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Tutorial Outline 

  Introduction & Motivation 
 Open Issues in GP 
 Questions & Discussion 
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Introduction & Motivation 

    ++ 

O'Neill M., Vanneschi L., Gustafon S., Banzhaf W. (2010).  
Open Issues in Genetic Programming.  
Genetic Programming and Evolvable Machines 11(3-4):339-363 
http://www.springerlink.com/content/a058142636361453/fulltext.pdf  
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Introduction 
 
 GP in 30 seconds 
 Why isn’t GP more popular? 
 Some stats & interesting results 
 Historic time for GP with rise of Data Science 
 Objective of tutorial 

•  Identify roadblocks 
•  Suggest future areas of research 
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GP in 30 Seconds 
 
 Method for modeling data or learning behavior – 

regression models or robot control 
 

Data & Params 

Evaluate and Rank Solutions 

Generate New Solutions w/ bias* 

* First set of solutions usually “randomly” created 

Output best “solution” 



7 

GP in 30 Seconds 
 
 Search over solution structure & parameters 

+ 

x 

3 A 

B 
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GP in 30 Seconds 
 
  Input way of measuring success 

+ 

x 

3 A 

B 
Y x Solution A 

result 
7 2 7 
1 3 9 
0 1 5 
4 6 15 

Solution A 



GP in 30 Seconds 

 Input things a solution are built out of 

+ 

+ 

3 x 

x 
%   *  sin()   3.14    7   9    x^(t-1)    



GP in 30 Seconds 

 Decide when to stop 

After so many solutions sample 

After no new good solutions found 

After a solution of a given quality is found 
? 



Why Open Issues?  Who cares? 
 It is pretty popular!  

 Publications, Conferences, Results in broad fields 
•  Bioinformatics 
•  Regression modeling 
•  Robotics, and many others!  (we’ve been to space!) ? 

 How to raise the bar? 
 Stochastic methods are often second choice due to 

lack of theory and predictable space, time complexity 



Why Open Issues?  Who cares? 

 And… good for the community to step 
back and think where we need help 

 And… we are at a historic time… 



Historic time with Data Science 

 Software, data and analytics driving new revolution in 
Industry, Gov’t and Society! 

 Data science postings and tools exploding 
 Lipson named an Influential data science by a Forbes 

study due to GP work (Science paper) 
 Data science right in GP best (SG’s opinion) application: 

symbolic regression! 



Historic time with Robots 

 DARPA Humanoid challenge 
 Human assisted bots (please clean my house) 
 Advanced manufacturing 
 More controls and cybernetics than we “probably” can 

scale in current way 



Objective of Tutorial 
 
  Identify and discuss issues 
 Suggest possible new research areas 
  Interaction and discussion 

 As long members of community, we feel a bit like GP-
startup-employees, we want it to succeed!  Help us make 
it succeed! 
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Open Issues 

1.  Generalization  STEVE 
2.  Complexity  STEVE 
3.  Representations  MIKE 
4.  Modularity   MIKE 
5.  Dynamic problems  MIKE 
6.  Open-ended evolution  MIKE 
7.  Fitness landscapes and problem difficulty  LEO 
8.  Semantics  LEO 
9.  Influence of Biology  WOLFGANG 
10.  Benchmarks  LEO 

     



#1 Generalization 

 What do we mean? 
 How is it different than other ML methods? 
 What can we do? 



Generalization – What? 

 Given a domain, we solve instances using GP 
 The resulting model performs well over those instances 
 Did we sample the space well?  Will new data surprise 

us? 
 Also, in practice, data ‘drifts’ and changes over time… will 

the GP model perform well? 



Generalization – Different? 

 Nope, not at all! 
 All data driven methods suffer from this 
 How do find a model that best represents the “true” 

underlying thing that generates the data? 

 Unscientific evidence suggests a lot of GP papers do not 
adequately address this… why? 



Generalization – Different? 

 Asymmetrical data/algorithm in GP 
 GP requires a lot of algorithm prep work, more than say a 

Random Forest or Neural Net 
 Also, GP is often applied in data starved areas (robot 

control) or particularly challenging problems (nonlinear 
model) 

 Does that effort, combined with higher computational 
cost, lead to lack of rigor with generalization?  



Generalization – Different? 

 Another difference… 
 GP finds models and parameters that “can” be inspected 
 Easier path to domain subject matter expert acceptance 
 Easier transport of models to other environments… if (a 

big if) no tricks inside evaluation 
 Compare to Random Forest, Neural Net, etc 



Generalization - How 

 Good problem setup 
•  Train, test, validation and data processing 

 Thoughtful objective function creation 
•  No tricks or shortcuts, should be real-world like 

 Good honest empirical evaluation 
•  Significant, meaningful and SME validated 

 After that, same as all other supervised ML 
•  Put ‘control system’ around to monitor drift, etc. 



Generalization – Next Steps 

 More research into generalization significance, is 
asymmetric problem real? 

 More research into solution simplification for SME 
validation and model transport 

 More rigor in reviewing… one problem, one instance 
does make interesting results! 

 What else? 
 Questions? 



Further Reading 

 Kushchu, I. An evaluation of evolutionary generalization 
in genetic programming. Artificial Intelligence Review 18, 
1 (2002), 3–14.  Nice introduction, overview and example. 

 Gagne, C., Schoenauer, M., Parizeau, M., and 
Tomassini, M. Genetic programming, validation sets, and 
parsimony pressure. In EuroGP2006.  Using 
train,test,validation data plus complexity pressure was 
best. 



#2 The Complexity of GP 

 Not run time, although related 
 Complexity of user experience and 

implementation 
 How do we make it simpler out of the box? 



Complexity – Run time 

 Heuristic search method, slow 
 Search over structure and parameters, slow 
 Dependent on an evaluation function, slow 
 Usually requires solution ‘compile’, slow 

 In terms of algorithm complexity, no magic 
bullets, but many opportunities for improving 

 … come back to this… but 



Complexity – of GP 

 How to make it simpler… what do we mean 
 For example, some of the decision points 

•  Functions, terminals 
•  Objective function 
•  Initialization 
•  Operators 
•  Selection pressure and operators 
•  Bloat / size pressures 
•  Stopping criterion 
•  Oh, and generalization setup! 



Complexity – of GP and more 

 Within each decision, even more 
•  Operators: interactions and mix 
•  Selection pressure: replacement, archives, etc 

 What is a minimal, viable GP algorithm? 
•  Koza is still most often cited 
•  Should it be by domain… GP-SR, GP-robot, etc 

 Or, do we do meta-GP, add more algorithm 
complexity for simpler User Experience? 



Complexity – One more thing  

 Model interpretation is big benefit 
 However, complexity of solutions high (big 

trees) 
 Given a solution, which is product of 

evolution, i.e. non-”efficient” search, how to 
minimize with performance tradeoffs 

 Should it be a post-search add-on or handled 
with Pareto archives, multi-objective, bloat / 
complexity control? 



Complexity – One more thing 



Complexity – Next Steps 

 Research on simplification, approximations and 
Knowledge Extraction 

 Research into Minimal, Viable GP (not smallest 
code base!)  

 … and a canonical paper (not Koza ‘92)  
 … that could be YOU! 
 Research into VERY FAST systems… cloud, 

GPU, whatever… automating search can only 
help!  (plug for MIT+GE work) 



Further Reading 

 
 Meta-learning – evolve an GP with a EA/GP, 

search parameter space 
 Bloat, growth control – find least complex 

solutions 
 Tiny GP competition and results 
 GP-like alternatives: Hill-climbing like search (Poli 

and Langdon book, others), Incremental Program 
induction (Schmidhuber), others 
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#3 Representations 

  Identifying appropriate representations for GP 
…..ideally based on some measure(s) of quality that capture the 
relationship between the fitness landscape and the search process. 
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Difficulty of Representation 

  Hard to impossible to identify an optimal GP representation 
  
  …but given a better understanding of the relationship between 

representation and search, differentiation between alternatives may 
be possible. 
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What’s a Representation? 

 Representation = “genetic” encoding + “genetic” operators 
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Representation for GP 

 •  Individual is OR represents/encodes a program 

#include <stdio.h>

#include <stdlib.h>

#include <math.h>




int main(int argc, char* argv){



float x=0.0, y=0.0, z=0.0;


x=atof(argv[1]);


y=atof(argv[2]); 




z=atof(argv[3]);


x = 2.0*sin(y) + 4.0*sin(x);


z = (x*x) + exp(z);



printf(“The answer is: z=%f\n”,z);


return(0);


}


#include <stdio.h>

#include <stdlib.h>

#include <math.h>




void turnLeft(float degrees);


void turnRight(float degrees);

void moveForward(float distance);




int main(int argc, char* argv){


turnLeft(90);


if(sensorValue(0) > 1000)



 
moveForward(10);


else



 
turnRight(90);


return(0);


}
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Attributes of GP 
 

“Tell the computer what to do, not how to do it.” 

Arthur Samuel, 1959 

John Koza’s (1999) AP Attributes… 
•  Start with high-level problem description that results in a solution in the form of a computer program 

•  Automatically determine the programs size and architecture 

•  Automatically organise a group of instructions so that they may be re-used by a program 

•  Problem-independence 

•  Scalability to larger versions of the same problem 

•  Capability of producing human competitive results 

•  Evolutionary Automatic Programming/Genetic Programming… 
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Many Representations for GP 

 machine code, FSA, trees, strongly-typed, graph, linear, 
linear-graph, grammars, generative/developmental…  
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“Vanilla” GP 
Koza popularised Lisp S-expressions… 

•  Expressions (trees) generated from 

•  Function Set:  boolean, arithmetic, loops, user-defined functions… 

•  Terminal Set: inputs, constants, variables, … 
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“Vanilla” GP Features 

Sufficiency 
•  Function+Terminal sets: powerful enough to represent a solution  

 

Parsimony 
•  Smaller Function+Terminal sets are better 

Closure 
•  Each function should gracefully handle all values it ever receives 

•  (/  5  0)  !?! 
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Evolving Representation! 

 Why not “evolve it”!?!? 

 Examples include… 
•  Langdon’s Data Structures 
•  Spector’s “Autoconstructive” Evolution 
•  Banzhaf’s Evolution of “genetic code” 
•  ?Hyperheuristics 
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Representation Open Issues 

 What is the best representation for my problem? 
•  computationally “sufficient” 
•  facilitate navigation (e.g., see Semantic Operators later) 
•  automatically identify and manipulate abstractions/modules 
•  handle variable dimensions… 

 How do we compare representations? 
•  E.g., locality, redundancy and scaling 

 Need more rigorous/formal analysis… 
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Representation Open Issues 

 What ever happened to evolving algorithms?  
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#4 Modularity & Scalable GP 

  Define a clear measure of success for what it means to achieve 
“Scalable GP” as well as modularity 

  How well does GP scale to problems of increasing complexity/
difficulty? 

  How can we improve scalability of GP? 
  Given representations in GP can evolve, what is scalability in GP 

anyway? 
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Approaches to Modularity 

 

  Many approaches… 
•  E.g., ADF’s, architecture-altering operators (Koza), Genetic Library Builder (GLiB - 

Angeline & Pollack), Adaptive Representation through Learning (Rosca), 
Automatically defined macros (Spector), reuse of “concepts” (Seront), lambda 
abstraction (Yu), linear-gp register reuse & repeated patterns (Langdon & 
Banzhaf), module repository (Majeed & Ryan), sub-graph encapsulation (Walker & 
Miller),  Run Transferable Libraries (Keijzer et al), functional modularity (Krawiec & 
Wieloch), grammar-defined functions (O’Neill, Hemberg, Harper, Swafford), 
Swafford PhD thesis (2013) 
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Modularity & Evolution 

  Modularity & Evolvability (Altenberg)…modularity may have positive 
effect on “alignment” between spaces of phenotypic variation and 
selection gradients 

  Evidence for dynamic environments leading to emergent modularity 
(Kashtan) 
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Modularity 
  Mechanism to  

•  protect parts of individuals from disruption 
•  achieve abstraction and parameterisation 

  What’s the best way to  
•  automatically identify modules? 
•  achieve automatic abstraction 
•  achieve automatic manipulation of modules 

–  E.g., architecture altering operators 

  Is modularity critical to scalability?   
  How are modules used? Can their use guide search operators? 

  Can we achieve modularity, hierarchy and reuse in a more principled 
manner? (e.g., software eng – or should we even consider these human-centric approaches?) 
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#5 Dynamic Problems 
 
 The “natural environment” for artificial evolution! 

 Dynamic in so many ways: 
•  Type of change (e.g., constraints, fitness landscape, 

combinations) 
•  Degree 
•  Frequency 
•  Combinations of all of the above! 

 Mind-shift from optimisation to “survival” 
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Dynamic Problems with GP 

 
 Can borrow strategies from broader EC literature 

•  E.g., Branke (2001) and Morrison (2004) 

  GP inherently dynamic! 
•  Co-evolving 

–  Structure 
–  Parameters 

•  Dimensionally dynamic! 
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Dynamic Problems – lots to do! 

 
 Little formal analysis of GP in dynamic env’s 

•  E.g., Bloat - Langdon & Poli (1998), population sizing - Tu & 
Banzhaf (2009) & Vanneschi (2009), constant evolution – time 
series - Dempsey (2009) 

 Recall (Kasthan) emergent modularity 
•  Also, dynamic environments can provide more efficient search 
•  some evidence for GP in specific cases (O’Neill) 
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#6 Open-ended Evolution 

 Designing an evolutionary system capable of continuously 
adapting and searching…(can also mean un-directed search) 

  Essential 
•  Feedback loops 

–  Dynamic environment 
–  Co-evolutionary processes  

•  Continuously injected randomness 
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#6 Open-ended Evolution 

 EC & ALife have failed! 

  What are the missing ingredients for artificial evolution to achieve the open-ended emergence of 
complexity, innovation and adaptation witnessed in nature? 
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 #7 Fitness Landscapes and 
Problem Difficulty in GP 
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Fitness Landscape 
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Example 

S = { i |    i ∈          &    0 ≤ i ≤ 15 } N 

∀ i ∈ S,   f(i)  =  number of "1"s in the binary representation of i 

Neighborhood:     j ∈ Ni  ⇔  | j - i | = 1 
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Fitness Landscape 

Hill Climbing 
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Remark that... 

if we consider exactly the same problem, but with a different neighborhood 
structure: 

S = { i |    i ∈          &    0 ≤ i ≤ 15 } N 

∀ i ∈ S,   f(i)  =  number of "1"s in the binary representation of i 

Neighborhood:     j ∈ Ni  ⇔  j and i differ by just 1 bit 

There are no local optima in this fitness landscape! 
(every individual that is different from the global optimum has at least one 
neighbor better than him, that can be obtained by changing a 0 into a 1). 
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Another Case  (“CONO” Problem) 
S = { vectors of prefixed length of real numbers included in [0,10] } 

∀ i ∈ S,   f(i)  =  distance to a prefixed (and known and unique) global optimum 

Example 

[5.2, 6.4, 2.1, 4.9, 3.7] 

A solution i 

[8.0, 6.0, 4.0, 7.0, 5.0] The global optimum  

closer! 

[5.8, 6.4, 2.9, 4.9, 3.6] 

A solution j neighbor of i 

Neighborhood:     j ∈ Ni  ⇔  j is equal to i except for the random perturbation of  
             some of its coordinates of a quantity included in [0,1]. 
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Importance of Fitness Landscape 

It gives a visual intuition of the facility or difficulty of a search agent (like Hill 
Climbing, but also Evolutionary Algorithms) to find the global optimum.   

•   Smooth landscape, with only one "peak" (global optimum) 
   easy problem 

•   Rugged landscape, with many local optima 
   hard problem 

Limitation of fitness landscapes 
It is generally impossible to draw a fitness landscape: 

•   Huge search space 

•   Huge neighborhoods  (multi-dimensionality!) 
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Objective of Problem Hardness Studies 

Find indicators of problem hardness (that typically capture some 
important characteristics of the fitness landscape and) that can give 
insight on the ability of a GP configuration to solve the problem.... 

•  Without having to run GP 

•  Without having to draw the fitness landscape 



61 

Autocorrelation     [Kinnear, 1994] 

Proposed measure of problem hardness for GP: autocorrelation function 
(Weinberg in 1990 and Manderick in 1991 had studied the same measure for 
GAs). 

Basically no clear relationship between 
autocorrelation values and problem hardness 
was observed for GP 
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Difficulty and Neutrality      [T. Yu, J. Miller  2001] 

Larger amount of neutrality allow GP to generate  
fitter individuals, in particular for hard problems 

(results criticized in [Collins, 2005]) 
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Fitness-Distance Correlation (fdc) 
(Introduced in [Jones et al., 1995] for GAs) 

Hypothesis: what makes a problem easy or hard is the relationship between 
fitness of individuals and the structural similarity of individuals to the optimum. 

Example 
Let's suppose that the global optimum is: 

100 fitness (phenotype) 

structure (genotype) 
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14 

Difficult Problem 

Easy Problems 
15 

30 55 74 83 

45 72 86 100 

the more fitness increases (improves), the more individuals are 
different from the optimum 

the more fitness increases (improves), 
the more individuals are similar  to the 
optimum 

100 
optimum = 
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Fitness Distance Correlation  (fdc)     [T. Jones, 1995]  

Let D = {d1, d2, …, dn} be the n distances to the global optimum,  then 

Given a sample of n individuals, let's suppose to know: 

•   the set  F = {f1, f2, …, fn} of the individual fitnesses 

•   the genotype of the global optimum (individual with the best fitness)  

•   a measure to express the genotypic distance between individuals 

fdc is the correlation between sets F and D 
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•   Counterexamples exist 

•   It is not predictive 

Optima must be known « a priori » 
(this makes fdc « almost» unusable in practice) 

A new measure must be defkned to quantify the 
difficulty of real-life problems. 
 
A measure that has been proposed is based on 
the concept of fitness cloud. 

Summary of the Results obtained  
by fdc in GP [Vanneschi et al., 2004] 

Fdc  is a very reliable measure of difficulty for a large set of problems. 

Fdc also has some drawbacks: 
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Fitness Clouds 
(First introduced for binary landscapes in [Vérel et al., 2003]) 
 

For each individual γ (in a sample or in the whole search space) a point is plotted: 

Fitness 

•  abscissa = fitness value of γ 

f 

fitness cloud 

Fitness of Neighbors 

•  ordinate = fitness value of a "particular" neighbor (chosen randomly or by  
                    some particular techniques). 
   here: neighbor = individual obtained by applying one step of mutation to γ 

f ~ 
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Negative Slope Coefficient (nsc) [Vanneschi et al., 2004] 

Summary of results 
•   Good hardness indicator for: 

•   Trap Functions 
•   Royal Trees 
•   Binomial-3 Problem   [Daida et al., 2001] 
•   Even Parity Problem  [Koza, 1992] 
•   Artificial Ant on the Santa Fe Trail  [Koza, 1992] 
•   ...  (also some real-life applications) 

•   Many ways of calculating the nsc have been used: 
•   Number of neighbors for each sampled individual 
•   Number of mutations to generate neighbors 
•   Different types of mutations to generate neighbors 
•   Different techniques to partition the fitness clouds into bins 

•   nsc is predictive  ⇒  it can be used on any problem 
•   nsc has not been normalized yet into a given range 
   (classification of different problems by their difficulty) 
•   A theoretical justification for nsc in [Poli, Vanneschi,  
   GECCO 2007]. Some  problems of the nsc for GAs in  
   [Vanneschi, Valsecchi, Poli, GECCO 2009] 
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#8 Semantics in GP 

 



•  Fitness: a measure on the error on the training set, i.e.,distance 
between the output vectors of f and the target output vector 
F(f)=D(f(I),O) (ERROR AS DISTANCE) 

GP as a Machine Learning Method 
(supervised learning) 

•  Known: the correct outputs for a fixed given set of  inputs {Ii, Oi} 

•  Sought: a function belonging to a certain class that interpolates 
those points, i.e., f(Ii)= Oi for any i 

•  Output vector: the vector of the outputs of f is f(I)=(f(Ii)) 

semantics  ([Moraglio et al., 2012]  
      and many others...) 

70 
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Semantic Diversity #1 

[McPhee et al., 2008] 
  
Use of truth tables to analyze behavioral changes in crossover for boolean problems 
 
Considered the semantics of two components in each tree: semantics of subtrees 
and semantics of context (the remainder of an individual after removing a subtree).  
 
Measured the variation of these semantic components throughout the GP 
evolutionary process.  
 
Fixed-semantic subtrees: subtrees such that the semantics of the entire tree does 
not change when they are replaced by another subtree.  
 

There may be many fixed semantic subtrees 
when the tree size increases during evolution; 
thus it becomes very difficult to change the 
semantics of trees with crossover and mutation. 
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Semantic Diversity #2 
[Beadle and Johnson, 2008]  
 
Semantic is used to define an algorithm called Semantically Driven Crossover 
(SDC).  
 
SDC has been developed based on analysis of the behavioral changes caused by 
crossover.  
 
Use of a canonical representation of members of the population (Reduced Ordered 
Binary Decision Diagrams-ROBDDs) to check for semantic equivalence without 
having to access the fitness function: two trees are semantically equivalent if and 
only if they reduce to the same ROBDD.  
 
This is used to determine which participating individuals are copied into the next 
generation. If the offspring are semantically equivalent to their 

parents, the children are discarded and the crossover is 
repeated.  
 
Increased semantic diversity in the evolving population, 
and a consequent improvement in the GP performance. 
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Semantic Diversity #3 

[Beadle and Johnson, 2009]  
 
Previous work extended to mutation: semantics is used to test the effects of 
behavioral control at the point of the mutation operator.  
 
Presented Semantically Driven Mutation (SDM), which can explicitly detect and 
apply behavioral changes caused by the syntactic modifications in programs caused 
by mutation.  
 
SDM does not allow mutated programs to be produced when they are behaviorally 
equivalent to the original program. The aim of this is to avoid getting stuck in areas 
of the semantic/search space that have already been investigated.  

As in [Beadle and Johnson, 2008], the key feature of 
the semantically driven operator is the ability to 
canonically represent programs in such a way that it is 
possible to compare them, looking for equivalent 
behaviors. 
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Semantic Locality 

[Nguyen et al., 2010] 
 
Investigation of the role of syntactic locality and semantic locality of crossover. 
 
The results show that improving syntactic locality reduces code growth, and that 
leads to a slight improvement of the ability to generalize.  
 
By comparison, improving semantic locality significantly enhances GP 
performance, reduces code growth and substantially improves the ability  
of GP to generalize. 
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Semantic Diversity + Locality #1 

[Nguyen et al, 2009(a)] 
 
Semantics Aware Crossover (SAC), a crossover operator promoting semantic 
diversity, based on checking semantic equivalence of subtrees.  
 
[Nguyen et al, 2011] 
 
Extended to Semantic Similarity based Crossover (SSC), which turned out to 
perform better than both standard crossover and SAC  
 
Objective: incorporate semantics into the design of new crossover operators, so as 
to maintain greater semantic diversity and provide higher locality than standard 
crossover.  
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Semantic Diversity + Locality #2 

[Nguyen et al, 2009(b)] 
 
SSC extended to mutation leading to Semantic Similarity based Mutation 
(SSM).  
 
Superior performance of SSM compared to standard mutation. 
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Geometry in the Semantic Space 

[Krawiec and Lichocki, 2009] + [Krawiec, 2012]  
 
Proposed a class of crossover operators for GP aimed at making offspring 
programs intermediate (or medial) with respect to parent programs in the  
semantic space (geometric). 
 
Suggested that the prospects of designing a crossover operator that works in the 
genotype space and behaves geometrically in the corresponding semantic space 
are gloomy in GP, given the complexity of the genotype-phenotype mapping.  
 
Hence, rather than guaranteeing the geometric behavior, their operator tries to 
approximate it by analyzing the offspring after it has been created.  
 

This limitation is overcome by the geometric semantic 
operators proposed in [Moraglio et al., 2012], 
discussed in the continuation. 



Is it possible to define transformations on the syntax of individuals that 
have known effects on their semantics?  

GP Geometric Semantic Operators  
[Moraglio et al., 2012] 
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Objective: 



Syntax Semantics 
? 

? Ball Mutation 

79 



Syntax Semantics 

P1 

P2 

Offspring 

? 
? 

Geometric 
XO 
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Ball Mutation on the Semantic Space 

If  
a transformation on the syntax of an individual whose effect is 
ball mutation on the semantic space can be found 

a unimodal fitness landscape can be induced on any 
problem consisting in matching input data into known targets  
(e.g. regressions and classifications) 

Then 

81 

Problem mapped into the “CONO”. 



Geometric XO on the Semantic Space 

If  
a transformation on the syntax of individuals whose effect is 
geometric crossover on the semantic space can be found 

Then 
the offspring is not worse than the worst of its parents 
 

P1 

P2 

O 

T 
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Is it a dream? 

Yes... but turning into reality 

Those operators have been defined: 

A. Moraglio, K. Krawiec, and C. G. Johnson.  
Geometric semantic genetic programming.  
In C. A. Coello Coello, et al., editors, Parallel Problem Solving  
from Nature, PPSN XII (part 1), volume 7491 of Lecture Notes  
in Computer Science, pages 21–31. Springer, 2012. 
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Geometric Semantic Crossover  [Moraglio et al., 2012] 

TR = Random function with codomain [0, 1] 

TR 

TR 

T1 T2 

TXO      = 
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Geometric Semantic Mutation  [Moraglio et al., 2012] 

TM      = 

+ 

T * 

ms - 

TR1 TR2 

TR1 , TR2  = Random functions 
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Drawback of Geometric Semantic Operators 

These operators, by construction, always produce offspring that are larger 
than their parents, causing an exponential growth in the size of the 
individuals [Moraglio et al., 2012] 

This renders them useless in practice.  

A solution that has been proposed: “simplification” of the individuals during 
the evolution. But…. 
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An Efficient Implementation 

We propose a new implementation of Moraglio’s geometric 
semantic operators that is efficient and does not imply any online 
simplification phase and thus allows us to use them on complex 
real-life applications! 
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In:   
A New Implementation of Geometric Semantic GP Applied to Predicting 
Pharmacokinetic Parameters.  
L. Vanneschi, M. Castelli, L. Manzoni, S. Silva.  
Accepted for publication in the EuroGP 2013 Proceedings  
Lecture Notes in Computer Science. 



Summary of the results obtained 

•   An efficient implementation of geometric semantic operators, that has 
allowed us to use them on real-life applications.  

•   Excellent results on the studied applications. 

•   New insights about the generalization ability of geometric semantic 
operators (without the novel implementation that allowed us to use 
geometric semantic GP on these complex real-life problems, this interesting 
property would probably remain unnoticed).  
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Major open issue 

The reconstruction of the expression of the best individual, even though 
we do it only once and after the termination of the run, is still an issue: 

Individuals after hundreds of generations get so huge that it may be impossible 
to reconstruct their entire expression (even though it is possible to get some 
information about it, such as the features or primitives it uses...). 

Models generated by geometric semantic GP are black (or at least “dark 
gray”) boxes! 

We are working on this! 
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#9 The Influence of Biology 

 Weaknesses of current paradigm 
 The trade-off 
 Opportunities  
 Reversing the flow 
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Weaknesses of current Paradigm 

 Fixed representation 
 Static fitness functions 
 Closed systems 
 Our notion of genes 
 Simple maps from genotype to phenotype 
 Pre-determined operator features 
 No role for non-expressed material 
 Direct passing of genes without further qualifications 
 Scalability 
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Our Notion of Genes … 
 
 From … 
 EC genes that fully determine phenotypic outcomes 
 Genes as “coding sequences” 

 … to … 
 Genes as regulating units 
 The operon model  

From: Scherrer/Jost: Theory Biosci., 2007 
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… has to develop … 
 
 
 … to  
 Expression management of  
 Highly intricate complexes 

 Chromosomes and chromatin structures 
 Regulation, transcription, splicing 
 Editing of intermediate products (RNA) 
 Translation in ribosomes  
                                …. to function 

From: Scherrer/Jost: Theory Biosci., 2007 
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The Central Dogma is dead 
  The linear flow of information from DNA 
  to function is a grave oversimplification 

  The picture now is complex and bidirectional,  
  closing loops and forming networks 

From: Banzhaf et al: Nature Rev. Gen., 2006 
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No role for non-expressed material 
 
 

From: Frith,Pheasant, Mattic: Eur. J. Hum., 2005 
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Trade-Offs 

 Level of abstraction in models 
 Potential for harvesting useful features  
  Increased simulation time for evolutionary processes 
 More emergent phenomena ? 



97 

Opportunities 

 
 Epigenetics 
 Multi-level selection 
 Regulatory networks 
 Multi-cellularity and Development 
 Self-modifying genomes 
 Research into novelty, innovation and creativity 
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#10 GP Needs Benchmarks 
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Published Use of Benchmarks 
Survey of EuroGP and GECCO's GP Track from 2009 to 2011. 
183 articles using 471 problem instances. 

Limited variety e.g. 26% of papers involving 
symbolic regression used the quartic equation. 
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“De Facto” Banchmarks 
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What makes for a good benchmark? 

•  Tunably Dicult 
•  Varied 
•  Relevant (Real World? Constructed?) 
•  Fast (?) 
•  Accommodating to Implementors 
•  Supports good empirical method (e.g. problem generation) 
•  Easy to interpret and compare 
•  Representation Independent 
•  Precisely Defined (to an extent!) 
•  Known global optimum? 
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A Good Starting Point 

James McDermott 
David R. White 
Sean Luke 
Luca Manzoni 
Mauro Castelli 
Leonardo Vanneschi 
Wojciech Jaskowski 
Krzysztof Krawiec 
Robin Harper 
Kenneth De Jong 
Una-May O'Reilly 
... and many many others (sorry if I forgot to include your name!) 
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#11 Miscellany… 

 
 Algorithm Induction 
 Halting Problem 
 Domain Knowledge 
 Usability 
 GP Theory 
 Constants 
 Visualisation… 
 

(…and we never mentioned BLOAT! ) 
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Conclusions 

 
 

•   Can we increment GP generalization ability? 
•   Is there a better way to deal with programs’ complexity? 
•   How to choose the right representation for a problem? 
•   What is the best way of using GP in dynamic environments? 
•   How can we measure/predict the ability of GP to solve a problem? 
•   How can we use sematic awareness to improve GP? 
•   Can we exploit the richness of nature better then we currently do? 
•   ... 

So many open issues... 

One big objective... 
Let GP become a trusted mainstream 
member of the computational problem 
solving toolkit.  

Why not yet? 
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Questions & Discussion 
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