

Open Issues in Genetic Programming

Michael O’Neill, Leonardo Vanneschi,
Steven Gustafson & Wolfgang Banzhaf

UCD, Universidade Nova de Lisboa,

GE Global Research, Memorial University of Newfoundland
m.oneill@ucd.ie, lvanneschi@isegi.unl.pt,

steven.gustafson@research.ge.com, banzhaf@cs.mun.ca

http://www.sigevo.org/gecco-2013/

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6–10, 2013, Amsterdam, The Netherlands.
ACM 978-1-4503-1964-5/13/07.

2

Instructors/Presenters
 Michael O’Neill

 Leonardo Vanneschi

 Steven Gustafson

 Wolfgang Banzhaf

The image cannot be displayed. Your computer may not have
enough memory to open the image, or the image may have
been corrupted. Restart your computer, and then open the file
again. If the red x still appears, you may have to delete the
image and then insert it again.

3

Tutorial Outline

  Introduction & Motivation
 Open Issues in GP
 Questions & Discussion

4

Introduction & Motivation

 ++

O'Neill M., Vanneschi L., Gustafon S., Banzhaf W. (2010).
Open Issues in Genetic Programming.
Genetic Programming and Evolvable Machines 11(3-4):339-363
http://www.springerlink.com/content/a058142636361453/fulltext.pdf

5

Introduction

 GP in 30 seconds
 Why isn’t GP more popular?
 Some stats & interesting results
 Historic time for GP with rise of Data Science
 Objective of tutorial

•  Identify roadblocks
•  Suggest future areas of research

6

GP in 30 Seconds

 Method for modeling data or learning behavior –

regression models or robot control

Data & Params

Evaluate and Rank Solutions

Generate New Solutions w/ bias*

* First set of solutions usually “randomly” created

Output best “solution”

7

GP in 30 Seconds

 Search over solution structure & parameters

+

x

3 A

B

8

GP in 30 Seconds

  Input way of measuring success

+

x

3 A

B
Y x Solution A

result
7 2 7
1 3 9
0 1 5
4 6 15

Solution A

GP in 30 Seconds

 Input things a solution are built out of

+

+

3 x

x
% * sin() 3.14 7 9 x^(t-1)

GP in 30 Seconds

 Decide when to stop

After so many solutions sample

After no new good solutions found

After a solution of a given quality is found
?

Why Open Issues? Who cares?
 It is pretty popular!

 Publications, Conferences, Results in broad fields
•  Bioinformatics
•  Regression modeling
•  Robotics, and many others! (we’ve been to space!) ?

 How to raise the bar?
 Stochastic methods are often second choice due to

lack of theory and predictable space, time complexity

Why Open Issues? Who cares?

 And… good for the community to step
back and think where we need help

 And… we are at a historic time…

Historic time with Data Science

 Software, data and analytics driving new revolution in
Industry, Gov’t and Society!

 Data science postings and tools exploding
 Lipson named an Influential data science by a Forbes

study due to GP work (Science paper)
 Data science right in GP best (SG’s opinion) application:

symbolic regression!

Historic time with Robots

 DARPA Humanoid challenge
 Human assisted bots (please clean my house)
 Advanced manufacturing
 More controls and cybernetics than we “probably” can

scale in current way

Objective of Tutorial

  Identify and discuss issues
 Suggest possible new research areas
  Interaction and discussion

 As long members of community, we feel a bit like GP-
startup-employees, we want it to succeed! Help us make
it succeed!

16

Open Issues

1.  Generalization STEVE
2.  Complexity STEVE
3.  Representations MIKE
4.  Modularity MIKE
5.  Dynamic problems MIKE
6.  Open-ended evolution MIKE
7.  Fitness landscapes and problem difficulty LEO
8.  Semantics LEO
9.  Influence of Biology WOLFGANG
10.  Benchmarks LEO

#1 Generalization

 What do we mean?
 How is it different than other ML methods?
 What can we do?

Generalization – What?

 Given a domain, we solve instances using GP
 The resulting model performs well over those instances
 Did we sample the space well? Will new data surprise

us?
 Also, in practice, data ‘drifts’ and changes over time… will

the GP model perform well?

Generalization – Different?

 Nope, not at all!
 All data driven methods suffer from this
 How do find a model that best represents the “true”

underlying thing that generates the data?

 Unscientific evidence suggests a lot of GP papers do not
adequately address this… why?

Generalization – Different?

 Asymmetrical data/algorithm in GP
 GP requires a lot of algorithm prep work, more than say a

Random Forest or Neural Net
 Also, GP is often applied in data starved areas (robot

control) or particularly challenging problems (nonlinear
model)

 Does that effort, combined with higher computational
cost, lead to lack of rigor with generalization?

Generalization – Different?

 Another difference…
 GP finds models and parameters that “can” be inspected
 Easier path to domain subject matter expert acceptance
 Easier transport of models to other environments… if (a

big if) no tricks inside evaluation
 Compare to Random Forest, Neural Net, etc

Generalization - How

 Good problem setup
•  Train, test, validation and data processing

 Thoughtful objective function creation
•  No tricks or shortcuts, should be real-world like

 Good honest empirical evaluation
•  Significant, meaningful and SME validated

 After that, same as all other supervised ML
•  Put ‘control system’ around to monitor drift, etc.

Generalization – Next Steps

 More research into generalization significance, is
asymmetric problem real?

 More research into solution simplification for SME
validation and model transport

 More rigor in reviewing… one problem, one instance
does make interesting results!

 What else?
 Questions?

Further Reading

 Kushchu, I. An evaluation of evolutionary generalization
in genetic programming. Artificial Intelligence Review 18,
1 (2002), 3–14. Nice introduction, overview and example.

 Gagne, C., Schoenauer, M., Parizeau, M., and
Tomassini, M. Genetic programming, validation sets, and
parsimony pressure. In EuroGP2006. Using
train,test,validation data plus complexity pressure was
best.

#2 The Complexity of GP

 Not run time, although related
 Complexity of user experience and

implementation
 How do we make it simpler out of the box?

Complexity – Run time

 Heuristic search method, slow
 Search over structure and parameters, slow
 Dependent on an evaluation function, slow
 Usually requires solution ‘compile’, slow

 In terms of algorithm complexity, no magic
bullets, but many opportunities for improving

 … come back to this… but

Complexity – of GP

 How to make it simpler… what do we mean
 For example, some of the decision points

•  Functions, terminals
•  Objective function
•  Initialization
•  Operators
•  Selection pressure and operators
•  Bloat / size pressures
•  Stopping criterion
•  Oh, and generalization setup!

Complexity – of GP and more

 Within each decision, even more
•  Operators: interactions and mix
•  Selection pressure: replacement, archives, etc

 What is a minimal, viable GP algorithm?
•  Koza is still most often cited
•  Should it be by domain… GP-SR, GP-robot, etc

 Or, do we do meta-GP, add more algorithm
complexity for simpler User Experience?

Complexity – One more thing

 Model interpretation is big benefit
 However, complexity of solutions high (big

trees)
 Given a solution, which is product of

evolution, i.e. non-”efficient” search, how to
minimize with performance tradeoffs

 Should it be a post-search add-on or handled
with Pareto archives, multi-objective, bloat /
complexity control?

Complexity – One more thing

Complexity – Next Steps

 Research on simplification, approximations and
Knowledge Extraction

 Research into Minimal, Viable GP (not smallest
code base!)

 … and a canonical paper (not Koza ‘92)
 … that could be YOU!
 Research into VERY FAST systems… cloud,

GPU, whatever… automating search can only
help! (plug for MIT+GE work)

Further Reading

 Meta-learning – evolve an GP with a EA/GP,

search parameter space
 Bloat, growth control – find least complex

solutions
 Tiny GP competition and results
 GP-like alternatives: Hill-climbing like search (Poli

and Langdon book, others), Incremental Program
induction (Schmidhuber), others

33

#3 Representations

  Identifying appropriate representations for GP
…..ideally based on some measure(s) of quality that capture the
relationship between the fitness landscape and the search process.

34

Difficulty of Representation

  Hard to impossible to identify an optimal GP representation

  …but given a better understanding of the relationship between

representation and search, differentiation between alternatives may
be possible.

35

What’s a Representation?

 Representation = “genetic” encoding + “genetic” operators

36

Representation for GP

 •  Individual is OR represents/encodes a program

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main(int argc, char* argv){

float x=0.0, y=0.0, z=0.0;

x=atof(argv[1]);

y=atof(argv[2]);

z=atof(argv[3]);

x = 2.0*sin(y) + 4.0*sin(x);

z = (x*x) + exp(z);

printf(“The answer is: z=%f\n”,z);

return(0);

}

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void turnLeft(float degrees);

void turnRight(float degrees);

void moveForward(float distance);

int main(int argc, char* argv){

turnLeft(90);

if(sensorValue(0) > 1000)

moveForward(10);

else

turnRight(90);

return(0);

}

37

Attributes of GP

“Tell the computer what to do, not how to do it.”

Arthur Samuel, 1959

John Koza’s (1999) AP Attributes…
•  Start with high-level problem description that results in a solution in the form of a computer program

•  Automatically determine the programs size and architecture

•  Automatically organise a group of instructions so that they may be re-used by a program

•  Problem-independence

•  Scalability to larger versions of the same problem

•  Capability of producing human competitive results

•  Evolutionary Automatic Programming/Genetic Programming…

38

Many Representations for GP

 machine code, FSA, trees, strongly-typed, graph, linear,
linear-graph, grammars, generative/developmental…

39

“Vanilla” GP
Koza popularised Lisp S-expressions…

•  Expressions (trees) generated from

•  Function Set: boolean, arithmetic, loops, user-defined functions…

•  Terminal Set: inputs, constants, variables, …

40

“Vanilla” GP Features

Sufficiency
•  Function+Terminal sets: powerful enough to represent a solution

Parsimony
•  Smaller Function+Terminal sets are better

Closure
•  Each function should gracefully handle all values it ever receives

•  (/ 5 0) !?!

41

Evolving Representation!

 Why not “evolve it”!?!?

 Examples include…
•  Langdon’s Data Structures
•  Spector’s “Autoconstructive” Evolution
•  Banzhaf’s Evolution of “genetic code”
•  ?Hyperheuristics

42

Representation Open Issues

 What is the best representation for my problem?
•  computationally “sufficient”
•  facilitate navigation (e.g., see Semantic Operators later)
•  automatically identify and manipulate abstractions/modules
•  handle variable dimensions…

 How do we compare representations?
•  E.g., locality, redundancy and scaling

 Need more rigorous/formal analysis…

43

Representation Open Issues

 What ever happened to evolving algorithms?

44

#4 Modularity & Scalable GP

  Define a clear measure of success for what it means to achieve
“Scalable GP” as well as modularity

  How well does GP scale to problems of increasing complexity/
difficulty?

  How can we improve scalability of GP?
  Given representations in GP can evolve, what is scalability in GP

anyway?

45

Approaches to Modularity

  Many approaches…
•  E.g., ADF’s, architecture-altering operators (Koza), Genetic Library Builder (GLiB -

Angeline & Pollack), Adaptive Representation through Learning (Rosca),
Automatically defined macros (Spector), reuse of “concepts” (Seront), lambda
abstraction (Yu), linear-gp register reuse & repeated patterns (Langdon &
Banzhaf), module repository (Majeed & Ryan), sub-graph encapsulation (Walker &
Miller), Run Transferable Libraries (Keijzer et al), functional modularity (Krawiec &
Wieloch), grammar-defined functions (O’Neill, Hemberg, Harper, Swafford),
Swafford PhD thesis (2013)

46

Modularity & Evolution

  Modularity & Evolvability (Altenberg)…modularity may have positive
effect on “alignment” between spaces of phenotypic variation and
selection gradients

  Evidence for dynamic environments leading to emergent modularity
(Kashtan)

47

Modularity
  Mechanism to

•  protect parts of individuals from disruption
•  achieve abstraction and parameterisation

  What’s the best way to
•  automatically identify modules?
•  achieve automatic abstraction
•  achieve automatic manipulation of modules

–  E.g., architecture altering operators

  Is modularity critical to scalability?
  How are modules used? Can their use guide search operators?

  Can we achieve modularity, hierarchy and reuse in a more principled
manner? (e.g., software eng – or should we even consider these human-centric approaches?)

48

#5 Dynamic Problems

 The “natural environment” for artificial evolution!

 Dynamic in so many ways:
•  Type of change (e.g., constraints, fitness landscape,

combinations)
•  Degree
•  Frequency
•  Combinations of all of the above!

 Mind-shift from optimisation to “survival”

49

Dynamic Problems with GP

 Can borrow strategies from broader EC literature

•  E.g., Branke (2001) and Morrison (2004)

  GP inherently dynamic!
•  Co-evolving

–  Structure
–  Parameters

•  Dimensionally dynamic!

50

Dynamic Problems – lots to do!

 Little formal analysis of GP in dynamic env’s

•  E.g., Bloat - Langdon & Poli (1998), population sizing - Tu &
Banzhaf (2009) & Vanneschi (2009), constant evolution – time
series - Dempsey (2009)

 Recall (Kasthan) emergent modularity
•  Also, dynamic environments can provide more efficient search
•  some evidence for GP in specific cases (O’Neill)

51

#6 Open-ended Evolution

 Designing an evolutionary system capable of continuously
adapting and searching…(can also mean un-directed search)

  Essential
•  Feedback loops

–  Dynamic environment
–  Co-evolutionary processes

•  Continuously injected randomness

52

#6 Open-ended Evolution

 EC & ALife have failed!

  What are the missing ingredients for artificial evolution to achieve the open-ended emergence of
complexity, innovation and adaptation witnessed in nature?

53

 #7 Fitness Landscapes and
Problem Difficulty in GP

54

Fitness Landscape

55

Example

S = { i | i ∈ & 0 ≤ i ≤ 15 } N

∀ i ∈ S, f(i) = number of "1"s in the binary representation of i

Neighborhood: j ∈ Ni ⇔ | j - i | = 1

56

Fitness Landscape

Hill Climbing

57

Remark that...

if we consider exactly the same problem, but with a different neighborhood
structure:

S = { i | i ∈ & 0 ≤ i ≤ 15 } N

∀ i ∈ S, f(i) = number of "1"s in the binary representation of i

Neighborhood: j ∈ Ni ⇔ j and i differ by just 1 bit

There are no local optima in this fitness landscape!
(every individual that is different from the global optimum has at least one
neighbor better than him, that can be obtained by changing a 0 into a 1).

58

Another Case (“CONO” Problem)
S = { vectors of prefixed length of real numbers included in [0,10] }

∀ i ∈ S, f(i) = distance to a prefixed (and known and unique) global optimum

Example

[5.2, 6.4, 2.1, 4.9, 3.7]

A solution i

[8.0, 6.0, 4.0, 7.0, 5.0] The global optimum

closer!

[5.8, 6.4, 2.9, 4.9, 3.6]

A solution j neighbor of i

Neighborhood: j ∈ Ni ⇔ j is equal to i except for the random perturbation of
 some of its coordinates of a quantity included in [0,1].

59

Importance of Fitness Landscape

It gives a visual intuition of the facility or difficulty of a search agent (like Hill
Climbing, but also Evolutionary Algorithms) to find the global optimum.

•  Smooth landscape, with only one "peak" (global optimum)
 easy problem

•  Rugged landscape, with many local optima
 hard problem

Limitation of fitness landscapes
It is generally impossible to draw a fitness landscape:

•  Huge search space

•  Huge neighborhoods (multi-dimensionality!)

60

Objective of Problem Hardness Studies

Find indicators of problem hardness (that typically capture some
important characteristics of the fitness landscape and) that can give
insight on the ability of a GP configuration to solve the problem....

•  Without having to run GP

•  Without having to draw the fitness landscape

61

Autocorrelation [Kinnear, 1994]

Proposed measure of problem hardness for GP: autocorrelation function
(Weinberg in 1990 and Manderick in 1991 had studied the same measure for
GAs).

Basically no clear relationship between
autocorrelation values and problem hardness
was observed for GP

62

Difficulty and Neutrality [T. Yu, J. Miller 2001]

Larger amount of neutrality allow GP to generate
fitter individuals, in particular for hard problems

(results criticized in [Collins, 2005])

63

Fitness-Distance Correlation (fdc)
(Introduced in [Jones et al., 1995] for GAs)

Hypothesis: what makes a problem easy or hard is the relationship between
fitness of individuals and the structural similarity of individuals to the optimum.

Example
Let's suppose that the global optimum is:

100 fitness (phenotype)

structure (genotype)

64

14

Difficult Problem

Easy Problems
15

30 55 74 83

45 72 86 100

the more fitness increases (improves), the more individuals are
different from the optimum

the more fitness increases (improves),
the more individuals are similar to the
optimum

100
optimum =

65

Fitness Distance Correlation (fdc) [T. Jones, 1995]

Let D = {d1, d2, …, dn} be the n distances to the global optimum, then

Given a sample of n individuals, let's suppose to know:

•  the set F = {f1, f2, …, fn} of the individual fitnesses

•  the genotype of the global optimum (individual with the best fitness)

•  a measure to express the genotypic distance between individuals

fdc is the correlation between sets F and D

66

•  Counterexamples exist

•  It is not predictive

Optima must be known « a priori »
(this makes fdc « almost» unusable in practice)

A new measure must be defkned to quantify the
difficulty of real-life problems.

A measure that has been proposed is based on
the concept of fitness cloud.

Summary of the Results obtained
by fdc in GP [Vanneschi et al., 2004]

Fdc is a very reliable measure of difficulty for a large set of problems.

Fdc also has some drawbacks:

67

Fitness Clouds
(First introduced for binary landscapes in [Vérel et al., 2003])

For each individual γ (in a sample or in the whole search space) a point is plotted:

Fitness

•  abscissa = fitness value of γ

f

fitness cloud

Fitness of Neighbors

•  ordinate = fitness value of a "particular" neighbor (chosen randomly or by
 some particular techniques).
 here: neighbor = individual obtained by applying one step of mutation to γ

f ~

68

Negative Slope Coefficient (nsc) [Vanneschi et al., 2004]

Summary of results
•  Good hardness indicator for:

•  Trap Functions
•  Royal Trees
•  Binomial-3 Problem [Daida et al., 2001]
•  Even Parity Problem [Koza, 1992]
•  Artificial Ant on the Santa Fe Trail [Koza, 1992]
•  ... (also some real-life applications)

•  Many ways of calculating the nsc have been used:
•  Number of neighbors for each sampled individual
•  Number of mutations to generate neighbors
•  Different types of mutations to generate neighbors
•  Different techniques to partition the fitness clouds into bins

•  nsc is predictive ⇒ it can be used on any problem
•  nsc has not been normalized yet into a given range
 (classification of different problems by their difficulty)
•  A theoretical justification for nsc in [Poli, Vanneschi,
 GECCO 2007]. Some problems of the nsc for GAs in
 [Vanneschi, Valsecchi, Poli, GECCO 2009]

69

#8 Semantics in GP

•  Fitness: a measure on the error on the training set, i.e.,distance
between the output vectors of f and the target output vector
F(f)=D(f(I),O) (ERROR AS DISTANCE)

GP as a Machine Learning Method
(supervised learning)

•  Known: the correct outputs for a fixed given set of inputs {Ii, Oi}

•  Sought: a function belonging to a certain class that interpolates
those points, i.e., f(Ii)= Oi for any i

•  Output vector: the vector of the outputs of f is f(I)=(f(Ii))

semantics ([Moraglio et al., 2012]
 and many others...)

70

71

Semantic Diversity #1

[McPhee et al., 2008]

Use of truth tables to analyze behavioral changes in crossover for boolean problems

Considered the semantics of two components in each tree: semantics of subtrees
and semantics of context (the remainder of an individual after removing a subtree).

Measured the variation of these semantic components throughout the GP
evolutionary process.

Fixed-semantic subtrees: subtrees such that the semantics of the entire tree does
not change when they are replaced by another subtree.

There may be many fixed semantic subtrees
when the tree size increases during evolution;
thus it becomes very difficult to change the
semantics of trees with crossover and mutation.

72

Semantic Diversity #2
[Beadle and Johnson, 2008]

Semantic is used to define an algorithm called Semantically Driven Crossover
(SDC).

SDC has been developed based on analysis of the behavioral changes caused by
crossover.

Use of a canonical representation of members of the population (Reduced Ordered
Binary Decision Diagrams-ROBDDs) to check for semantic equivalence without
having to access the fitness function: two trees are semantically equivalent if and
only if they reduce to the same ROBDD.

This is used to determine which participating individuals are copied into the next
generation. If the offspring are semantically equivalent to their

parents, the children are discarded and the crossover is
repeated.

Increased semantic diversity in the evolving population,
and a consequent improvement in the GP performance.

73

Semantic Diversity #3

[Beadle and Johnson, 2009]

Previous work extended to mutation: semantics is used to test the effects of
behavioral control at the point of the mutation operator.

Presented Semantically Driven Mutation (SDM), which can explicitly detect and
apply behavioral changes caused by the syntactic modifications in programs caused
by mutation.

SDM does not allow mutated programs to be produced when they are behaviorally
equivalent to the original program. The aim of this is to avoid getting stuck in areas
of the semantic/search space that have already been investigated.

As in [Beadle and Johnson, 2008], the key feature of
the semantically driven operator is the ability to
canonically represent programs in such a way that it is
possible to compare them, looking for equivalent
behaviors.

74

Semantic Locality

[Nguyen et al., 2010]

Investigation of the role of syntactic locality and semantic locality of crossover.

The results show that improving syntactic locality reduces code growth, and that
leads to a slight improvement of the ability to generalize.

By comparison, improving semantic locality significantly enhances GP
performance, reduces code growth and substantially improves the ability
of GP to generalize.

75

Semantic Diversity + Locality #1

[Nguyen et al, 2009(a)]

Semantics Aware Crossover (SAC), a crossover operator promoting semantic
diversity, based on checking semantic equivalence of subtrees.

[Nguyen et al, 2011]

Extended to Semantic Similarity based Crossover (SSC), which turned out to
perform better than both standard crossover and SAC

Objective: incorporate semantics into the design of new crossover operators, so as
to maintain greater semantic diversity and provide higher locality than standard
crossover.

76

Semantic Diversity + Locality #2

[Nguyen et al, 2009(b)]

SSC extended to mutation leading to Semantic Similarity based Mutation
(SSM).

Superior performance of SSM compared to standard mutation.

77

Geometry in the Semantic Space

[Krawiec and Lichocki, 2009] + [Krawiec, 2012]

Proposed a class of crossover operators for GP aimed at making offspring
programs intermediate (or medial) with respect to parent programs in the
semantic space (geometric).

Suggested that the prospects of designing a crossover operator that works in the
genotype space and behaves geometrically in the corresponding semantic space
are gloomy in GP, given the complexity of the genotype-phenotype mapping.

Hence, rather than guaranteeing the geometric behavior, their operator tries to
approximate it by analyzing the offspring after it has been created.

This limitation is overcome by the geometric semantic
operators proposed in [Moraglio et al., 2012],
discussed in the continuation.

Is it possible to define transformations on the syntax of individuals that
have known effects on their semantics?

GP Geometric Semantic Operators
[Moraglio et al., 2012]

78

Objective:

Syntax Semantics
?

? Ball Mutation

79

Syntax Semantics

P1

P2

Offspring

?
?

Geometric
XO

80

Ball Mutation on the Semantic Space

If
a transformation on the syntax of an individual whose effect is
ball mutation on the semantic space can be found

a unimodal fitness landscape can be induced on any
problem consisting in matching input data into known targets
(e.g. regressions and classifications)

Then

81

Problem mapped into the “CONO”.

Geometric XO on the Semantic Space

If
a transformation on the syntax of individuals whose effect is
geometric crossover on the semantic space can be found

Then
the offspring is not worse than the worst of its parents

P1

P2

O

T

82

Is it a dream?

Yes... but turning into reality

Those operators have been defined:

A. Moraglio, K. Krawiec, and C. G. Johnson.
Geometric semantic genetic programming.
In C. A. Coello Coello, et al., editors, Parallel Problem Solving
from Nature, PPSN XII (part 1), volume 7491 of Lecture Notes
in Computer Science, pages 21–31. Springer, 2012.

83

Geometric Semantic Crossover [Moraglio et al., 2012]

TR = Random function with codomain [0, 1]

TR

TR

T1 T2

TXO =

84

Geometric Semantic Mutation [Moraglio et al., 2012]

TM =

+

T *

ms -

TR1 TR2

TR1 , TR2 = Random functions

85

Drawback of Geometric Semantic Operators

These operators, by construction, always produce offspring that are larger
than their parents, causing an exponential growth in the size of the
individuals [Moraglio et al., 2012]

This renders them useless in practice.

A solution that has been proposed: “simplification” of the individuals during
the evolution. But….

86

An Efficient Implementation

We propose a new implementation of Moraglio’s geometric
semantic operators that is efficient and does not imply any online
simplification phase and thus allows us to use them on complex
real-life applications!

87

In:
A New Implementation of Geometric Semantic GP Applied to Predicting
Pharmacokinetic Parameters.
L. Vanneschi, M. Castelli, L. Manzoni, S. Silva.
Accepted for publication in the EuroGP 2013 Proceedings
Lecture Notes in Computer Science.

Summary of the results obtained

•  An efficient implementation of geometric semantic operators, that has
allowed us to use them on real-life applications.

•  Excellent results on the studied applications.

•  New insights about the generalization ability of geometric semantic
operators (without the novel implementation that allowed us to use
geometric semantic GP on these complex real-life problems, this interesting
property would probably remain unnoticed).

88

Major open issue

The reconstruction of the expression of the best individual, even though
we do it only once and after the termination of the run, is still an issue:

Individuals after hundreds of generations get so huge that it may be impossible
to reconstruct their entire expression (even though it is possible to get some
information about it, such as the features or primitives it uses...).

Models generated by geometric semantic GP are black (or at least “dark
gray”) boxes!

We are working on this!

89

90

#9 The Influence of Biology

 Weaknesses of current paradigm
 The trade-off
 Opportunities
 Reversing the flow

91

Weaknesses of current Paradigm

 Fixed representation
 Static fitness functions
 Closed systems
 Our notion of genes
 Simple maps from genotype to phenotype
 Pre-determined operator features
 No role for non-expressed material
 Direct passing of genes without further qualifications
 Scalability

92

Our Notion of Genes …

 From …
 EC genes that fully determine phenotypic outcomes
 Genes as “coding sequences”

 … to …
 Genes as regulating units
 The operon model

From: Scherrer/Jost: Theory Biosci., 2007

93

… has to develop …

 … to
 Expression management of
 Highly intricate complexes

 Chromosomes and chromatin structures
 Regulation, transcription, splicing
 Editing of intermediate products (RNA)
 Translation in ribosomes
  …. to function

From: Scherrer/Jost: Theory Biosci., 2007

94

The Central Dogma is dead
  The linear flow of information from DNA
  to function is a grave oversimplification

  The picture now is complex and bidirectional,
  closing loops and forming networks

From: Banzhaf et al: Nature Rev. Gen., 2006

95

No role for non-expressed material

From: Frith,Pheasant, Mattic: Eur. J. Hum., 2005

96

Trade-Offs

 Level of abstraction in models
 Potential for harvesting useful features
  Increased simulation time for evolutionary processes
 More emergent phenomena ?

97

Opportunities

 Epigenetics
 Multi-level selection
 Regulatory networks
 Multi-cellularity and Development
 Self-modifying genomes
 Research into novelty, innovation and creativity

98

#10 GP Needs Benchmarks

99

Published Use of Benchmarks
Survey of EuroGP and GECCO's GP Track from 2009 to 2011.
183 articles using 471 problem instances.

Limited variety e.g. 26% of papers involving
symbolic regression used the quartic equation.

100

“De Facto” Banchmarks

101

What makes for a good benchmark?

•  Tunably Dicult
•  Varied
•  Relevant (Real World? Constructed?)
•  Fast (?)
•  Accommodating to Implementors
•  Supports good empirical method (e.g. problem generation)
•  Easy to interpret and compare
•  Representation Independent
•  Precisely Defined (to an extent!)
•  Known global optimum?

102

A Good Starting Point

James McDermott
David R. White
Sean Luke
Luca Manzoni
Mauro Castelli
Leonardo Vanneschi
Wojciech Jaskowski
Krzysztof Krawiec
Robin Harper
Kenneth De Jong
Una-May O'Reilly
... and many many others (sorry if I forgot to include your name!)

103

#11 Miscellany…

 Algorithm Induction
 Halting Problem
 Domain Knowledge
 Usability
 GP Theory
 Constants
 Visualisation…

(…and we never mentioned BLOAT! )

104

Conclusions

•  Can we increment GP generalization ability?
•  Is there a better way to deal with programs’ complexity?
•  How to choose the right representation for a problem?
•  What is the best way of using GP in dynamic environments?
•  How can we measure/predict the ability of GP to solve a problem?
•  How can we use sematic awareness to improve GP?
•  Can we exploit the richness of nature better then we currently do?
•  ...

So many open issues...

One big objective...
Let GP become a trusted mainstream
member of the computational problem
solving toolkit.

Why not yet?

105

Questions & Discussion

106

Acknowledgements
  The impetus for this article arose out of the EuroGP 2008 debate on Grand

Challenges of Genetic Programming which took place on 27 March 2008 at the Evo*
event in Naples, Italy. In particular we thank the two other panel members, Nic
McPhee and Riccardo Poli, and also the many members of the audience who
participated in the debate. Many of these issues have been raised on multiple
occasions at previous (and subsequent) EuroGP debates so this inspired us to put
these ideas on paper to open the debate to a wider audience. MO’N acknowledges
support of Science Foundation Ireland under Grant No. 08/IN.1/I1868 and 08/SRC/
FM1389. WB acknowledges support from the Canadian National Science and
Engineering Research Council (NSERC) under discovery grant RGPIN 283304-07.

107

References
  Altenberg, L. NK fitness landscapes. In Section B2.7.2 in Handbook of Evolutionary Computation (1997), T. Back

et al., Ed., IOP Publishing Ltd and Oxford University Press, pp. B2.7:5 – B2.7:10.
  Altenberg, L. Modularity in evolution: Some low-level questions. In Modularity: Un- derstanding the Development

and Evolution of Complex Natural Systems, D. Rasskin- Gutman and W. Callebaut, Eds. MIT Press, Cambridge,
MA, USA, 2004. In press.

  Angeline, P. J. Two self-adaptive crossover operators for genetic programming. In Advances in Genetic
Programming 2, P. J. Angeline and K. E. Kinnear, Jr., Eds. MIT Press, Cambridge, MA, USA, 1996, ch. 5, pp.
89–110.

  Archetti, F., Lanzeni, S., Messina, E., and Vanneschi, L. Genetic programming for computational
pharmacokinetics in drug discovery and development. Genetic Pro- gramming and Evolvable Machines 8, 4
(Dec. 2007), 413–432. special issue on medical applications of Genetic and Evolutionary Computation.

  Asuncion, A., and Newman, D. UCI machine learning repository, 2007.
  Banzhaf, W. Editorial introduction to the first issue. Genetic Programming and Evolvable Machines 1 (2000), 5 –

6.
  Banzhaf, W., Beslon, G., Christensen, S., Foster, J., K ́ep`es, F., Lefort, V., Miller, J., Radman, M., and

Ramsden, J. From artificial evolution to computational evolution: a research agenda. Nature Reviews Genetics 7,
9 (2006), 729–735.

  Banzhaf, W., Francone, F. D., and Nordin, P. The effect of extensive use of the mutation operator on
generalization in genetic programming using sparse data sets. In 4th Int. Conf. on Parallel Problem Solving from
Nature (PPSN96) (1996), W. Ebeling et al, Ed., Springer, Berlin, pp. 300–309.

  Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. Genetic Programming – An Introduction; On the
Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, San Francisco, CA, USA,
Jan. 1998.

  Banzhaf, W., Poli, R., Schoenauer, M., and Fogarty, T., Eds. Proceedings of Ge- netic Programming, First
European Workshop, EuroGP’98, Paris,France, April 14-15, 1998 (Berlin, 1998), vol. 1391 of LNCS, Springer.

  Beadle, L., and Johnson, C. Semantically driven crossover in genetic programming. In Proceedings of the IEEE
World Congress on Computational Intelligence (Hong Kong, 1-6 June 2008), J. Wang, Ed., IEEE Computational
Intelligence Society, IEEE Press, pp. 111–116.

108

References (contd.)
  Bhattacharyya, S., Pictet, O., and Zumbach, G. Representational semantics for genetic programming based

learning in high-frequency financial data. In Genetic Pro- gramming 1998: Proceedings of the Third Annual
Conference (University of Wisconsin, Madison, Wisconsin, USA, 22-25 July 1998), J. R. Koza, W. Banzhaf, K.
Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, Eds., Morgan
Kaufmann, pp. 11–16.

  Bianco, S., Gasparini, F., Schettini, R., and Vanneschi, L. An evolutionary frame- work for colorimetric
characterization of scanners. In International Workshop on Evolutionary Computation in Image Analysis and
Signal Processing, EvoIASP 2008. Proceedings of Applications of Evolutionary Computing, EvoWorkshops 2008
(2008), M. Giacobini et al., Ed., vol. 4974/2008 of Lecture Notes in Computer Science, LNCS, Springer, Berlin,
Heidelberg, New York, pp. 245–254.

  Brameier, M., and Banzhaf, W. Linear Genetic Programming. No. XVI in Genetic and Evolutionary Computation.
Springer, 2007.

  Branke, J. Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, 2001.
  Burke, E. K., Hyde, M. R., and Kendall, G. Evolving bin packing heuristics with genetic programming. In Parallel

Problem Solving from Nature - PPSN IX (Reykjavik, Iceland, 9-13 Sept. 2006), T. P. Runarsson, H.-G. Beyer, E.
Burke, J. J. Merelo-Guervos, L. D. Whitley, and X. Yao, Eds., vol. 4193 of LNCS, Springer-Verlag, pp. 860–869.

  Cleary, R., and O’Neill, M. An attribute grammar decoder for the 01 multiconstrained knapsack problem. In
Evolutionary Computation in Combinatorial Optimization – Evo- COP 2005 (Lausanne, Switzerland, 30 Mar.-1
Apr. 2005), G. R. Raidl and J. Gottlieb, Eds., vol. 3448 of LNCS, Springer Verlag, pp. 34–45.

  Cramer, N. L. A representation for the adaptive generation of simple sequential pro- grams. In Proceedings of the
International Conference on Genetic Algorithms and Their Applications (Carnegie-Mellon University, Pittsburgh,
PA, July 1985), J. J. Grefenstette, Ed., pp. 183–187.

  Da Costa, L. E., and Landry, J.-A. Relaxed genetic programming. In GECCO 2006: Proceedings of the 8th
annual conference on Genetic and evolutionary computation (Seat- tle, Washington, USA, 8-12 July 2006), M.
Keijzer et al., Ed., vol. 1, ACM Press, pp. 937– 938.

  Daida, J. M., Bertram, R., Stanhope, S., Khoo, J., Chaudhary, S., and Chaudhary, O. What makes a problem
GP-hard? analysis of a tunably difficult problem in genetic programming. Genetic Programming and Evolvable
Machines 2 (2001), 165–191.

109

References (contd.)
  Daida, J. M., Li, H., Tang, R., and Hilss, A. M. What makes a problem GP-hard? validating a hypothesis of

structural causes. In Genetic and Evolutionary Computation – GECCO-2003 (2003), E. C.-P. et. al., Ed., vol.
2724 of LNCS, Springer-Verlag, Berlin, pp. 1665–1677.

  Darwin, C. On the Origins of the Species by Means of Natural Selection, or the Preser- vation of Favoured Races
in the Struggle for Life. 1859.

  Deb, K., Horn, J., and Goldberg, D. Multimodal deceptive functions. Complex Systems 7 (1993), 131–153.
  Dempsey, I., O’Neill, M., and Brabazon, A. Constant creation with grammatical evolution. International Journal of

Innovative Computing and Applications 1, 1 (2007), 23–38.
  Dempsey, I., O’Neill, M., and Brabazon, A. Foundations in Grammatical Evolution for Dynamic Environments, vol.

194 of Studies in Computational Intelligence. Springer, Apr. 2009.
  Eiben, A. E., and Jelasity, M. A critical note on experimental research methodology in EC. In Congress on

Evolutionary Computation (CEC’02) (Honolulu, Hawaii, USA, 2002), IEEE Press, Piscataway, NJ, pp. 582–587.
  Eka ́rt, A., and N ́emeth, S. Z. Maintaining the diversity of genetic programs. In Genetic Programming,

Proceedings of the 5th European Conference, EuroGP 2002 (Kinsale, Ire- land, 3-5 Apr. 2002), J. A. Foster, E.
Lutton, J. Miller, C. Ryan, and A. G. B. Tettamanzi, Eds., vol. 2278 of LNCS, Springer-Verlag, pp. 162–171.

  Eklund, S. E. Time series forecasting using massively parallel genetic programming. In Proceedings of Parallel
and Distributed Processing International Symposium (22-26 Apr. 2003), pp. 143–147.

  Evett, M., and Fernandez, T. Numeric mutation improves the discovery of numeric constants in genetic
programming. In Genetic Programming 1998: Proceedings of the Third Annual Conference (University of
Wisconsin, Madison, Wisconsin, USA, 22-25 July 1998), J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M.
Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, Eds., Morgan Kaufmann, pp. 66– 71.

  Fogel, D. Evolving computer programs. In Evolutionary Computation: The Fossil Record, D. Fogel, Ed. MIT
Press, 1998, ch. 5, pp. 143–144.

  Fogel, L., Owens, A., and Walsh, M. Artificial Intelligence through Simulated Evolu- tion. John Wiley, 1966.
  Fonlupt, C. Solving the ocean color problem using a genetic programming approach. Applied Soft Computing 1,

1 (June 2001), 63–72.
  Francone, F. The discipulus owner’s manual. URL: http://www.rmltech.com/technology overview.htm, 2004.

110

References (contd.)
  Francone, F. D., Nordin, P., and Banzhaf, W. Benchmarking the generalization capabilities of a compiling genetic

programming system using sparse data sets. In Genetic Programming: Proceedings of the first annual
conference (1996), J. R. Koza et al., Ed., MIT Press, Cambridge, pp. 72–80.

  Friedberg, R. A learning machine: Part 1. IBM J. Research and Development Vol. 2:1 (1958), 2–13.
  Friedberg, R., Dunham, B., and North, J. A learning machine: Part 2. IBM J. Research and Development (1959),

282–287.
  Gagne, C. Open beagle. URL: http://beagle.gel.ulaval.ca, 11 2007.
  Gagn ́e, C., Schoenauer, M., Parizeau, M., and Tomassini, M. Genetic programming, validation sets, and

parsimony pressure. In Genetic Programming, 9th European Conference, EuroGP2006 (2006), P. Collet et al.,
Ed., Lecture Notes in Computer Science, LNCS 3905, Springer, Berlin, Heidelberg, New York, pp. 109–120.

  Goldberg, D. E., and O’Reilly, U.-M. Where does the good stuff go, and why? how contextual semantics influence
program structure in simple genetic programming. In Proceedings of the First European Workshop on Genetic
Programming (Paris, 14-15 Apr. 1998), W. Banzhaf, R. Poli, M. Schoenauer, and T. C. Fogarty, Eds., vol. 1391
of LNCS, Springer-Verlag, pp. 16–36.

  Gustafson, S. An Analysis of Diversity in Genetic Programming. PhD thesis, School of Computer Science and
Information Technology, University of Nottingham, Nottingham, England, Feb. 2004.

  Gustafson, S., and Vanneschi, L. Operator-based distance for genetic programming: Subtree crossover distance.
In Genetic Programming, 8th European Conference, Eu- roGP2005 (2005), Keijzer, M., et al., Ed., Lecture Notes
in Computer Science, LNCS 3447, Springer, Berlin, Heidelberg, New York, pp. 178–189.

  Gustafson, S., and Vanneschi, L. Operator-based tree distance in genetic program- ming. IEEE Transactions on
Evolutionary Computation 12 (2008), 4.

  Hansen, J., Lowry, P., Meservy, R., and McDonald, D. Genetic programming for prevention of cyberterrorism
through dynamic and evolving intrusion detection. Decision Support Systems 43, 4 (2006), 1362–1374.

  Hemberg, E., Gilligan, C., O’Neill, M., and Brabazon, A. A grammatical genetic programming approach to
modularity in genetic algorithms. In Proceedings of the 10th European Conference on Genetic Programming
(Valencia, Spain, 11 - 13 Apr. 2007), M. Ebner, M. O’Neill, A. Eka ́rt, L. Vanneschi, and A. I. Esparcia-Alca ́zar,
Eds., vol. 4445 of Lecture Notes in Computer Science, Springer, pp. 1–11.

111

References (contd.)
  Hornby, G. ALPS: the age-layered population structure for reducing the problem of premature convergence. In

Proceedings of the 8th annual conference on Genetic and evolutionary computation (2006), ACM New York, NY,
USA, pp. 815–822.

  Hu, J., Goodman, E., Seo, K., Fan, Z., and Rosenberg, R. The hierarchical fair com- petition (hfc) framework for
sustainable evolutionary algorithms. Evolutionary Compu- tation 13, 2 (2005), 241–277.

  Hu, T., and Banzhaf, W. Neutrality and variability: two sides of evolvability in linear genetic programming. In
GECCO ’09: Proceedings of the 11th Annual conference on Genetic and evolutionary computation (Montreal,
8-12 July 2009), G. Raidl, F. Rothlauf, G. Squillero, R. Drechsler, T. Stuetzle, M. Birattari, C. B. Congdon, M.
Middendorf, C. Blum, C. Cotta, P. Bosman, J. Grahl, J. Knowles, D. Corne, H.-G. Beyer, K. Stanley, J. F. Miller,
J. van Hemert, T. Lenaerts, M. Ebner, J. Bacardit, M. O’Neill, M. Di Penta, B. Doerr, T. Jansen, R. Poli, and E.
Alba, Eds., ACM, pp. 963–970.

  Hu, T., and Banzhaf, W. The role of population size in rate of evolution in genetic programming. In Proceedings
of the 12th European Conference on Genetic Programming, EuroGP 2009 (Tuebingen, Apr. 15-17 2009), L.
Vanneschi, S. Gustafson, A. Moraglio, I. De Falco, and M. Ebner, Eds., vol. 5481 of LNCS, Springer, pp. 85–96.

  Jablonka, E., and Lamb, M. Evolution in four dimensions: Genetic, epigenetic, behav- ioral, and symbolic
variation in the history of life. MIT Press, 2005.

  Jakobovic ́, D., and Budin, L. Dynamic scheduling with genetic programming. In Pro- ceedings of the 9th
European Conference on Genetic Programming (Budapest, Hungary, 10 - 12 Apr. 2006), P. Collet, M. Tomassini,
M. Ebner, S. Gustafson, and A. Eka ́rt, Eds., vol. 3905 of Lecture Notes in Computer Science, Springer, pp. 73–
84.

  Jonyer, I., and Himes, A. Improving modularity in genetic programming using graph- based data mining. In
Proceedings of the Nineteenth International Florida Artificial Intelligence Research Society Conference
(Melbourne Beach, Florida, USA, May 11-13 2006), G. C. J. Sutcliffe and R. G. Goebel, Eds., American
Association for Artificial Intelligence, pp. 556–561.

  Kantschik, W., and Banzhaf, W. Linear-tree GP and its comparison with other GP structures. In Genetic
Programming, Proceedings of EuroGP’2001 (Lake Como, Italy, 18-20 Apr. 2001), J. F. Miller, M. Tomassini, P. L.
Lanzi, C. Ryan, A. G. B. Tettamanzi, and W. B. Langdon, Eds., vol. 2038 of LNCS, Springer-Verlag, pp. 302–
312.

112

References (contd.)
  Kantschik, W., and Banzhaf, W. Linear-graph GP—A new GP structure. In Genetic Programming, Proceedings of

the 5th European Conference, EuroGP 2002 (Kinsale, Ire- land, 3-5 Apr. 2002), J. A. Foster, E. Lutton, J. Miller,
C. Ryan, and A. G. B. Tettamanzi, Eds., vol. 2278 of LNCS, Springer-Verlag, pp. 83–92.

  Kashtan, N., and Alon, U. Spontaneous evolution of modularity and network motifs. Proceedings of the National
Academy of Sciences 102, 39 (Sept. 27 2005), 13773–13778.

  Kashtan, N., Noor, E., and Alon, U. Varying environments can speed up evolution. Proceedings of the National
Academy of Sciences 104, 34 (August 21 2007), 13711–13716.

  Katirai, H. Filtering junk E-mail: A performance comparison between genetic programming and naive bayes. 4A
Year student project, 10 Sept. 1999.

  Keijzer, M., Babovic, V., Ryan, C., O’Neill, M., and Cattolico, M. Adaptive logic programming. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2001) (San Francisco, California, USA, 7-11
July 2001), L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S.
Pezeshk, M. H. Garzon, and E. Burke, Eds., Morgan Kaufmann, pp. 42–49.

  Keller, R. E., and Poli, R. Toward subheuristic search. In In Proceedings of 2008 IEEE Congress on Evolutionary
Computation (2008), IEEE Press, pp. 3147–3154.

  Kinnear Jr., K. E. Fitness landscapes and difficulty in genetic programming. In Pro- ceedings of the First
IEEEConference on Evolutionary Computing (1994), IEEE Press, Piscataway, NY, pp. 142–147.

  Kirschner, M., Gerhart, J., and Norton, J. The plausibility of life: Resolving Dar- win’s dilemma. Yale Univ Pr,
2006.

  Kotanchek, M. The data modeler add-on package for mathematica. see http://www.evolved-analytics.com/
datamodeler, 72 2009.

  Koza, J. R. Hierarchical genetic algorithms operating on populations of computer programs. In Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence IJCAI-89 (Detroit, MI, USA, 20-25 Aug.
1989), N. S. Sridharan, Ed., vol. 1, Morgan Kaufmann, pp. 768–774.

  Koza, J. R. A genetic approach to the truck backer upper problem and the inter-twined spiral problem. In
Proceedings of IJCNN International Joint Conference on Neural Networks (1992), vol. IV, IEEE Press, pp. 310–
318.

  Koza, J. R. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, USA, 1992.

113

References (contd.)
  Koza, J. R. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge

Massachusetts, May 1994.
  Koza, J. R., Andre, D., Bennett III, F. H., and Keane, M. Genetic Programming 3: Darwinian Invention and

Problem Solving. Morgan Kaufman, Apr. 1999.
  Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., and Lanza, G. Genetic Programming IV: Routine

Human-Competitive Machine Intelligence. Kluwer Academic Publishers, 2003.
  Kushchu, I. An evaluation of evolutionary generalization in genetic programming. Artificial Intelligence Review 18,

1 (2002), 3–14.
  Langdon, W. A many threaded cuda interpreter for genetic programming. In Proceed- ings of the 13th European

Conference on Genetic Programming (2010), A. I. Esparcia-Alca ́zar, A. Eka ́rt, S. Silva, S. Dignum, and A. Uyar,
Eds., vol. LNCS 6021, Springer, pp. 146–158.

  Langdon, W., and Banzhaf, W. Repeated patterns in genetic programming. Natural Computing 7, 4 (2008), 589–
613.

  Langdon, W. B. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic
Programming!, vol. 1 of Genetic Programming. Kluwer, Boston, 24 Apr. 1998.

  Langdon, W. B., and Banzhaf, W. Genetic programming bloat without semantics. In Parallel Problem Solving
from Nature - PPSN VI 6th International Conference (Paris, France, 16-20 Sept. 2000), M. Schoenauer, K. Deb,
G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, Eds., vol. 1917 of LNCS, Springer Verlag, pp.
201–210.

  Langdon, W. B., and Banzhaf, W. Repeated sequences in linear genetic programming genomes. Complex
Systems 15, 4 (2005), 285–306.

  Langdon, W. B., and Banzhaf, W. Repeated patterns in genetic programming. Natural Computing 7, 4 (Dec.
2008), 589–613.

  Langdon, W. B., Gustafson, S., and Koza, J. R. GP Bibliography. http://www.cs.bham.ac.uk/ wbl/biblio/gp-bib-
info.html, 2008.

  Langdon, W. B., and Poli, R. Genetic programming bloat with dynamic fitness. In Proceedings of the First
European Workshop on Genetic Programming (Paris, 14-15 Apr. 1998), W. Banzhaf, R. Poli, M. Schoenauer,
and T. C. Fogarty, Eds., vol. 1391 of LNCS, Springer-Verlag, pp. 96–112.

  Langdon, W. B., and Poli, R. Foundations of Genetic Programming. Springer-Verlag, 2002.

114

References (contd.)
  Lee, W.-C. Genetic programming decision tree for bankruptcy prediction. In Proceedings of the 2006 Joint

Conference on Information Sciences, JCIS 2006 (Kaohsiung, Taiwan, ROC, Oct. 8-11 2006), Atlantis Press.
  Luke, S. ECJ. URL: http://cs.gmu.edu/ eclab/projects/ecj/, 2010.
  McConaghy, T., Leung, H., and Varadan, V. Functional reconstruction of dynamical systems from time series

using genetic programming. In 26th Annual Conference of the IEEE Industrial Electronics Society, IECON 2000
(Nagoya, 22-28 Oct. 2000), vol. 3, IEEE, pp. 2031–2034.

  McKay, R. I. B., Hoai, N. X., Whigham, P. A., Shan, Y., and O’Neill, M. Grammar-based genetic programming a
survey. Genetic Programming and Evolvable Machines (this issue) (2010).

  McPhee, N. F., Ohs, B., and Hutchison, T. Semantic building blocks in genetic programming. In Proceedings of
the 11th European Conference on Genetic Programming, EuroGP 2008 (Naples, 26-28 Mar. 2008), M. O’Neill, L.
Vanneschi, S. Gustafson, A. I. Esparcia Alcazar, I. De Falco, A. Della Cioppa, and E. Tarantino, Eds., vol. 4971
of Lecture Notes in Computer Science, Springer, pp. 134–145.

  Merelo, J., Keijzer, M., and Schoenauer, M. Eo evolutionary computation framework. URL: http://
eodev.sourceforge.net/, 2006.

  Mitchell, M., Forrest, S., and Holland, J. The royal road for genetic algorithms: fitness landscapes and ga
performance. In Toward a Practice of Autonomous Systems, Proceedings of the First European Conference on
Artificial Life (1992), F. J. Varela and P. Bourgine, Eds., The MIT Press, pp. 245–254.

  Mitchell, T. Machine Learning. McGraw Hill, New York, 1996.
  Montana, D. J. Strongly typed genetic programming. Evolutionary Computation 3, 2 (1995), 199–230.
  Moore, J., Andrews, P., Barney, N., and White, B. Development and evaluation of an open-ended computational

evolution system for the genetic analysis of susceptibility to common human diseases. Lecture Notes in
Computer Science 4973 (2008), 129–140.

  Moore, J., Greene, C., Andrews, P., and White, B. Does Complexity Matter? Artifi- cial Evolution, Computational
Evolution and the Genetic Analysis of Epistasis in common human Diseases. Genetic Programming Theory and
Practice VI (2008), 125.

  Morrison, R. Designing Evolutionary Algorithms for Dynamic Environments. Springer, 2004.
  Nguyen, Q. U., Nguyen, T. H., Nguyen, X. H., and O’Neill, M. Improving the generalisation ability of genetic

programming with semantic similarity based crossover. A. I. Esparcia-Alca ́zar, A. Eka ́rt, S. Silva, S. Dignum,
and A. Uyar, Eds., vol. LNCS 6021, Springer, pp. 184–195.

115

References (contd.)
  Nguyen, Q. U., O’Neill, M., Nguyen, X. H., McKay, B., and Lopez, E. G. Semantic similarity based crossover in

GP: The case for real-valued function regression. In Evolution Artificielle, 9th International Conference (26-28
Oct. 2009), P. Collet, Ed., Lecture Notes in Computer Science, pp. 13–24.

  Nicolau, M., Schoenauer, M., and Banzhaf, W. Evolving genes to balance a pole. A. I. Esparcia-Alca ́zar, A.
Ekart, S. Silva, S. Dignum, and A. Uyar, Eds., vol. LNCS 6021, Springer, pp. 196–207.

  Nordin, P., Banzhaf, W., and Francone, F. D. Introns in nature and in simulated structure evolution. In Bio-
Computation and Emergent Computation (Skovde, Sweden, 1-2 Sept. 1997), D. Lundh, B. Olsson, and A.
Narayanan, Eds., World Scientific Publishing.

  Oltean, M. Evolving evolutionary algorithms using linear genetic programming. Evo- lutionary Computation 13, 3
(Fall 2005), 387–410.

  O’Neill, M., and Brabazon, A. Recent patents in genetic programming. Recent Patents in Computer Science 2, 1
(2009), 43–49.

  O’Neill, M., McDermott, J., Swafford, J. M., Byrne, J., Hemberg, E., Shotton, E., McNally, C., Brabazon, A., and
Hemberg, M. Evolutionary design using gram- matical evolution and shape grammars: Designing a shelter.
International Journal of Design Engineering 3 (2010).

  O’Neill, M., and Ryan, C. Grammatical Evolution: Evolutionary Automatic Program- ming in a Arbitrary Language,
vol. 4 of Genetic programming. Kluwer Academic Publishers, 2003.

  O’Reilly, U.-M., and Hemberg, M. Integrating generative growth and evolutionary computation for form
exploration. Genetic Programming and Evolvable Machines 8, 2 (June 2007), 163–186. Special issue on
developmental systems.

  Orfila, A., Estevez-Tapiador, J. M., and Ribagorda, A. Evolving high-speed, easy-to-understand network intrusion
detection rules with genetic programming. In Applications of Evolutionary Computing, EvoWorkshops2009
(Tubingen, Germany, 15-17 Apr. 2009), M. Giacobini, I. De Falco, and M. Ebner, Eds., LNCS, Springer Verlag.

  P.Domingos. The role of Occam’s razor in knowledge discovery. Data Mining and Knowledge Discovery 3, 4
(1999), 409–425.

  Poli, R., and Graff, M. There is a free lunch for hyper-heuristics, genetic programming and computer scientists. In
Proceedings of the 12th European Conference on Genetic Programming, EuroGP 2009 (Tuebingen, Apr. 15-17
2009), L. Vanneschi, S. Gustafson, A. Moraglio, I. De Falco, and M. Ebner, Eds., vol. 5481 of LNCS, Springer,
pp. 195–207.

116

References (contd.)
  Poli, R., Graff, M., and McPhee, N. F. Free lunches for function and program induction. In FOGA ’09:

Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic algorithms (Orlando, Florida, USA,
9-11 Jan. 2009), ACM, pp. 183–194.

  Poli, R., Langdon, W. B., and Holland, O. Extending particle swarm optimisation via genetic programming. In
Proceedings of the 8th European Conference on Genetic Programming (Lausanne, Switzerland, 30 Mar. - 1 Apr.
2005), M. Keijzer, A. Tettamanzi, P. Collet, J. I. van Hemert, and M. Tomassini, Eds., vol. 3447 of Lecture Notes
in Computer Science, Springer, pp. 291–300.

  Poli, R., Langdon, W. B., and McPhee, N. F. A field guide to ge- netic programming. Published via http://lulu.com
and freely available at http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).

  Poli, R., and McPhee, N. F. Exact schema theorems for GP with one-point and standard crossover operating on
linear structures and their application to the study of the evolution of size. In Genetic Programming, Proceedings
of EuroGP’2001 (2001), J. Miller, M. Tomassini, P. L. Lanzi, C. Ryan, A. Tettamanzi, and W. Langdon, Eds., vol.
2038 of LNCS, Springer-Verlag, pp. 126–142.

  Poli, R., and McPhee, N. F. General schema theory for genetic programming with subtree swapping crossover:
Part I. Evolutionary Computation 11, 1 (2003), 53–66.

  Poli, R., and McPhee, N. F. General schema theory for genetic programming with
  subtree swapping crossover: Part II. Evolutionary Computation 11, 2 (2003), 169–206.
  Poli, R., and Vanneschi, L. Fitness-proportional negative slope coefficient as a hardness measure for genetic

algorithms. In Genetic and Evolutionary Computation Conference,
  GECCO’07 (2007), D. Thierens et al., Ed., ACM Press, pp. 1335–1342.
  Poli, R., Vanneschi, L., Langdon, W. B., and McPhee, N. F. Theoretical results in genetic programming: The next

ten years? Genetic Programming and Evolvable Machines (2010).
  Punch, B., Zongker, D., and Goodman, E. The royal tree problem, a benchmark for single and multiple population

genetic programming. In Advances in Genetic Pro- gramming 2 (Cambridge, MA, 1996), P. Angeline and K.
Kinnear, Eds., The MIT Press, pp. 299–316.

  Rissanen, J. Modeling by shortest data description. Automatica 14 (1978), 465–471.
  Rosca, J. P. Towards automatic discovery of building blocks in genetic programming. In Working Notes for the

AAAI Symposium on Genetic Programming (1995), AAAI, pp. 78–85.

117

References (contd.)
  Rothlauf, F. Representations for genetic and evolutionary algorithms, second ed. Springer-Verlag, 2006. First

published 2002, 2nd edition available electronically.
  Rothlauf, F., and Oetzel, M. On the locality of grammatical evolution. In Proceedings of the 9th European

Conference on Genetic Programming (Budapest, Hungary, 10 - 12 Apr. 2006), P. Collet, M. Tomassini, M. Ebner,
S. Gustafson, and A. Eka ́rt, Eds., vol. 3905 of Lecture Notes in Computer Science, Springer, pp. 320–330.

  Ryan, C., and Keijzer, M. An analysis of diversity of constants of genetic programming. In Genetic Programming,
Proceedings of EuroGP’2003 (Essex, 14-16 Apr. 2003), C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and E.
Costa, Eds., vol. 2610 of LNCS, Springer-Verlag, pp. 404–413.

  Seront, G. External concepts reuse in genetic programming. In Working Notes for the AAAI Symposium on
Genetic Programming (MIT, Cambridge, MA, USA, 10–12 Nov. 1995), E. V. Siegel and J. R. Koza, Eds., AAAI,
pp. 94–98.

  Shekhar, S., and Amin, M. B. Generalization by neural networks. IEEE Trans. on Knowledge and Data Eng 4
(1992).

  Silva, S., and Vanneschi, L. Operator equalisation, bloat and overfitting: a study on human oral bioavailability
prediction. In GECCO ’09: Proceedings of the 11th An- nual conference on Genetic and evolutionary
computation (Montreal, 8-12 July 2009), G. Raidl, F. Rothlauf, G. Squillero, R. Drechsler, T. Stuetzle, M. Birattari,
C. B. Congdon, M. Middendorf, C. Blum, C. Cotta, P. Bosman, J. Grahl, J. Knowles, D. Corne, H.-G. Beyer, K.
Stanley, J. F. Miller, J. van Hemert, T. Lenaerts, M. Ebner, J. Bac- ardit, M. O’Neill, M. Di Penta, B. Doerr, T.
Jansen, R. Poli, and E. Alba, Eds., ACM, pp. 1115–1122.

  Silva, S. G. O. GPLab. A Genetic Programming Toolbox for MATLAB, 2008. See http://gplab.sourceforge.net.
  Smith, S. A learning system based on genetic adaptive algorithms.
  Smola A. J. and B. Scholkopf. A Tutorial on Support Vector Regression. Tech. Rep. Technical Report Series -

NC2-TR-1998-030, NeuroCOLT2, 1999.
  Song, D., Heywood, M. I., and Zincir-Heywood, A. N. A linear genetic programming approach to intrusion

detection. In Genetic and Evolutionary Computation – GECCO- 2003 (Chicago, 12-16 July 2003), E. Cantu ́-Paz,
J. A. Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M.
Harman, J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska, and J. Miller, Eds., vol.
2724 of LNCS, Springer-Verlag, pp. 2325–2336.

118

References (contd.)
  Spector, L. Evolving control structures with automatically defined macros. In Working Notes for the AAAI

Symposium on Genetic Programming (MIT, Cambridge, MA, USA, 10–12 Nov. 1995), E. V. Siegel and J. R.
Koza, Eds., AAAI, pp. 99–105.

  Spector, L., and Robinson, A. Genetic programming and autoconstructive evolution with the push programming
language. Genetic Programming and Evolvable Machines 3, 1 (Mar. 2002), 7–40.

  Spencer, G. F. Automatic generation of programs for crawling and walking. In Advances in Genetic
Programming, K. E. Kinnear, Jr., Ed. MIT Press, 1994, ch. 15, pp. 335–353.

  Stadler, P. F. Fitness landscapes. In Biological Evolution and Statistical Physics (Heidelberg, 2002), M. Lassig
and Valleriani, Eds., vol. 585 of Lecture Notes Physics, Springer-Verlag, pp. 187–207.

  Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., and Tiwari, S. Problem definitions and
evaluation criteria for the cec 2005 special session on real- parameter optimization. Tech. Rep. Technical Report
Number 2005005, Nanyang Technological University, 2005.

  Teller, A., and Veloso, M. PADO: A new learning architecture for object recognition. In Symbolic Visual Learning,
K. Ikeuchi and M. Veloso, Eds. Oxford University Press, 1996, pp. 81–116.

  Tomassini, M., Vanneschi, L., Collard, P., and Clergue, M. A study of fitness distance correlation as a difficulty
measure in genetic programming. Evolutionary Com- putation 13, 2 (Summer 2005), 213–239.

  Vanneschi, L. Theory and Practice for Efficient Genetic Programming. PhD thesis, Faculty of Sciences,
University of Lausanne, Switzerland, 2004.

  Vanneschi, L., Castelli, M., and Silva, S. Measuring bloat, overfitting and functional complexity in genetic
programming. In GECCO ’10: Proceedings of the 12th Annual conference on Genetic and evolutionary
computation (2010), J. Branke, Ed.

  Vanneschi, L., and Cuccu, G. Variable size population for dynamic optimization with genetic programming. In
GECCO ’09: Proceedings of the 11th Annual conference on Genetic and evolutionary computation (Montreal,
8-12 July 2009), G. Raidl, F. Rothlauf, G. Squillero, R. Drechsler, T. Stuetzle, M. Birattari, C. B. Congdon, M.
Middendorf, C. Blum, C. Cotta, P. Bosman, J. Grahl, J. Knowles, D. Corne, H.-G. Beyer, K. Stanley, J. F. Miller,
J. van Hemert, T. Lenaerts, M. Ebner, J. Bacardit, M. O’Neill, M. Di Penta, B. Doerr, T. Jansen, R. Poli, and E.
Alba, Eds., ACM, pp. 1895–1896.

  Vanneschi, L., and Gustafson, S. Using crossover based similarity measure to improve genetic programming
generalization ability. In GECCO ’09: Proceedings of the 11th Annual conference on Genetic and evolutionary
computation (New York, NY, USA, 2009), ACM, pp. 1139–1146.

119

References (contd.)
  Vanneschi, L., Gustafson, S., and Mauri, G. Using subtree crossover distance to in- vestigate genetic

programming dynamics. In Genetic Programming, 9th European Con- ference, EuroGP2006 (2006), Collet, P., et
al., Ed., Lecture Notes in Computer Science, LNCS 3905, Springer, Berlin, Heidelberg, New York, pp. 238–249.

  Vanneschi, L., Rochat, D., and Tomassini, M. Multi-optimization improves genetic programming generalization
ability. In GECCO ’07: Proceedings of the 9th annual con- ference on Genetic and evolutionary computation
(London, 7-11 July 2007), D. Thierens, H.-G. Beyer, J. Bongard, J. Branke, J. A. Clark, D. Cliff, C. B. Congdon,
K. Deb, B. Do- err, T. Kovacs, S. Kumar, J. F. Miller, J. Moore, F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O.
Stanley, T. Stutzle, R. A. Watson, and I. Wegener, Eds., vol. 2, ACM Press, pp. 1759–1759.

  Vanneschi, L., Tomassini, M., Collard, P., and V ́erel, S. Negative slope coefficient. A measure to characterize
genetic programming. In Proceedings of the 9th European Conference on Genetic Programming (Budapest,
Hungary, 10 - 12 Apr. 2006), P. Collet, M. Tomassini, M. Ebner, S. Gustafson, and A. Eka ́rt, Eds., vol. 3905 of
Lecture Notes in Computer Science, Springer, pp. 178–189.

  Vladislavleva, E. J., Smits, G. F., and den Hertog, D. Order of nonlinearity as a complexity measure for models
generated by symbolic regression via pareto genetic programming. IEEE Transactions on Evolutionary
Computation 13, 2 (Apr. 2009), 333– 349.

  Wagner, A. Robustness and evolvability in living systems. Princeton University Press Princeton, NJ, 2005.
  Wagner, N., Michalewicz, Z., Khouja, M., and McGregor, R. Time series forecasting for dynamic environments:

The dyfor genetic program model. IEEE Transactions on Evolutionary Computation 11, 4 (2006), 433–452.
  Wedge, D. C., and Kell, D. B. Rapid prediction of optimum population size in genetic programming using a novel

genotype - fitness correlation. In GECCO ’08: Proceedings of the 10th annual conference on Genetic and
evolutionary computation (Atlanta, GA, USA, 12-16 July 2008), M. Keijzer, G. Antoniol, C. B. Congdon, K. Deb,
B. Doerr, N. Hansen, J. H. Holmes, G. S. Hornby, D. Howard, J. Kennedy, S. Kumar, F. G. Lobo, J. F. Miller, J.
Moore, F. Neumann, M. Pelikan, J. Pollack, K. Sastry, K. Stanley, A. Sto- ica, E.-G. Talbi, and I. Wegener, Eds.,
ACM, pp. 1315–1322.

  Weimer, W., Nguyen, T., Le Gues, C., and Forrest, S. Automatically finding patches using Genetic Programming.
In International Conference on Software Engi- neering (ICSE) 2009 (2009), ACM New York, NY, USA, pp. 364–
374.

  Whigham, P. A. Grammatical Bias for Evolutionary Learning. PhD thesis, School of Computer Science, University
College, University of New South Wales, Australian Defence Force Academy, Canberra, Australia, 14 October
1996.

120

References (contd.)
  Whigham, P. A. Grammatically-based genetic programming. In Proceedings of the Workshop on Genetic

Programming: From Theory to Real-World Applications (Tahoe City, California, USA, 9 July 1995), J. P. Rosca,
Ed., pp. 33–41.

  Wilson, G., and Heywood, M. Introducing probabilistic adaptive mapping developmental genetic programming
with redundant mappings. Genetic Programming and Evolvable Machines 8, 2 (June 2007), 187–220. Special
issue on developmental systems.

  Wolpert, D. H., and Macready, W. G. No free lunch theorems for optimization. IEEE Transactions on Evolutionary
Computation 1, 1 (1997), 67–82.

  Woodward, J. R. Modularity in genetic programming. In Genetic Programming, Proceedings of EuroGP’2003
(Essex, 14-16 Apr. 2003), C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa, Eds., vol. 2610 of
LNCS, Springer-Verlag, pp. 254– 263.

  Wright, S. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In Proceedings of the
Sixth International Congress on Genetics (1932), D. Jones, Ed., vol. 1, pp. 355–366.

  Xie, H., Zhang, M., and Andreae, P. Genetic programming for automatic stress detection in spoken english. In
Applications of Evolutionary Computing, EvoWorkshops2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP,
EvoInteraction, EvoMUSART, EvoSTOC (Budapest, 10-12 Apr. 2006), F. Rothlauf, J. Branke, S. Cagnoni, E.
Costa, C. Cotta, R. Drechsler, E. Lutton, P. Machado, J. H. Moore, J. Romero, G. D. Smith, G. Squillero, and H.
Takagi, Eds., vol. 3907 of LNCS, Springer Verlag, pp. 460–471.

  Yang, S., Ong, Y.-S., and Jin, Y. Special issue on evolutionary computation in dynamic and uncertain
environments. Genetic Programming and Evolvable Machines 7, 4 (2006).

  Zhang, M., Bhowan, U., and Ny, B. Genetic programming for object detection: A two-phase approach with an
improved fitness function. Electronic Letters on Computer Vision and Image Analysis 6, 1 (2006), 27–43.

