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Tutorial Outline

¢ Introduction & Motivation
“* Open Issues in GP
¢ Questions & Discussion
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Introduction

** GP in 30 seconds

“* Why isn't GP more popular?

“ Some stats & interesting results
* Historic time for GP with rise of Data Science

“* Objective of tutorial
 Identify roadblocks
» Suggest future areas of research
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GP in 30 Seconds

<+ Method for modeling data or learning .

regression models or robot control

|—> Generate New Solutions w/ bias*

Data & Params

—> Output best “solution”

Evaluate and Rank Solutions —

* First set of solutions usually “randomly” created



GP in 30 Seconds



GP in 30 Seconds

“* Input way of measuring success




GP in 30 Seconds

“*Input things a solution are built out of
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GP in 30 Seconds

“*Decide when to stop

After so many solutions sample

After no new good solutions found

After a solution of a given quality is found



Why Open Issues? Who cares?
| !\\\
< It is pretty popular! T A e

“* Publications, Conferences, Results in broad fields
» Bioinformatics
* Regression modeling
* Robotics, and many others! (we've been to space!) ?

s How to raise the bar?

+» Stochastic methods are often second choice due to
lack of theory and predictable space, time complexity



Why Open Issues? Who cares? |
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“*And... good for the community to step
back and think where we need help

+*And... we are at a historic time...



Historic time with Data Science ¢

* Software, data and analytics driving new revolution in
Industry, Gov’t and Society!

*» Data science postings and tools exploding

“ Lipson named an Influential data science by a Forbes
study due to GP work (Science paper)

“» Data science right in GP best (SG’s opinion) application:
symbolic regression!



Historic time with Robots

“* DARPA Humanoid challenge
“* Human assisted bots (please clean my house)
“ Advanced manufacturing

“* More controls and cybernetics than we “probably” can
scale in current way



Objective of Tutorial
A

“ ldentify and discuss issues _‘
2813

% Suggest possible new research areas
¢ Interaction and discussion

“* As long members of community, we feel a bit like GP-
startup-employees, we want it to succeed! Help us make
It succeed!



Open Issues

1. Generalization STEVE
2. Complexity STEVE

3. Representations MIKE
4. Modularity MIKE

5. Dynamic problems MIKE
6

7

8

9.

1

Open-ended evolution MIKE

Fitness landscapes and problem difficulty LEO
Semantics LEO
Influence of Biology WOLFGANG

0. Benchmarks LEO
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#1 Generalization

+*What do we mean?
+*How is it different than other ML methods?
+*What can we do?




Generalization — What? <
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“ Given a domain, we solve instances using GP

“* The resulting model performs well over those instances

“* Did we sample the space well? Will new data surprise
us?

“ Also, in practice, data ‘drifts’ and changes over time... will
the GP model perform well?



Generalization — Different?
N
39 2469
** Nope, not at all! \\\ 3
+» All data driven methods suffer from this

** How do find a model that best represents the “true”
underlying thing that generates the data?

“* Unscientific evidence suggests a lot of GP papers do not
adequately address this... why?



Generalization — Different? <

QA
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< Asymmetrical data/algorithm in GP A\ 3

“* GP requires a lot of algorithm prep work, more than say a
Random Forest or Neural Net

“* Also, GP is often applied in data starved areas (robot
control) or particularly challenging problems (nonlinear
model)

“* Does that effort, combined with higher computational
cost, lead to lack of rigor with generalization?



Generalization — Different? ¢
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+» Another difference... \\\ 3

*» GP finds models and parameters that “can” be inspected
*» Easier path to domain subject matter expert acceptance

s Easier transport of models to other environments... if (a
big if) no tricks inside evaluation

“» Compare to Random Forest, Neural Net, etc



Generalization - How
)
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% Good problem setup
« Train, test, validation and data processing

“* Thoughtful objective function creation
* No tricks or shortcuts, should be real-world like

** Good honest empirical evaluation
 Significant, meaningful and SME validated

*» After that, same as all other supervised ML
» Put ‘control system’ around to monitor drift, etc.



Generalization — Next Steps ¢

N
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“* More research into generalization significance, is
asymmetric problem real?

“* More research into solution simplification for SME
validation and model transport

“* More rigor in reviewing... one problem, one instance
does make interesting results!

» What else?
+%» Questions?



Further Reading %

2413

“ Kushchu, I. An evaluation of evolutlonary benerallzotlon
In genetic programming. Artificial Intelligence Review 18,
1 (2002), 3—14. Nice introduction, overview and example.

“* Gagne, C., Schoenauer, M., Parizeau, M., and
Tomassini, M. Genetic programming, validation sets, and
parsimony pressure. In EuroGP2006. Using
train,test,validation data plus complexity pressure was
best.



#2 The Complexity of GP
GECCONAN
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**Not run time, although related

“» Complexity of user experience and
Implementation

**How do we make it simpler out of the box?



Complexity — Run time <

= L
<2813
“*Heuristic search method, slow
“*Search over structure and parameters, slow
“*Dependent on an evaluation function, slow
“*Usually requires solution ‘compile’, slow

“*In terms of algorithm complexity, no magic
bullets, but many opportunities for improving

... come back to this... but



Complexity — of GP
N
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“*How to make it simpler... what do we mean

“*For example, some of the decision points
* Functions, terminals
* Objective function
* |nitialization
* Operators
» Selection pressure and operators
» Bloat / size pressures
« Stopping criterion
* Oh, and generalization setup!



Complexity — of GP and more
AN

A, sl
o N <213
*Within each decision, even more .

* Operators: interactions and mix

» Selection pressure: replacement, archives, etc

“*What is a minimal, viable GP algorithm?

« Koza is still most often cited
« Should it be by domain... GP-SR, GP-robot, etc

“+0r, do we do meta-GP, add more algorithm
complexity for simpler User Experience?



Complexity — One more thing <
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“*Model interpretation is big benefit»

“*However, complexity of solutions high (big
trees)

“*Given a solution, which is product of
evolution, i.e. non-"efficient” search, how to
minimize with performance tradeoffs

“*Should it be a post-search add-on or handled
with Pareto archives, multi-objective, bloat /
complexity control?
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Complexity — Next Steps <
A
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** Research on simplification, approximations and
Knowledge Extraction

“*Research into Minimal, Viable GP (not smallest
code base!)

. and a canonical paper (not Koza ‘92)
. that could be YOU!

X Research into VERY FAST systems... cloud,
GPU, whatever... automating search can only
help! (plug for MIT+GE work)

0
0
0
0



Further Reading X

éuz #13
**Meta-learning — evolve an GP W|th a ENGP
search parameter space

“» Bloat, growth control — find least complex
solutions

“* Tiny GP competition and results

“* GP-like alternatives: Hill-climbing like search (Poli
and Langdon book, others), Incremental Program
induction (Schmidhuber), others



#3 Representations

< ldentifying appropriate representations for GP
.....ideally based on some measure(s) of quality that capture the
relationship between the fithess landscape and the search process.

33



Difficulty of Representation

* Hard to impossible to identify an optimal GP representation

% ...but given a better understanding of the relationship between
representation and search, differentiation between alternatives may
be possible.

34



What’s a Representation?

“* Representation = “genetic” encoding + “genetic” operators

35



Representation for GP

#include <stdio.h>
#include <stdlib.h>

#include <stdio.h>

#include <stdlib.h> #include <math.h>

#include <math.h>
void turnLeft(float degrees);

int main(int argc, char* argv){ void turnRight(float degrees);

float x=0.0, y=0.0, z=0.0: void moveForward(float distance);

x=atof(argv[1]);

y=atof(argv[2]); int main(int argc, char* argv){

z=atof(argv[3]); turnLeft(90);
x = 2.0*sin(y) + 4.0*sin(x); if(sensorValue(0) > 1000)
z = (X*X) + exp(2); moveForward(10);
prjptf(“The answer is: z=%f\n",z); else
turnRight(90);
return(0);

36



Attributes of GP

“Tell the computer what to do, not how to do it.”

Arthur Samuel, 1959

John Koza’ s (1999) AP Attributes...

« Start with high-level problem description that results in a solution in the form of a computer program
» Automatically determine the programs size and architecture

» Automatically organise a group of instructions so that they may be re-used by a program

* Problem-independence

* Scalability to larger versions of the same problem

 Capability of producing human competitive results

* Evolutionary Automatic Programming/Genetic Programming...

37



“* machine code, FSA, trees, strongly-typed, graph, linear,
linear-graph, grammars, generative/developmental...

Decoding step

N

Encoded string Solution
(genotype) (phenotype)

I

Fitness value

38



“Vanilla” GP x
GECCO

Koza popularised Lisp S-expressions... % L
2813
G N v

({ NAND ( OR(NOT X )Y 1X)

e Expressions (trees) generated from

e Function Set: boolean, arithmetic, loops, user-defined functions...

GECCQOS e » Terminal Set: inputs, constants, variables, ...

K3
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“Vanilla” GP Features .
GECCQO; s\\\

Sufficiency “\\\\ :2*3

e Function+Terminal sets: powerful enough to represent a solution

Parsimony

e Smaller Function+Terminal sets are better

Closure

» Each function should gracefully handle all values it ever receives

o(/ 5 0) 12!
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Evolving Representation!

GECCQ e
Y

“* Why not “evolve it"1?!?

“» Examples include...
« Langdon’s Data Structures
« Spector’s “Autoconstructive” Evolution
« Banzhaf’'s Evolution of “genetic code”
« ?Hyperheuristics

41



Representation Open Issues %
GECCORA *
“* What is the best representation for my problem?

« computationally “sufficient”

« facilitate navigation (e.g., see Semantic Operators later)

« automatically identify and manipulate abstractions/modules

* handle variable dimensions...

** How do we compare representations?
 E.g., locality, redundancy and scaling

“* Need.more rigorous/formal analysis...
GECCOS - \\\
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“* What ever happened to evolving algorithms?

43



#4 Modularity & Scalable GP

+» Define a clear measure of success for what it means to achieve
“Scalable GP” as well as modularity

** How well does GP scale to problems of increasing complexity/
difficulty?
» How can we improve scalability of GP?

» Given representations in GP can evolve, what is scalability in GP
anyway?

L)

L0
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&

)

L)
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Approaches to Modularity

* Many approaches...

E.g., ADF’s, architecture-altering operators (Koza), Genetic Library Builder (GLiB -
Angeline & Pollack), Adaptive Representation through Learning (Rosca),
Automatically defined macros (Spector), reuse of “concepts” (Seront), lambda
abstraction (Yu), linear-gp register reuse & repeated patterns (Langdon &
Banzhaf), module repository (Majeed & Ryan), sub-graph encapsulation (Walker &
Miller), Run Transferable Libraries (Keijzer et al), functional modularity (Krawiec &
Wieloch), grammar-defined functions (O’Neill, Hemberg, Harper, Swafford),
Swafford PhD thesis (2013)
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Modularity & Evolution

% Modularity & Evolvability (Altenberg)...modularity may have positive
effect on “alignment” between spaces of phenotypic variation and

selection gradients

*» Evidence for dynamic environments leading to emergent modularity
(Kashtan)

46



Modularity

00

L)

*

4

L)

*

/
0’0

Mechanism to Gel
» protect parts of individuals from disruption
* achieve abstraction and parameterisation

What's the best way to
« automatically identify modules?
« achieve automatic abstraction

» achieve automatic manipulation of modules
— E.qg., architecture altering operators

|s modularity critical to scalability?
How are modules used? Can their use guide search operators?

Can we% chieve modularity, hierarchy and reuse in a more principled

man ne (e.g., software eng — or should we even consider these human-centric approaches?)

;' o V13
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#5 Dynamic Problems

* Dynamic in so many ways:

» Type of change (e.g., constraints, fithess landscape,
combinations)

 Degree
* Frequency
« Combinations of all of the above!

** Mind-shift from optimisation to “survival’

48



Dynamic Problems with GP

e
o ?\ e
00
%100} s

GECCOf AN *
2813

N
“ Can borrow strategies from broader EC literature
« E.g., Branke (2001) and Morrison (2004)

* GP inherently dynamic!

+ Co-evolving
— Structure
— Parameters

* Dimensionally dynamic!

o
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Dynamic Problems - lots to do!

* Little formal analysis of GP in dynamic env’s

 E.g., Bloat - Langdon & Poli (1998), population sizing - Tu &
Banzhaf (2009) & Vanneschi (2009), constant evolution — time
series - Dempsey (2009)

“* Recall (Kasthan) emergent modularity

* Also, dynamic environments can provide more efficient search
« some evidence for GP in specific cases (O’Neill)
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#6 Open-ended Evolution

“ Designing an evolutionary system capable of continuously
adapting and searching...(can also mean un-directed search)

/7

¢+ Essential

Feedback loops
— Dynamic environment
— Co-evolutionary processes

Continuously injected randomness

51



#6 Open-ended Evolution

+» EC & ALife have failed!

» What are the missing ingredients for artificial evolution to achieve the open-ended emergence of
complexity, innovation and adaptation witnessed in nature?

52



#7 Fitness Landscapes and
Problem Difficulty in GP

53



Fithess Landscape

Fitness landscape (S,V,f) :

@ S : set of potential solutions,

@ V:S — 2% : neighborhood
function,

@ f:S — IR : fitness function.

YV : S — 2° : neighborhood function
' Vx € S,

V(x)={y eSS |y=opx)}
V(x)=1{y eS| dy,x) <1}

54



Example

S={i| i€ N

Vies, fi) =

Neighborhood:

& 0<i<15)

number of "1"s in the binary representation of J

JEN, < |j-i]=1
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Fithess Landscape

i ; Hill Climbing

10

15
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Remark that...

if we consider exactly the same problem, but with a different neighborhood

structure:

S={i| iIEN & 0=<is15}
ViesS, f(i) = number of "1"s in the binary representation of i

Neighborhood: j &N, <« jand i differ by just 1 bit

There are no local optima in this fitness landscape!
(every individual that is different from the global optimum has at least one
neighbor better than him, that can be obtained by changing a 0 into a 1).

57



Another Case (“CONO” Problem)

S = { vectors of prefixed length of real numbers included in [0,10] }

ViesS, f(i) = distance to a prefixed (and known and unique) global optimum

Neighborhood: j &N, < jis equal to i except for the random perturbation of
some of its coordinates of a quantity included in [0,1].

Example

5> [8.0, 6.0, 4.0, 7.0, 5.0]

The global optimum

A solution i

N

[5.2,6.4,2.1,4.9, 3.7]

A

closer!

___—>158,64,29,49,36]

y,

A solution j neighbor of i

Unimodal Fithess Landscape




Importance of Fithess Landscape

It gives a visual intuition of the facility or difficulty of a search agent (like Hill
Climbing, but also Evolutionary Algorithms) to find the global optimum.

« Smooth landscape, with only one "peak" (global optimum)
easy problem

* Rugged landscape, with many local optima
hard problem

Limitation of fithess landscapes

It is generally impossible to draw a fithess landscape:

* Huge search space

* Huge neighborhoods (multi-dimensionality!)

59



Objective of Problem Hardness Studies

Find indicators of problem hardness (that typically capture some
important characteristics of the fitness landscape and) that can give
insight on the ability of a GP configuration to solve the problem....

« Without having to run GP

« Without having to draw the fithess landscape
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Autocorrelation [Kinnear, 1994]

Proposed measure of problem hardness for GP: autocorrelation function
(Weinberg in 1990 and Manderick in 1991 had studied the same measure for

GAs).

Autocorrelation of (n) = E[(f(si)) = F)(f(si4n) — F)]
(f(s1),f(s2)....) along a random var(f (si))

walk (s1,p,...) (Weinberger . stion lenth )
1990 [29]) : autocorrelation length 7 = &

@ small 7 : rugged landscape

@ long 7 : smooth landscape

Basically no clear relationship between
autocorrelation values and problem hardness
was observed for GP

61



Difficulty and Neutrality [T Yu, J. Miller 2001]

Larger amount of neutrality allow GP to generate
fitter individuals, in particular for hard problems

(results criticized in [Collins, 2005])
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Fitness-Distance Correlation (fdc)
(Introduced in [Jones et al., 1995] for GAs)

Hypothesis: what makes a problem easy or hard is the relationship between
fitness of individuals and the structural similarity of individuals to the optimum.

Example

Let's suppose that the global optimum is:

100 < fitness (phenotype)

X
e

structure (genotype)

63



100

optimum = k
83
£4 i 30 i 55 i 74 x
the more fitness increases (improves), the more individuals are
different from the optimum

Difficult Problem

Easy Problems

15 4
i

5 100

e

the more fitness increases (improves),
the more individuals are similar to the
optimum
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Fitness Distance Correlation (fdc) [T. Jones, 1995]

Given a sample of n individuals, let's suppose to know:

- theset F={f, f,, ..., f} of the individual fithesses

 the genotype of the global optimum (individual with the best fitness)

* a measure to express the genotypic distance between individuals

LetD ={d,, d,, ..., d } be the n distances to the global optimum, then

fdc is the correlation between sets Fand D
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Summary of the Results obtained
by fdc in GP [vanneschi et al., 2004]

Fdc is a very reliable measure of difficulty for a large set of problems.

Fdc also has some drawbacks:

* Counterexamples exist

* |t is not predictive

Optima must be known « a priori »
(this makes fdc « almost» unusable in practice)

A new measure must be defkned to quantify the
difficulty of real-life problems.

A measure that has been proposed is based on
the concept of fitness cloud.
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Fitness Clouds
(First introduced for binary landscapes in [Vérel et al., 2003])

For each individual y (in a sample or in the whole search space) a point is plotted:
» abscissa = fitness value of y
» ordinate = fitness value of a "particular" neighbor (chosen randomly or by

some particular techniques).
here: neighbor = individual obtained by applying one step of mutation to y

Fitness of Neighbors [ oo

°e fitness cloud

n
>

Fithess
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Negative Slope Coefficient (nSC) [vanneschi et al., 2004]
Summary of results

» Good hardness indicator for:
* Trap Functions
* Royal Trees
Binomial-3 Problem [Daida et al., 2001]
Even Parity Problem [Koza, 1992]
Artificial Ant on the Santa Fe Trail [Koza, 1992]
... (also some real-life applications)

« Many ways of calculating the nsc have been used:
« Number of neighbors for each sampled individual
* Number of mutations to generate neighbors
« Different types of mutations to generate neighbors
« Different techniques to partition the fitness clouds into bins

* nscis predictive = it can be used on any problem

* nsc has not been normalized yet into a given range
(classification of different problems by their difficulty)

 Atheoretical justification for nsc in [Poli, Vanneschi,

| ’\“ 2‘*’13 GECCO 2007]. Some problems of the nsc for GAs in

[Vanneschi, Valsecchi, Poli, GECCO 2009]
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GP as a Machine Learning Method
(supervised learning)

« Known: the correct outputs for a fixed given set of inputs {I,, O.}

« Sought: a function belonging to a certain class that interpolates
those points, i.e., £(I,)= 0, forany i

« Output vector: the vector of the outputs of £is £ (I)=(£(I.))

 Fitnes
bet
F(f)=D

GECCOA

n the error on the training set, i.e.,distance
ors of f and the target output vector
(ERROR AS DISTANCE)

semantics ([Moraglio et al., 2012]
and many others...)
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Semantic Diversity #1

[McPhee et al., 2008]
Use of truth tables to analyze behavioral changes in crossover for boolean problems

Considered the semantics of two components in each tree: semantics of subtrees
and semantics of context (the remainder of an individual after removing a subtree).

Measured the variation of these semantic components throughout the GP
evolutionary process.

Fixed-semantic subtrees: subtrees such that the semantics of the entire tree does
not change when they are replaced by another subtree.

There may be many fixed semantic subtrees
when the tree size increases during evolution;
\\ thus it becomes very difficult to change the

» o> , semantics of trees with crossover and mutation.
SN X
A 2 1 3
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Semantic Diversity #2
[Beadle and Johnson, 2008]

Semantic is used to define an algorithm called Semantically Driven Crossover
(SDC).

SDC has been developed based on analysis of the behavioral changes caused by
crossover.

Use of a canonical representation of members of the population (Reduced Ordered
Binary Decision Diagrams-ROBDDs) to check for semantic equivalence without
having to access the fitness function: two trees are semantically equivalent if and
only if they reduce to the same ROBDD.

This is used to determine which participating individuals are copied into the next

generation. If the offspring are semantically equivalent to their

parents, the children are discarded and the crossover is
\\ repeated.

A, e L Lo , ,
b& 2;-’ &‘13 Increased semantic diversity in the evolving population,

and a consequent improvement in the GP performance.
72
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Semantic Diversity #3

[Beadle and Johnson, 2009]

Previous work extended to mutation: semantics is used to test the effects of
behavioral control at the point of the mutation operator.

Presented Semantically Driven Mutation (SDM), which can explicitly detect and
apply behavioral changes caused by the syntactic modifications in programs caused
by mutation.

SDM does not allow mutated programs to be produced when they are behaviorally
equivalent to the original program. The aim of this is to avoid getting stuck in areas
of the semantic/search space that have already been investigated.

As in [Beadle and Johnson, 2008], the key feature of
the semantically driven operator is the ability to
N canonically represent programs in such a way that it is
A\ possible to compare them, looking for equivalent

| ﬁ’\: \7.:’;&47 behaviors.
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Semantic Locality

[Nguyen et al., 2010]

Investigation of the role of syntactic locality and semantic locality of crossover.

The results show that improving syntactic locality reduces code growth, and that
leads to a slight improvement of the ability to generalize.

By comparison, improving semantic locality significantly enhances GP

performance, reduces code growth and substantially improves the ability
of GP to generalize.
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Semantic Diversity + Locality #1

[Nguyen et al, 2009(a)]

Semantics Aware Crossover (SAC), a crossover operator promoting semantic
diversity, based on checking semantic equivalence of subtrees.

[Nguyen et al, 2011]

Extended to Semantic Similarity based Crossover (SSC), which turned out to
perform better than both standard crossover and SAC

Objective: incorporate semantics into the design of new crossover operators, so as
to maintain greater semantic diversity and provide higher locality than standard
crossover.
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Semantic Diversity + Locality #2

[Nguyen et al, 2009(b)]

SSC extended to mutation leading to Semantic Similarity based Mutation

(SSM).

Superior performance of SSM compared to standard mutation.

76



Geometry in the Semantic Space

[Krawiec and Lichocki, 2009] + [Krawiec, 2012]

Proposed a class of crossover operators for GP aimed at making offspring
programs intermediate (or medial) with respect to parent programs in the
semantic space (geometric).

Suggested that the prospects of designing a crossover operator that works in the
genotype space and behaves geometrically in the corresponding semantic space
are gloomy in GP, given the complexity of the genotype-phenotype mapping.

Hence, rather than guaranteeing the geometric behavior, their operator tries to
approximate it by analyzing the offspring after it has been created.

This limitation is overcome by the geometric semantic

operators proposed in [Moraglio et al., 2012],
\\ discussed in the continuation.

| \‘1\“ X 3:’
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GP Geometric Semantic Operators
[Moraglio et al., 2012]

Objective:

|s it possible to define transformations on the syntax of individuals that
have known effects on their semantics?
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Semantics
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P,
> Q Geometric
\\ X0
‘\ Offspring

Semantics

80



Ball Mutation on the Semantic Space

If
a transformation on the syntax of an individual whose effect is

ball mutation on the semantic space can be found

Then

a unimodal fitness landscape can be induced on any
problem consisting in matching input data into known targets
(e.g. regressions and classifications)

Problem mapped into the “CONO”.
s€CCOfe \\\
A PN \_\‘f"'\f.'
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Geometric XO on the Semantic Space

If
a transformation on the syntax of individuals whose effect is

geometric crossover on the semantic space can be found

Then
the offspring is not worse than the worst of its parents

PIO\\ of
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Is it a dream?

Yes... but turning into reality

Those operators have been defined:

A. Moraglio, K. Krawiec, and C. G. Johnson.

Geometric semantic genetic programming.

In C. A. Coello Coello, et al., editors, Parallel Problem Solving
from Nature, PPSN XII (part 1), volume 7491 of Lecture Notes
in Computer Science, pages 21-31. Springer, 2012.
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Geometric Semantic Crossover [moragiio et al., 2012]

Definition 1. (Geometric Semantic Crossover). Given two parent functions 11,75 :
R™ — R, the geometric semantic crossover returns the real function Txo = (17 -

Tr)+ ((1 = Tg) - 1), where Ty is a random real function whose output values range
in the interval [0, 1].
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Geometric Semantic Mutation [Moraglio et al., 2012]

Definition 2. (Geometric Semantic Mutation). Given a parent functionT' : R™ — R,
the geometric semantic mutation with mutation step ms returns the real function T); =
T+ ms- (Tr1 — Tgre), where Try and Tro are random real functions.

2N
TN
ms /'\
Ty, I'g;

Tk, Tr, = Random functions
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Drawback of Geometric Semantic Operators

These operators, by construction, always produce offspring that are larger
than their parents, causing an exponential growth in the size of the
individuals [Moraglio et al., 2012]

This renders them useless in practice.

A solution that has been proposed: “simplification” of the individuals during
the evolution. But....
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An Efficient Implementation

In:

A New Implementation of Geometric Semantic GP Applied to Predicting
Pharmacokinetic Parameters.

L. Vanneschi, M. Castelli, L. Manzoni, S. Silva.

Accepted for publication in the EuroGP 2013 Proceedings

Lecture Notes in Computer Science.

We propose a new implementation of Moraglio’'s geometric
semantic operators that is efficient and does not imply any online
simplification phase and thus allows us to use them on complex
real-life applications!

GECCONAN

\ £
B ;N ‘('~ -
\-‘ v
+GA 1 4 A -'\ -
& \\ R A :: ;f
< T
\\\ 5 SR

87



Summary of the results obtained

* An efficient implementation of geometric semantic operators, that has
allowed us to use them on real-life applications.

 Excellent results on the studied applications.

 New insights about the generalization ability of geometric semantic
operators (without the novel implementation that allowed us to use
geometric semantic GP on these complex real-life problems, this interesting
property would probably remain unnoticed).
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Major open issue

The reconstruction of the expression of the best individual, even though
we do it only once and after the termination of the run, is still an issue:

Individuals after hundreds of generations get so huge that it may be impossible

to reconstruct their entire expression (even though it is possible to get some
information about it, such as the features or primitives it uses...).

Models generated by geometric semantic GP are black (or at least “dark
gray”) boxes!

We are working on this!
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#9 The Influence of Biology

“* Weaknesses of current paradigm
“* The trade-off

“* Opportunities

“* Reversing the flow

90



Weaknesses of current Paradigm

** Fixed representation
» Static fitness functions
“* Closed systems

“* Our notion of genes

“* Simple maps from genotype to phenotype

** Pre-determined operator features

* No role for non-expressed material

¢ Direct passing of genes without further qualifications
“* Scalability

L)

4

L)

)

4
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Our Notion of Genes ... %
GECCORA *

“» EC genes that fully determine phenotypic outcomes

“* Genes as “coding sequences”

* From ...

AMINO-ACID SEQUENCE = BASIS OF GENE FUNCTION ~ GENE = FUNCTION

STR al a2 a) ad a5 a6 a? af a%alOallallalla

UCUCCCOOGAAACGC GOOCEGGUATAIAAGC AAANUUGGGUCCCAAARUUUGAAC GUUCCUGA
CODING SEQUENCE = BASIS OF GENE EXPRESSION ~ GENE

.to ...

o3

From: Scherrer/Jost: Theory Biosci., 2007
o2
.

Genes as regulating units
*+ The operon model

The Jacob-Monod Model
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... has to develop ...

\/

% ... to
“+ Expression management of
“* Highly intricate complexes

** Chromosomes and chromatin structures
“* Regulation, transcription, splicing
“ Editing of intermediate products (RNA)

@ Trlﬁl.ation in ribosomes
3 AN\ :
GEeCC ‘ '\\ .... to function

From: Scherrer/Jost: Theory Biosci., 2007
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The Central Dogma is dead

«* The linear flow of information from DNA

/

% to function is a grave oversimplification

Genotype

|

Proteins Phenotype

| |

: . DNA
Function Fitness

Genetic View Epigenetic L g

DNA

* The picture now is complex and bidirectional,
% closing loops and forming networks ‘s Epigenetic networks

= Function Function

From: Banzhaf et al: Nature Rev. Gen., 2006
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No role for non-expressed material

No. of

' Coding Coding Transcribed| Transcribed
protein Genome

non-coding | non-coding
: : sequences | sequences
coding Size (Mb) sequences | sequences
genes

Organism

From: Frith,Pheasant, Mattic: Eur. J. Hum., 2005

Mouse, human|

Fungi, plants, animals

21 Simple eukaryotes
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Figure 1] The ratio of nen-coding o protein-coding DNA rises as & luncion of developmental complesity. Proburyctes hunw s then 25% ¢

DNA, g sdanrycton have betamen 25 and S0°8 non-coding DINA and moes cormglex fung, plarts and sremuls have mone than 508

08,58

4. ring % g
& non-coding DNA in burmirs — wihsch aleo Panve & genome we tht i Bree orders of magritucks kepr Ban prokanycies. Note that is andyss =
Poady, whernes pre-genorme: estatons of the mmount of DINA n dferert orgarees dicd not. The dlferent colours repeesent probaryctes bactsrn and archasel
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Trade-Offs

“ Level of abstraction in models

“* Potential for harvesting useful features

“* Increased simulation time for evolutionary processes
“* More emergent phenomena ?
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Opportunities

“ Epigenetics

** Multi-level selection

** Regulatory networks

“* Multi-cellularity and Development

“ Self-modifying genomes

“* Research into novelty, innovation and creativity
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Published Use of Benchmarks

Survey of EuroGP and GECCO's GP Track from 2009 to 2011.
183 articles using 471 problem instances.

Percentage

(nearest percent)

Symbolic Regression 32
Classification 27
Path Finding and Planning 10
Boolean Functions 9
Traditional Programming 8
Predictive Modelling I
Constructed Problems 3
Control Problems 1
Others 4

*‘l(f'f Limited variety e.g. 26% of papers involving
¥ -13 symbolic regression used the quartic equation.
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“De Facto” Banchmarks
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What makes for a good benchmark?

« Tunably Dicult

« Varied

* Relevant (Real World? Constructed?)

* Fast (?)

 Accommodating to Implementors

* Supports good empirical method (e.g. problem generation)
« Easy to interpret and compare

* Representation Independent

* Precisely Defined (to an extent!)

* Known global optimum?
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A Good Starting Point

m GP Benchmarks.ore

James McDermott
David R. White
Sean Luke
Luca Manzoni
Mauro Castelli
Leonardo Vanneschi
Wojciech Jaskowski
Krzysztof Krawiec
\\ Robin Harper
, \,; e Kenneth De Jong
m 2&13 Una-May O'Reilly
\\\ R ... and many many others (sorry if | forgot to include your name!)
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#11 Miscellany...

¢+ Algorithm Induction
** Halting Problem

“* Domain Knowledge
< Usability

“* GP Theory

% Constants

“* Visualisation...

(...and we never mentioned BLOAT! ©)
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Conclusions

So many open issues...

« Can we increment GP generalization ability?

* |s there a better way to deal with programs’ complexity?

« How to choose the right representation for a problem?

 What is the best way of using GP in dynamic environments?

« How can we measure/predict the ability of GP to solve a problem?
« How can we use sematic awareness to improve GP?

« Can we exploit the richness of nature better then we currently do?

One big objective...

Let GP become a trusted mainstream
member of the computational problem

\ solvin i
AN g toolkit.
Lo Why not yet?
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Questions & Discussion
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