

A set of problems from the general program synthesis benchmark
suite [8] is used, namely Checksum, Compare String Lengths, Dou-
ble Letters, Grade, Mirror Image, Small Or Large, Sum of Squares
and Vector Average, which are of varying difficulty and require var-
ious data types. Lexicase selection [9] is used as selection operator,
as it has proven to be effective for program synthesis problems. In
contrast to other selection operators that rely on a single fitness
value for selection, lexicase uses the fitness values of every single
training case. Individuals are selected based on the fitness achieve
on randomly selected training case. In case of a tie, a subset of
individuals that achieved the best result on the selected training
case are taken and another training case is selected for comparison.
This selection strategy gives overall poor performing individuals
that may only solve a few or even a single training case perfectly a
chance to be in the next generation.

1122

Towards Effective Semantic Operators for Program Synthesis in Genetic Programming GECCO ’18, July 15–19, 2018, Kyoto, Japan

Max_Tries is the only additional parameter that specifies how
many times a semantic operator is allowed to try to select or gen-
erate a new subtree and do a semantic comparison. A similar pa-
rameter was also required for SCPS and MSSC.

The experiments are carried out with the semantic crossover and
mutation operators introduced in this study, ESCPS and ESMPS,
and for comparison with the conventional subtree crossover and
subtree mutation [16].

The experiments have been executed with HeuristicLab [18]. An
implementation of ESCPS and ESMPS, the benchmark suite [8] as
well as lexicase selection [9] is available online [3].

5 RESULTS
This section discusses the results of the experiments carried out
with the effective semantic operators and conventional subtree
operators. The overall success rates, as well as semantic aspects
of the operators, are discussed. The following results are mainly
focused on crossover since it is the operator that is mainly used and
therefore of higher interest, the plots for mutation are similar and
that not enough space is available to show the plots for crossover
and mutation.

5.1 Successful Runs and Fitness
The overall number of successful runs, the average test fitness of
the best individuals, the average percentage of training and test
cases solved for the semantic operators are shown in Table 2 as well
as the improvements compared to conventional subtree operators.
Additionally, a Wilcoxon rank sum test on the test fitness of the
best training individuals was carried out to check for statistically
significance. Four out of eight problems show a statistically sig-
nificant difference in the results obtained with standard subtree
operators. This has not been achieved for even one problem with
SCPS.

The table shows that in almost all cases the semantic operators
have improved the results on the benchmark problems. Sum of
Squares gained the most successful runs due to the ESCPS and
ESMPS. Some other problems suffer from overfitting, which was
also reported in [8] and [4], but the increase of successful solutions
found on training and improvements on average test fitness indicate
that the semantic operators are beneficial for those problems. The
percentage of solved test cases has not improved on all problems,
but the amount it has decreased by is negligible, compared to the
improvements that were achieved in most cases.

In Figure 2, notched box plots of the test fitness of the best
individual are shown. The fitness of the runs with the semantic
operators (Semantic) are compared with the conventional subtree
operators (Normal). In four cases, Compare String Lengths, Double
Letters, Sum of Squares and Vector Average, the results with the
semantic operators are significantly better than with subtree oper-
ators. For Double Letters and Vector Average, it is slightly difficult
to see due to scale for the outliers. For the other four problems, the
fitness is similar. The semantic operators were able to significantly
improve on 50% of the problems tackled and had little effect on the
other. So, in the worst-case scenario, some computational overhead
is wasted with ESCPS and ESMPS, but the results do not become
worse.

5.2 Semantics
One of the shortcomings of SCPS was that random crossover was
used up to 50% of the time and ESCPS tries to address this problem.
Figure 3 shows the semantic measure used for comparison. ‘Partial
change’ is the default semantic measure used, as explained in Sec-
tion 3.1. If no subtree with a partial change is found, ‘Any change’
will be accepted. As a last resort, random crossover will be used. It
should be noted that it is possible, that no crossover happens if for
Max_Tries no subtrees of the same type can be found, as grammar
guided GP is strongly typed, but this only happens in rare cases.
The graphs for Compare String Lengths, Double Letters, Grade and
Mirror Image are omitted, as they are very similar to Small Or Large
and do not add any additional insight.

For all problems ‘Partial change’ is used most of the time, in
many cases close to 100% of the time. This shows that this semantic
measure is able to use the semantic information of subtrees more
often that in case of SCPS in [5]. The second semantic measure ‘Any
change’ is rarely used and only during the initial generations of GP,
because ‘Any change’ is solely used if ‘Partial change’ fails and ‘Any
change’ is a slightly more general measure than ‘Partial change’.
Even with this additional semantic measure, random crossover
might be used more often, during the first few generations, but
declines quickly.

5.3 Semantic Comparisons
Semantic comparisons are computationally expensive and a draw-
back of semantic operators. Figure 4 shows the average number of
semantic comparisons that were required until a pair of subtrees
were selected for crossover for all problems. If the second semantic
‘Any change’ was used, the number of comparisons was already at
the maximum of 10.

Section 5.2 showed that in the initial generations it is more
difficult to find a pair of subtrees with semantic differences, which
explains why initially the number of comparisons is high in Figure 4,
but it quickly declines for all problems and stabilizes around 2 to
3. This shows that the number of comparisons is not even close
to the maximum except in the initial generations and that the
computational overhead of the semantic operator is on average low
and less than for SCPS.

5.4 Parent Comparison
When the semantic operator is used and does not fall back to the
conventional operator, the subtrees that are exchanged have a dif-
ferent semantics. But this does not mean that the overall semantics
of the whole individual changes. Figure 5 depicts the percentage of
children that have semantics different to their rooted parent for all
problems. The rooted parent is the one a subtree is removed from
and the child shares the same root node with.

The percentage of children that are semantically different from
their rooted parent is high but lower than the percentage of times
semantic crossover is used, as can be expected, because not every
semantic operation on a subtree automatically leads to a change in
the overall semantics. In case of Compare String Lengths, Grade
and Small Or Large, the percentage declines. At this point, no
explanation was found for this behaviour. It might be the case that

1123

GECCO ’18, July 15–19, 2018, Kyoto, Japan Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael O’Neill

Table 2: Results on the benchmark problems over 100 runs. The table shows the absolute number of successful runs on test
and training, the average test fitness of the best training individual, the average percentage of training and test cases solved
for the experiments with the semantic operators. The results are compared with standard subtree operators. AWilcoxon rank
sum test was carried out to check for statistical significance and the p-value is reported.

Problem Name Test Training Avg Fitness (% Improv.) Solved Training Cases Solved Test Cases p-value
Checksum 0 (+0) 0 (+0) 19309.74 (-0.74%) 11.78% (+1.21%) 2.83% (-0.04%) 0.1842
Compare String Lengths 4 (+2) 100 (+3) 86.64 (+35.25%) 100.00% (+0.03%) 91.34% (+3.05%) 0.0310
Double Letters 0 (+0) 0 (+0) 4380.81 (+2.85%) 25.87% (+2.58%) 12.32% (+0.93%) 0.0076
Grade 28 (-3) 81 (+0) 177.82 (+38.54%) 98.66% (+1.42%) 96.54% (+1.13%) 0.3276
Mirror Image 0 (+0) 70 (+19) 343.29 (-1.75%) 99.48% (+0.55%) 65.67% (-0.60%) 0.6521
Small Or Large 5 (-2) 66 (+15) 561.77 (+15.88%) 98.46% (+2.18%) 88.60% (+ 2.14%) 0.3332
Sum of Squares 13 (+10) 14 (+11) 184463.01 (+42.03%) 29.76% (+18.96%) 26.72% (+17.86%) 0.0003
Vector Average 5 (+0) 5 (+0) 95016.59 (+4.19%) 6.95% (+0.23%) 5.40% (-0.12%) 0.0203

Semantic Normal

2
0

0
0

0
2

5
0

0
0

3
0

0
0

0
3

5
0

0
0

Checksum

F
it
n

e
s
s

Semantic Normal

0
1

0
0

2
0

0
3

0
0

Compare String Lengths

Semantic Normal

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

Double Letters

Semantic Normal

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

Grade

Semantic Normal

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

Mirror Image

F
it
n

e
s
s

Semantic Normal

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

Small Or Large

Semantic Normal

0
5

0
0

0
0

0
1

0
0

0
0

0
0

1
5

0
0

0
0

0

Sum of Squares

Semantic Normal

0
2

0
0

0
0

6
0

0
0

0
1

0
0

0
0

0

Vector Average

Figure 2: Notched box plots of the test fitness of the best individual during training comparing the semantic operators (Seman-
tic) to the syntactical subtree operators (Normal).

the solutions become more robust to changes over generations for
these problems.

Changing the semantics of an individual is important to keep
semantic diversity high but does not automatically lead to better
solutions. An additional experiment was carried out that checked

the performance of the produced children during crossover for
semantic and subtree crossover. Figure 6 shows the percentages of
children that are better than their rooted parent and both parents
for crossover. For all problems, ESCPS achieves a higher percentage
of children that are better than their parents than subtree crossover.

1124

Towards Effective Semantic Operators for Program Synthesis in Genetic Programming GECCO ’18, July 15–19, 2018, Kyoto, Japan

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Checksum

Partial Change
Any Change

Random
No Crossover

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Small Or Large

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Sum of Squares

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Vector Average

Figure 3: Percentage of semantic used during crossover over
generations. ‘Partial change’ is the semantic that is used first.
If no subtree pair for crossover is found ‘Any change’ is used,
before falling back to ‘Random’ crossover. ‘No crossover’ is
has taken place. The graphs for Compare String Lengths,
Double Letters, Grade andMirror Image are omitted, as they
are very similar to Small Or Large and do not add any addi-
tional insight.

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Number of tries for semantic crossover

Checksum
Compare String Lengths

Double Letters
Grade

Mirror Image
Small Or Large

Sum of Squares
Vector Average

Figure 4: Number of tries subtrees selected for semantic com-
parisons until a subtree was selected or amaximumnumber
was reached.

Similar trends have been found for mutation, but the plots are
omitted due to space constraints. In case of Vector Average, even
the percentage of children that are better than both parents with
semantic crossover is close the percentage of children that are only
better than the rooted parent with subtree crossover.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Children that are semantically different from rooted parent

Checksum
Compare String Lengths

Double Letters
Grade

Mirror Image
Small Or Large

Sum of Squares
Vector Average

Figure 5: Percentage of children that produce a different se-
mantics than their rooted parents during semantic cross-
over.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Checksum

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Compare String Lengths

Semantic: Better than rooted
Semantic: Better than both
Normal: Better than rooted

Normal: Better than both

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Double Letters

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300
Pe

rc
e
n
ta

g
e

Generation

Grade

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Mirror Image

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Small Or Large

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Sum of Squares

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Vector Average

Figure 6: Percentage of children that are better than their
rooted parent and both parents over generations during se-
mantic crossover.

1125

GECCO ’18, July 15–19, 2018, Kyoto, Japan Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael O’Neill

It is expected that lines decrease over time as runs will have
solved the problem and continue for the purpose of this analysis,
even though the run will not be able to create better individuals.
This is even the case when a solution only solves all training but
not test cases. An extreme case is Compare String Lengths, where
all runs have been able to solve the training data. The percentage
of children that are better than their parents rapidly decreases and
gets close to zero. In that case, even subtree crossover achieves a
higher percentage than semantic crossover at around generation 25,
but only because more runs with ESCPS have already been solved,
at least in training. A similar effect can be seen for Grade, Mirror
Image and Small Or Large.

6 CONCLUSION & FUTUREWORK
In this study novel and effective semantic operators for program syn-
thesis, ESCPS and ESMPS, have been introduced. These operators
are adaptations of the semantic crossover for program synthesis [5]
and improve it by addressing its shortcomings. ESCPS and ESMPS
are able to effectively use the semantic information available almost
all of the time in contrary to SCPS by using a simpler semantic mea-
sure and selecting pairs of subtrees instead of comparing a single
subtree to multiple others. These effective semantic operators were
able to produce more children that were improvements over their
parents as well as achieve statistically significantly better results
than conventional subtree operators. The latter was not achieved
with SCPS.

Future work for semantic operators for program synthesis in-
cludes a more extensive study on the full set of benchmarks from
the general program synthesis benchmark suite. The purpose of
this paper was to show that effective semantic operators for pro-
gram synthesis can be created, but it would be helpful to know on
which kinds of problems it is more likely to improve performance
with semantic information. Additionally, it should be tested, if it is
possible to create a semantic measure that can estimate the similar-
ity between two subtrees more precisely than the partial change
or any change measure used in this paper and still be effective, as
semantic locality is of importance to improve performance.

7 ACKNOWLEDGMENTS
This research is based upon works supported by the Science Foun-
dation Ireland, under Grant No. 13/IA/1850.

REFERENCES
[1] Lawrence Beadle and Colin Johnson. 2008. Semantically Driven Crossover in

Genetic Programming. In Proceedings of the IEEEWorld Congress on Computational
Intelligence, Jun Wang (Ed.). IEEE Computational Intelligence Society, IEEE Press,
Hong Kong, 111–116. https://doi.org/doi:10.1109/CEC.2008.4630784

[2] L. Beadle and C.G. Johnson. 2009. Semantically driven mutation in genetic
programming. In Evolutionary Computation, 2009. CEC ’09. IEEE Congress on.
1336–1342. https://doi.org/10.1109/CEC.2009.4983099

[3] Stefan Forstenlechner. 2016. Github repository: HeuristicLab.CFGGP: Provides
Context Free Grammar Problems for HeuristicLab. (2016). https://github.com/
t-h-e/HeuristicLab.CFGGP [Online; accessed 14-November-2016].

[4] Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael O’Neill. 2017.
A Grammar Design Pattern for Arbitrary Program Synthesis Problems in Genetic
Programming. Springer International Publishing, Cham, 262–277. https://doi.
org/10.1007/978-3-319-55696-3_17

[5] Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael O’Neill.
2017. Semantics-based Crossover for Program Synthesis in Genetic Program-
ming. In Artificial Evolution, Evelyne Lutton, Pierrick Legrand, Pierre Par-
rend, Nicolas Monmarché, and Marc Schoenauer (Eds.). Springer International

Publishing, Cham. https://ea2017.inria.fr//EA2017_Proceedings_web_ISBN_
978-2-9539267-7-4.pdf

[6] Stefan Forstenlechner, Miguel Nicolau, David Fagan, and Michael O’Neill. 2015.
Introducing Semantic-Clustering Selection in Grammatical Evolution. In GECCO
2015 Semantic Methods in Genetic Programming (SMGP’15) Workshop, Colin John-
son, Krzysztof Krawiec, Alberto Moraglio, and Michael O’Neill (Eds.). ACM,
Madrid, Spain, 1277–1284. https://doi.org/doi:10.1145/2739482.2768502

[7] E. Galván-López, B. Cody-Kenny, L. Trujillo, and A. Kattan. 2013. Using seman-
tics in the selection mechanism in Genetic Programming: A simple method for
promoting semantic diversity. In Evolutionary Computation (CEC), 2013 IEEE
Congress on. 2972–2979. https://doi.org/10.1109/CEC.2013.6557931

[8] Thomas Helmuth and Lee Spector. 2015. General Program Synthesis Bench-
mark Suite. In GECCO ’15: Proceedings of the 2015 on Genetic and Evolutionary
Computation Conference. ACM, Madrid, Spain, 1039–1046. https://doi.org/doi:
10.1145/2739480.2754769

[9] T. Helmuth, L. Spector, and J. Matheson. 2015. Solving Uncompromising Problems
With Lexicase Selection. IEEE Transactions on Evolutionary Computation 19, 5
(Oct 2015), 630–643. https://doi.org/10.1109/TEVC.2014.2362729

[10] Nicholas FreitagMcPhee, BrianOhs, and Tyler Hutchison. 2008. Semantic Building
Blocks in Genetic Programming. Springer Berlin Heidelberg, Berlin, Heidelberg,
134–145. https://doi.org/10.1007/978-3-540-78671-9_12

[11] Alberto Moraglio, Krzysztof Krawiec, and ColinG. Johnson. 2012. Geometric
Semantic Genetic Programming. In Parallel Problem Solving from Nature - PPSN
XII, CarlosA.Coello Coello, Vincenzo Cutello, Kalyanmoy Deb, Stephanie For-
rest, Giuseppe Nicosia, and Mario Pavone (Eds.). Lecture Notes in Computer
Science, Vol. 7491. Springer Berlin Heidelberg, 21–31. https://doi.org/10.1007/
978-3-642-32937-1_3

[12] Quang Uy Nguyen, Xuan Hoai Nguyen, and Michael O’Neill. 2009. Semantic
Aware Crossover for Genetic Programming: The Case for Real-Valued Func-
tion Regression. In Proceedings of the 12th European Conference on Genetic Pro-
gramming, EuroGP 2009 (LNCS), Leonardo Vanneschi, Steven Gustafson, Alberto
Moraglio, Ivanoe De Falco, and Marc Ebner (Eds.), Vol. 5481. Springer, Tuebingen,
292–302. https://doi.org/doi:10.1007/978-3-642-01181-8_25

[13] Quang Uy Nguyen, Xuan Hoai Nguyen, and Michael O’Neill. 2009. Semantics
based Mutation in Genetic Programming: The case for Real-valued Symbolic
Regression. In 15th International Conference on Soft Computing, Mendel’09, R. Ma-
tousek and L. Nolle (Eds.). Brno, Czech Republic, 73–91. http://ncra.ucd.ie/papers/
mendel2009SSM.pdf

[14] Quang Uy Nguyen, Xuan Hoai Nguyen, Michael O’Neill, R. I. McKay, and Edgar
Galvan-Lopez. 2011. Semantically-based crossover in genetic programming: ap-
plication to real-valued symbolic regression. Genetic Programming and Evolvable
Machines 12, 2 (June 2011), 91–119. https://doi.org/doi:10.1007/s10710-010-9121-2

[15] Quang Uy Nguyen, Xuan Hoai Nguyen, Michael O’Neill, R. I. McKay, and
Dao Ngoc Phong. 2013. On the roles of semantic locality of crossover in ge-
netic programming. Information Sciences 235 (20 June 2013), 195–213. https:
//doi.org/doi:10.1016/j.ins.2013.02.008

[16] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. 2008. A field
guide to genetic programming. Published via http://lulu.com and freely avail-
able at http://www.gp-field-guide.org.uk. http://www.gp-field-guide.org.
uk (With contributions by J. R. Koza).

[17] Leonardo Vanneschi, Mauro Castelli, and Sara Silva. 2014. A survey of semantic
methods in genetic programming. Genetic Programming and Evolvable Machines
15, 2 (2014), 195–214. https://doi.org/10.1007/s10710-013-9210-0

[18] Stefan Wagner, Gabriel Kronberger, Andreas Beham, Michael Kommenda, An-
dreas Scheibenpflug, Erik Pitzer, Stefan Vonolfen,Monika Kofler, StephanWinkler,
Viktoria Dorfer, andMichael Affenzeller. 2014. AdvancedMethods and Applications
in Computational Intelligence. Topics in Intelligent Engineering and Informatics,
Vol. 6. Springer, Chapter Architecture and Design of the HeuristicLab Optimiza-
tion Environment, 197–261. https://doi.org/10.1007/978-3-319-01436-4_10

1126

https://doi.org/doi:10.1109/CEC.2008.4630784
https://doi.org/10.1109/CEC.2009.4983099
https://github.com/t-h-e/HeuristicLab.CFGGP
https://github.com/t-h-e/HeuristicLab.CFGGP
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://ea2017.inria.fr//EA2017_Proceedings_web_ISBN_978-2-9539267-7-4.pdf
https://ea2017.inria.fr//EA2017_Proceedings_web_ISBN_978-2-9539267-7-4.pdf
https://doi.org/doi:10.1145/2739482.2768502
https://doi.org/10.1109/CEC.2013.6557931
https://doi.org/doi:10.1145/2739480.2754769
https://doi.org/doi:10.1145/2739480.2754769
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1007/978-3-540-78671-9_12
https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/doi:10.1007/978-3-642-01181-8_25
http://ncra.ucd.ie/papers/mendel2009SSM.pdf
http://ncra.ucd.ie/papers/mendel2009SSM.pdf
https://doi.org/doi:10.1007/s10710-010-9121-2
https://doi.org/doi:10.1016/j.ins.2013.02.008
https://doi.org/doi:10.1016/j.ins.2013.02.008
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
https://doi.org/10.1007/s10710-013-9210-0
https://doi.org/10.1007/978-3-319-01436-4_10

	Abstract
	1 Introduction
	2 Related Work
	2.1 Semantics
	2.2 Semantics with Traces in Program Synthesis
	2.3 Semantic Operators
	2.4 Semantic Crossover for Program Synthesis

	3 Effective Semantic Operators for Program Synthesis
	3.1 Effective Semantic Crossover for Program Synthesis
	3.2 Effective Semantic Mutation for Program Synthesis

	4 Experimental Setup
	5 Results
	5.1 Successful Runs and Fitness
	5.2 Semantics
	5.3 Semantic Comparisons
	5.4 Parent Comparison

	6 Conclusion & Future Work
	7 Acknowledgments
	References

