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ABSTRACT
Modularity has been an important vein of research in evo-
lutionary algorithms. Past research in evolutionary com-
putation has shown that techniques able to decompose the
benchmark problems examined in this work into smaller,
more easily solved, sub-problems have an advantage over
those which do not. This work describes and analyzes a
number of approaches to discover sub-solutions (modules)
in grammatical evolution. Data from the experiments car-
ried out show that particular approaches to identifying mod-
ules are better suited to certain problem types, at varying
levels of difficulty. The results presented here show that
some of these approaches are able to significantly outper-
form standard grammatical evolution and grammatical evo-
lution using automatically defined functions on a subset of
the problems tested. The results also point toward a num-
ber of possibilities for extending this work to further enhance
approaches to modularity.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming

General Terms
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1. INTRODUCTION
Modularity is an important open issue in the field of ge-

netic programming [16] and has been studied in a variety of
contexts. These range from examining abstract principles
taken from biology [20] to the empirical analysis of the per-
formance of different approaches for enabling and exploit-
ing modularity in evolutionary computation [2, 18]. This re-
search is classified under the latter. As modularity has been
shown to be extremely useful for the scalability of evolu-
tionary algorithms (Koza [9] shows this for genetic program-
ming), it is important to understand the effects of different
methods of encapsulating and exploiting modules in these
stochastic search methods.

The focus of this work is a popular form of grammar-
based genetic programming, grammatical evolution (GE) [3,
13, 15]. Studying modularity in the context of GE is espe-
cially interesting because of its genotype-to-phenotype map-
ping. The nature of this process facilitates a simple mecha-
nism for incorporating modules into the population via GE’s
grammar. For the purposes of this work, modules are en-
capsulated derivation sub-trees believed to be useful for the
population. By adding modules to GE’s grammar, they are
accessible to the entire population and no special opera-
tors are required to make use of them. Over the course of
the mapping process, a derivation tree is created, denoting
which rules from the grammar are picked to create an in-
dividual’s phenotype. One guaranteed way to find “good”
modules, would be to examine and evaluate each of the
derivation sub-trees in an individual. However, the compu-
tational overhead required for this is unreasonable, leading
to the need for more efficient methods of discovering mod-
ules. By evaluating a subset of the sub-derivation trees, it
is possible to approximate which ones improve the fitness of
the individual. When identified, the portion of the pheno-
type represented by these derivation sub-trees are encapsu-
lated and made available through GE’s grammar.
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When attempting to exploit modularity, two primary is-
sues arise:

1. how modules should be identified,

2. and how modules should be used.

In previous work, Swafford et al. [23, 25] present different
methods of incorporating modules into GE’s grammar once
they have been identified. However, they only consider one
method of identifying modules, leaving the question of how
modules should be identified open for examination. This pa-
per defines multiple methods for identifying modules and re-
ports the positive and negative characteristics of these meth-
ods.

The rest of this paper is structured as follows: Section 2
gives a review of related approaches to discovering modules
in GAs, GP, and GE. Next, Section 3 defines the methods
for module identification used in the experimental sections
of this paper. Following that, Section 4 outlines the experi-
mental setup used. Sections 5 and 6 present the results and a
discussion of the experiments carried out. Finally, Section 7
gives the conclusions and avenues for future work.

2. PREVIOUS WORK IN MODULE IDEN-
TIFICATION

Some of the earliest work in the area of module identifi-
cation is that of Angeline and Pollack [1, 2]. They pick par-
ent individuals for candidate modules based on their fitness.
Once a parent has been picked, a module is randomly picked
from that individual. Angeline and Pollack report positive
results from this method of identifying modules, however
their simplistic approach leads to the question if there are
better, more “informed” methods for module identification.
This paper attempts to address this question by implement-
ing and evaluating more “informed”methods for identifying
modules.

Rosca and Ballard [19] take a different approach. They
only allow an individual to contribute a module if its fitness
is better than its least fit parent. Once suitable individuals
have been identified, all subtrees of a given depth are ex-
amined and the most frequently activated subtrees are used
as modules. This has the advantage of taking information
from good individuals and also ensuring that subtrees picked
as modules are used by individuals. Rosca [17] found that
the frequency of appearance of a sub-tree was not an espe-
cially valuable method. However, Dessi et al. [4] found that
frequency-based module identification methods performed
comparably well to the other approaches tested. This leaves
the question open as to weather or not using frequency as a
module identification technique is beneficial.

Krawiec and Bartosz [10, 11] introduce the idea of func-
tional modularity. This centers around the notion that mod-
ules may be identified by examining their semantics. They
propose testing modules on a subgoal or subgoals of the fit-
ness function to obtain a value for the modules’ semantics.
This has the potential to be a powerful approach to modular-
ity in GP, but Krawiec and Bartosz point out the problem of
selecting an appropriate subgoal for the potential modules.

Majeed and Ryan [12] describe yet another method for
identifying useful modules. They iterate each individual
with a fitness better than the population’s average fitness
at the end of a run and calculate the fitness contribution of
each subtree in those individuals. This is done by replacing

the subtree with an identity node to cancel the effects of the
subtree on the rest of the individual. A module list is created
from the best subtrees and is made available to individuals
in subsequent runs. They state that approaches which are
able to make use of the discovered modules significantly out-
perform approaches which are not able to use modules. This
method is the inspiration for the M-ID approach described
in Section 3.

Walker and Miller’s [26] approach to modularity in Em-
bedded Cartesian Genetic Programming (ECGP) is similar
to Angeline and Pollack’s [2, 1]. They randomly identify
modules from a linear genotype. Modules are compressed
into a single primitive, stored in a module list, and made
available in the function set used to create individuals. Mod-
ules may also be expanded back to their pre-compressed
form. They also add operators to modify the modules’ in-
put, output, and contents. Walker and Miller report very
positive results from this form of modularity.

The most popular approach to enabling and exploiting
modularity in GP is the use of automatically defined func-
tions (ADFs) [9]. ADFs are parameterized functions which
are evolvable and reusable subtrees in a GP individual. GP
equipped with this form of modularity is shown to out-
perform standard GP on problems of sufficient difficulty [9].
There also have been previous approaches to enabling ADFs,
in GP [8] and GE [7] (as well as the similar Dynamically De-
fined Functions in GE [5]). Spector et al. [21] use a method
similar to ADFs in Push GP [22]. They add functionality to
tag particular instructions for later reuse. Tagged instruc-
tions may be reused or un-tagged. The tagging and un-
tagging of information is completely up to evolution. Mod-
ularity in GE has also been studied by using grammars with
different levels of modularity [24]. A more in-depth review
of previous work relating to modularity in GP is given in
work by Walker and Miller [26] and Hemberg [6].

3. MODULE IDENTIFICATION METHODS
It would be näıve to assume that one method for module

identification is suitable for all problems, as this violates
the no free lunch theorem. For this reason, a number of
different module identification approaches were developed.
For the current work, these approaches are as follows:

Mutation Identification (M-ID): An individual is taken
from the population and a node on its derivation tree
is randomly picked. The derivation sub-tree starting
with this node is the candidate module, and the fitness
of the individual, f0 is recorded. This derivation sub-
tree is replaced n times with randomly created sub-
derivation tress of the same size. The value of n rep-
resents how many evaluations each candidate module
undergoes. For each replacement, the entire individ-
ual is re-evaluated and the updated fitness is recorded,
f1...n. The candidate module is saved, if f0 is less than
n×ρ of f1...n, where ρ is a parameter in the range (0, 1].
ρ corresponds to how many evaluations the candidate
module must pass. This The fitness of this module is:

fm =

∑n
i=1(f0 − fi)

n
.

Insertion Identification (I-ID): First, n test individuals
are generated using the same initialization method as
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the population. The fitness of each test individual is
calculated. These fitness values are saved for later use:
fb
1...n. A candidate module is randomly picked from an
individual and inserted into each of the test individuals
to replace a random sub-derivation tree with the same
depth as the candidate module. After the candidate
module is inserted into a test individual, the fitness
is recalculated and saved. The set of fitness values
created by evaluating the candidate module in the test
individuals is also saved fa

1...n. If n × ρ of the values
in fa

1...n show improvement over their corresponding
value in f b

1...n, the candidate module is saved. The
fitness of this module is:

fm =

∑n
i=1(f

b
i − fa

i )

n
.

Frequency Identification (F-ID): This method counts the
occurrence of every derivation sub-tree in the pop-
ulation, except for single non-terminals. The most
common derivation sub-trees are used as modules and
given fitness values based on their frequency:

fm =
# of occurrences

total # of subtrees
.

Random Identification (R-ID): This method picks a ran-
dom derivation sub-tree from each individual in the
population and creates a module out of it. Since no
evaluation of the module occurs, the fitness of the par-
ent individual is used as the module’s fitness:

fm = fitness of parent.

Each of these methods was developed with a particular mo-
tive in mind. The M-ID approach samples how the picked
derivation sub-tree contributes to the fitness of the individ-
ual it appears in. I-ID estimates how well a derivation sub-
tree performs in multiple individuals, as opposed to only
the individual it appears in. To address the conflicting re-
sults of Rosca [17] and Dessi et al [4], F-ID is included. The
R-ID method is added as a control to examine how M-ID,
I-ID, and F-ID compare to a random approach. Testing this
set of module identification methods will give insight into
what types of approaches perform best on certain problems.
After a module is identified, the phenotype of that mod-
ule is “locked,” meaning it is not allowed to be modified by
crossover or mutation events. Modules are unchangeable be-
cause their evaluation suggests that their current phenotypes
are useful (except with the R-ID method which performs no
evaluation of modules). It may be beneficial to allow mod-
ules to be evolved, but this is out of the scope of this work.

Once suitable modules have been identified, they must
be made available to the population. This is accomplished
by adding the 20 best identified modules to GE’s grammar.
Swafford et al. [25] show 20 as a reasonable value for the
number of modules kept. These modules are picked based
on the fitness values given to them at their creation. Fig-
ure 1 shows how modules are incorporated into the gram-
mar. When the grammar already contains 20 modules and
more have been identified, both the new and old modules are
sorted based on their fitness values and the best 20 are kept.
If a module is removed from the grammar, and there are still
individuals using it, every occurrence of the module in each
individual is expanded into the full subtree used to create

Table 1: Experimental Parameters

Trials 50
Parameter Value

Population Size 500
Generations 100

Fitness Evaluation Limit 50000
Crossover Single point (90%)
Mutation Int-Flip (1%)
Selection Tournament (1% of pop. size)
Elite Size 50 (10% of pop. size)

Initialization Ramped Half and Half

that module. This prevents the phenotypes of individuals
from changing when the grammar is modified, but has the
potential to cause large genotypic bloat in individuals using
many large modules.

4. EXPERIMENTAL SETUP
The aim of this work is to examine different methods for

identifying modules and to establish which of these different
methods make them more, or less, beneficial for different
problems. These approaches are used on the Santa Fe Ant
Trail, x5 − 2x3 + x Symbolic Regression, even 7 parity, and
8 × 8 Lawn mower problems. When evaluating candidate
modules for the I-ID and M-ID approaches, 50 is used for
the value of n and 0.75 is used for ρ. Duplicate modules are
always thrown away. For all problems, modules are iden-
tified every 20 generations. This value is borrowed from
Swafford et al. [25] who experimented with various module
identification intervals. Experimentation with various inter-
vals for identifying modules could be valuable but is out of
the scope of this work.

As additional baselines for comparison, the above prob-
lems are also attempted with GE with ADFs. This is imple-
mented by including two ADFs in GE’s grammar which are
defined by codons in individuals’ chromosomes and can be
used by the result producing branch of the grammar. Each
individual in our implementation of GE (GEVA [14]) has its
own local copy of the grammar, meaning, each ADF is local
to a single individual. Because the different module identifi-
cation approaches described here may use significantly more
fitness evaluations than standard GE and GE with ADFs,
the average number of fitness evaluations used by GE is cal-
culated and used as a cutoff point. When any approach uses
more fitness evaluations than the cutoff, data from the last
full generation using less than or the same number of fitness
evaluations as the cutoff is used for the results reported in
Section 6. Table 1 lists the parameters used in setting up the
following experiments.

5. INITIAL RESULTS WITH MODULE
IDENTIFICATION

Preliminary experiments compare GE, GE with two ADFs,
and the 4 approaches to modularity described in Section 3.
The results from these experiments show that there is a
discrepancy between how many generations each approach
completes before the fitness evaluation limit is reached. Ap-
proaches that used no extra fitness evaluations during mod-
ule identification tended to have better average best fitness
values when they reached the fitness evaluation limit. The
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(a) Mutation ID
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(b) Insertion ID

Figure 2: This figure shows which section of the population contributes the most modules during the identification process.
The x-axis represents an individual’s rank in the population based on fitness, 0 being the best and 500 being the worst. The
y-axis (height) represents how many times individuals contributed a module over the course of 50 runs. This value does not
take into account the quality of the module discovered. The z-axis (depth) is the generation at which modules are identified.
The problem used in these graphs is the Santa Fe Ant Trail.

move

<acts>

<acts>

left <act> <acts>

<act>move

<act>

(a) A sample individual

<acts>

<act> <acts>

<act>move

move
(b) A sample
module

<acts> ::= <act> | <act> <acts>
<act> ::= move | left | right

(c) Original Grammar

<acts> ::= <act> | <act> <acts>
| <acts_mod_lib>

<act> ::= move | left | right
<acts_mod_lib> ::= <mod_0>
<mod_0> ::= move move

(d) Updated Grammar

Figure 1: These figures show how the grammar is modified
when a module is added to it. Figure 1(a) shows a sample
individual with a candidate module circled. The removed
module can be seen in Figure 1(b). Figure 1(c) shows the
original grammar and Figure 1(d) shows how the grammar
is modified when a module is added to it.

M-ID and I-ID approaches on average reached generation
40 before hitting fitness evaluation limit, where all other ap-
proaches regularly reached generation 100. Even if the M-ID
and I-ID methods are finding better modules than the R-ID
and F-ID methods, evolution is not given many generations
to work with those modules to create better solutions. The
source of this problem is that each individual in the pop-
ulation is given the chance to contribute a module. In an
attempt to remedy this problem the individuals of the pop-
ulation from which the most modules are identified is given.
If these individuals can be identified, focus can be given to
them and the rest of the population can be ignored.

To determine which group of individuals focus should be
given to, the number of modules that come from different
ranked individuals at the module identification steps is plot-
ted. Figure 2 shows a visualization of this. It shows that in
the case of M-ID (Figure 2(a)) more modules come from ap-
proximately the best 7.5% of individuals in the first module
identification step at generation 20. The I-ID approach (Fig-
ure 2(b)) finds fewer modules in total, but most modules are
still coming from the top of the population at the first mod-
ule identification step. The graphs in Figure 2 only show
results from the Santa Fe Ant Trail problem. Data from the
other problems vary slightly, but have a similar trend.

Another interesting trend in Figure 2(a) is the bump in
the number of modules coming from the worst individuals
in the population. One possible explanation for this may
be due to the diversity in the different areas of the pop-
ulation. As evolution progresses, the population tends to
be less diverse in terms of the phenotypes of the individu-
als. As modules are being taken from the top individuals, if
they are discovered again in later individuals, they are re-
jected since duplicate modules are not kept. However, the
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tail end of the population is likely to have individuals who
are more recently created by crossover and mutation events.
The modules discovered here may be different due to the
variety of phenotypes in this area of the population.

After considering which individuals yield the most mod-
ules across all problems, the following was implemented:

1. Originally, candidate modules needed to “pass” 75% of
their evaluations to be considered for use in the gram-
mar. But, the I-ID approach rarely finds modules that
passed 75% of the 50 evaluations attempted. One set
of variations lowers the percentage of evaluations can-
didate modules needs to pass to 50% and 25%.

2. One trend that can be seen in Figure 2 is that more
modules come from the best individuals in the popula-
tion, especially at the first module identification step.
To save fitness evaluations during module identifica-
tion, modules are only identified from the top 7.5% of
the population.

A third extension is also implemented based on data from
the initial experiments. The largest improvements in fitness
are made in the first 20 generations. Modules are only iden-
tified every 20 generations, meaning they are not available
initially for evolution to build upon and take advantage of.
The final variation identifies modules from the initial gener-
ation, in addition to every 20 generations.

These variations are applied to each of the original setups
discussed in Section 3 when possible. The following section
analyzes the experimental results of this.

6. EFFECTS OF MODULE
IDENTIFICATION ON FITNESS AND
SCALABILITY

This section discusses the results of applying the addi-
tional variations from Section 5 to the module identification
methods. The first set of results to consider is given in Ta-
ble 2. Due to space restrictions, only GE, GE with ADFs,
and the best five approaches to modularity defined in this
paper are shown in Tables 2 and 3.

Table 2 shows how at least one approach to modularity is
able to significantly outperform GE on all problems and GE
with ADFs on all but the Even 7 Parity and Lawn mower
problems. It is not surprising that the best approaches for
each problem are different. However, one surprising result is
that the R-ID and F-ID-based approaches are often some of
the best approaches. It was anticipated that modules identi-
fied under the M-ID and I-ID approaches would outperform
the others due to the fact that they approximate a module’s
worth based on how much it contributes to an individual’s
fitness. The most likely explanation for the R-ID approaches
performance is that runs using this approach are not cut
short for hitting the fitness evaluation limit. Modules are
being discovered and used by evolution from the first identi-
fication step until the final (100th) generation. Attempting
to discover modules with the M-ID and I-ID approaches has
the potential to greatly reduce the total generations they are
able to complete before reaching the fitness evaluation limit.
This means that even if good modules are being discovered,
little time is given to evolution to use them. This is where
only identifying modules from the best individuals becomes
useful. Any of the M-ID and I-ID approaches that are in the

best approaches listed in Table 2 only identify modules from
the top of the population. In fact, each of the approaches
listed in both Tables 2 reach at least generation 80 before
reaching the fitness evaluation cutoff.

The next question to ask is how scalable are the various
methods presented above? This question in particular comes
to mind because methods attempting to exploit modularity
have been shown to be particularly useful when increasing
problem difficulty [9]. To address the issue of scalability,
even 8 and 9 parity, x6−2x4+x2 and x7−2x5+x3 symbolic
regression, and 12 × 12 and 14 × 14 Lawn mower problems
are tested with each of the previous approaches. The results
of these experiments are shown in Table 3.

The first observation to be made about Table 3 is that
only the Lawn mower and Even 8 Parity problems have the
same number one ranked approach as their predecessor prob-
lems in Table 2. This indicates that for all the problems
tackled, there is no single best approach, even within prob-
lem classes. The exception being the Lawn mower problem,
where GE with ADFs dominates every other approached ex-
amined here. The most probable reason for this difference
in performance is the constantly adaptive nature of ADFs.
Since ADFs are built into GE’s grammar, they are available
to individuals from their initialization and are able to grow
and evolve via mutation and crossover operations at every
generation. This makes ADFs especially suited to the Lawn
mower problem. The ability to cover as much of the lawn as
possible is a valuable characteristic. Even if a solution is not
particularly efficient, covering a large portion of the lawn is
well rewarded. ADFs are able to grow and produce more
phenotypic information at every generation. Not only are
the ADFs themselves able to produce more information, the
individuals are able to use them and more frequently at each
generation. The approaches to modularity defined in Sec-
tion 3 create static modules. Not only are modules unable
to grow or change, new modules are collected at specified
intervals, not every generation, due to the amount of extra
fitness evaluations required to evaluate new modules.

To further this analysis, consider only the sets of symbolic
regression and parity problems. In the easier two problems
of each class, different variations of the R-ID method are
the best approaches and are significantly better than GE.
As the symbolic regression problems increased in difficulty,
the same approaches to modularity introduced in this pa-
per remained at or near the top of the best performing ap-
proaches while GE and GE with ADFs only moved down
the list. The parity problems tell a different story. As they
increased in difficulty, GE’s performance actually improves
relative to the other approaches examined, and GE with
ADFs remains in the top three approaches. However an in-
teresting trend in these problems is the presence of M-ID
approaches in the top ranking methods. This suggests that
as the parity problems increase in difficulty, they are able to
better take advantage of the modules discovered by the more
rigorous selection of modules used by M-ID approaches.

7. CONCLUSION AND FUTURE WORK
This work examines methods for identifying modules in

GE and compares them to standard GE and GE with ADFs.
The different approaches are tested on four different bench-
mark problems, three of which include varying levels of dif-
ficulty. The results reported in Sections 5 and 6 suggest that
the problems tested can benefit from the approaches to mod-
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Table 2: This table shows the best variations of all the approaches described in Sections 3 and 5, standard GE, and GE
with 2 ADFs. The key to the approach column is as follows: M-(num) – M-ID (num denotes the percentage of evaluations a
candidate module must pass), I-(num) – I-ID (num is the same as M-ID), TP – modules are only taken from the top 7.5% of
the population, G1 – modules are identified after the first generation. The ranks are based on the average best fitness out of
50 trials. If two approaches have the same average best fitness they are ranked based on the number of solutions found. The
Last Generation column represents the last full generation before the fitness evaluation limit is reached. The p-value columns
report the p-value given by a Wilcoxon signed rank test comparing the approach and GE or GE with ADFs (p-values < 0.05
denotes significance and have been underlined and are in bold). The best fitness values before the fitness evaluation cutoff of
each run are used to calculate the p-value

Rank Approach
Best Fitness
± Std. Error

Number
Solved

Last
Generation

p-value
(GE)

p-value
(GE-ADF)

Santa Fe Ant Trail

1 F-ID G1 14.50 ± 1.84 12 100 1.7×10−3 4.3×10−3

2 R-ID G1 15.88 ± 2.03 13 100 0.02 0.03
3 F-ID 18.70 ± 1.92 10 100 0.20 0.24
4 I-25 TP 19.58 ± 1.92 7 92 0.36 0.34
5 R-ID TP G1 19.64 ± 1.93 7 100 0.33 0.48
15 GE-ADF 21.80 ± 1.54 2 100 0.64 NA
19 GE 22.42 ± 1.62 4 100 NA 0.64

8× 8 Lawn mower

1 GE-ADF 0.28 ± 0.28 42 100 7.2×10−10 NA
2 M-75 TP 1.70 ± 0.61 20 85 7.7×10−10 8.1×10−4

3 M-50 TP 2.31 ± 0.71 20 85 7.7×10−10 3.0×10−4

4 M-50 TP G1 2.50 ± 0.71 17 81 7.7×10−10 3.6×10−5

5 M-25 TP 2.55 ± 0.73 21 85 7.7×10−10 2.2×10−5

6 R-ID TP 2.78 ± 0.75 20 100 7.7×10−10 2.2×10−4

21 GE 29.71 ± 0.17 0 100 NA 7.2×10−10

x5 − 2x3 + x Symbolic Regression
1 R-ID 0.427 ± 0.054 6 100 0.0085 0.01
2 GE-ADF 0.468 ± 0.030 2 97 0.65 NA
3 F-ID 0.479 ± 0.48 7 100 0.11 0.21
4 I-75 TP 0.493 ± 0.068 5 88 0.08 0.14
5 GE 0.504 ± 0.024 1 100 NA 0.65
6 M-25 TP 0.507 ± 0.075 7 85 0.061 0.13
7 F-ID G1 0.519 ± 0.057 4 100 0.56 0.52

Even 7 Parity
1 R-ID TP G1 0.82 ± 0.43 46 100 0.01 0.28
2 GE-ADF 1.72 ± 0.67 43 99 0.05 NA
3 I-75 TP G1 1.82 ± 0.89 45 86 0.08 1.00
4 I-50 TP G1 1.82 ± 0.89 45 86 0.09 0.93
5 I-25 TP G1 1.82 ± 0.89 45 86 0.10 1.00
6 M-75 TP G1 1.84 ± 0.71 43 80 0.06 0.83
20 GE 4.40 ± 1.26 38 100 NA 0.05

ularity examined in this paper. Unsurprisingly, how much
each problem instance benefits is dependent on the nature
of the problem and the approach to modularity used.

One constant result across all the problems tested is the
best performing approaches to modularity require minimal
additional fitness evaluations to find modules. This is likely
due to the fact that the fitness evaluations used to identify
modules detract from those available to evolve the popu-
lation. On each of the problems, except the Lawn mower
problem, approaches to modularity that significantly out-
perform GE use no additional fitness evaluations to identify
modules. This suggests that if useful modules are discov-
ered by using extra fitness evaluations, evolution still needs
sufficient time to use these modules in a beneficial way.

The results from this work also point towards promising
opportunities for future work. Considering how the various
approaches performed on the different benchmark problems,

one avenue with the great potential would be designing and
implementing a hybrid/adaptive module identification op-
erator which is able to automatically determine how and
when modules should be identified. Criteria for these op-
erators could come from modules usage, population fitness,
and/or population diversity. Under the M-ID and I-ID ap-
proaches, if a candidate module is evaluated and found to be
a “bad” module, the evaluations used have been essentially
wasted. Another vein of future work could use the knowl-
edge of which derivation sub-trees were found to be unfit to
hinder or eliminate their usage. Modules could also be pa-
rameterized or given that ADFs performed reasonably well
on some of the problems examined, combining ADFs with
the approaches to modularity described in Section 3 would
allow for both an adaptive and static means for exploiting
modularity. Similarly, experimenting with modules that are
parameterized, behaving in a more ADF-like fashion, may
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Table 3: This table shows the results of testing the approaches in Sections 3 and 5 on more difficult instances of the problems
from Table 2. Also recall the key for the Approach column in Table 2.

Rank Approach
Best Fitness
± Std. Err.

Number
Solved

Last
Generation

p-value
(GE)

p-value
(GE-ADF)

12× 12 Lawn mower

1 GE-ADF 15.00 ± 2.54 23 99 7.8×10−10 NA
2 M-75 TP 30.37 ± 1.18 0 84 7.8×10−10 2.0×10−4

3 M-25 TP 32.47 ± 1.10 0 84 8.3×10−10 1.4×10−5

4 M-50 TP 32.65 ± 1.10 0 84 8.3×10−10 1.4×10−5

5 M-75 TP G1 33.46 ± 0.91 1 80 7.8×10−10 6.1×10−6

6 M-25 TP G1 34.95 ± 0.72 0 80 1.8×10−9 5.0×10−6

13 GE 51.12 ± 0.62 0 100 NA 7.8×10−10

14× 14 Lawn mower

1 GE-ADF 33.93 ± 3.41 10 99 7.8×10−10 NA
2 M-75 TP 55.30 ± 1.25 0 83 3.9×10−9 5.7×10−7

3 M-25 TP 56.44 ± 1.07 0 83 1.8×10−9 1.7×10−6

4 M-50 TP 57.96 ± 1.03 0 83 1.5×10−9 2.5×10−8

5 M-75 TP G1 61.10 ± 1.05 0 80 1.83×10−8 9.81×10−9

6 M-50 TP G1 63.25 ± 1.46 0 80 4.64×10−6 3.9×10−9

12 GE 72.48 ± 0.81 0 100 NA 7.8×10−10

x6 − 2x4 + x2 Symbolic Regression
1 F-ID 0.255 ± 0.022 4 100 0.20 0.12
2 R-ID 0.260 ± 0.023 6 100 0.24 0.21
3 M-75 TP 0.274 ± 0.022 5 86 0.69 0.72
4 I-25 TP 0.278 ± 0.020 4 92 0.57 0.65
5 I-75 TP G1 0.287 ± 0.019 2 85 0.56 0.98
9 GE 0.291 ± 0.017 2 100 NA 0.84
10 GE-ADF 0.293 ± 0.016 1 97 0.84 NA

x7 − 2x5 + x3 Symbolic Regression
1 M-25 TP 0.566 ± 0.20 2 86 0.66 0.06
2 R-ID 0.581 ± 0.21 1 100 0.0066 6.4×10−4

3 F-ID 0.642 ± 0.20 0 100 0.18 0.02
4 R-ID TP 0.676 ± 0.21 1 100 0.21 0.03
5 M-50 TP G1 0.690 ± 0.22 0 84 0.78 0.15
10 GE 0.859 ± 0.24 0 100 NA 0.38
19 GE-ADF 1.248 ± 0.29 0 97 0.38 NA

Even 8 Parity
1 R-ID TP G1 2.24 ± 1.02 45 100 0.01 0.12
2 F-ID G1 4.24 ± 1.38 41 100 0.08 0.43
3 GE-ADF 6.80 ± 2.39 41 99 0.27 NA
4 M-ID TP G1 7.56 ± 2.44 39 80 0.32 0.92
5 R-ID G1 7.64 ± 2.71 40 100 0.23 0.78
6 M-50 TP G1 7.76 ± 2.46 38 80 0.38 0.80
15 GE 10.76 ± 2.85 36 100 NA 0.27

Even 9 Parity
1 R-ID TP 15.32 ± 4.22 37 100 0.24 0.72
2 M-75 TP G1 17.76 ± 4.50 36 80 0.36 0.78
3 GE-ADF 18.40 ± 4.75 36 99 0.40 NA
4 R-ID 20.66 ± 5.31 36 100 0.62 0.80
5 M-25 TP G1 21.12 ± 6.44 38 80 0.54 0.73
6 M-50 TP G1 21.12 ± 6.19 35 80 0.38 0.96
13 GE 25.48 ± 5.81 32 100 NA 0.40

also be beneficial for future work. Another profitable exten-
sion of this research could be experimenting with dynamic
and incremental learning problems.
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