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ABSTRACT

This paper examines how the semantic locality of a search
operator affects the fitness landscape of Genetic Program-
ming (GP). We compare the fitness landscapes of GP search
when standard subtree mutation and a recently proposed
semantic-based mutation, Semantic Similarity-based Muta-
tion (SSM) [34], are used. The comparison is based on two
well-studied fitness landscape measures, namely, the auto-
correlation function and information content. The exper-
iments were conducted on a family of symbolic regression
problems with increasing degrees of difficulty. The results
show that SSM helps to significantly smooth out the fitness
landscape of GP compared to standard subtree mutation.
This gives an explanation for the better performance of SSM
over standard subtree mutation operator.
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1. INTRODUCTION

Genetic Programming (GP) [31, 25] is an evolutionary
paradigm for automatically finding solutions for a problem.
Since its introduction, GP has been applied to a wide range
of fields [31], and routinely exhibits human-competitive per-
formance [24]. So far, GP researchers have largely focused
on syntactic aspects of GP representation, and a great deal
of research has specifically focused on grammar-based ap-
proaches [27]. However, from a programmer’s perspective,
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maintaining syntactic correctness is just a part of program
construction: programs must be correct not only syntacti-
cally, but also semantically, and this has been recognised
as a significant open issue in the field [30]. Thus incorpo-
rating semantic awareness in the GP evolutionary process
could potentially improve performance. Recently, several
researchers have taken an interest in incorporating semantic
information into GP, leading to a sharp increase in related
publications (e.g., [13, 15, 16, 19, 3, 28, 33, 35, 4]).

In a recent work, Uy et al. proposed a Semantic Similarity
based Mutation (SSM) with the aim to improve semantic lo-
cality [34]. The basic idea of SSM is keeping a semantically
small change in mutation by replacing a subtree with a se-
mantic similar subtree. The experiments in [34] shows that
SSM helps to significantly improve GP performance in com-
parison with standard mutation and another mutation for
promoting diversity. However, the reason why the perfor-
mance of SSM is superior to other mutations is still unclear.

Fitness landscape have been used as a tool to understand
a complex process [17], and in this paper we attempt to
use fitness landscapes to shed light on the improvement in
performance of SSM versus standard mutation.

The remainder of the paper is organised as follows. In the
next section, we give a review of related work on semantic
used in GP and a brief review of fitness landscape in Evo-
lutionary Computation (EC). Section 3 presents a way to
measure semantics in GP, describes SSM and two ways to
characterise fitness landscapes. The experimental settings
are detailed in Section 4. The results of the experiments are
presented and discussed in section 5, and finally Section 6
concludes the paper and highlights some potential future
work.

2. RELATED WORK

This section briefly reviews the relevant literature for this
study. Firstly, a summary of ways in which semantics have
been employed in GP is provided, and this is followed by an
overview on the use of fitness landscapes in EC.

2.1 Semantics in Genetic Programming

Semantics is a broad concept that has been studied in a
number of different fields, including Natural Language [1],
Psychology [5] and Computer Science [29]. While the ob-
jective of using semantics varies from field to field, in GP,
semantic information has generally been used to provide ad-
ditional guidance to the evolutionary search. The way se-
mantics are exploited in GP depends on the problem domain



(Boolean or real-valued), individual representation (Grammar-

, Tree- or Graph-based), and the search algorithm compo-
nents (fitness measure, genetic operators,...). There have
been three main approaches for representing, extracting, and
using semantics to guide the evolutionary process of GP:

1. grammar-based [41, 4, 7]
2. formal methods [13, 15, 16, 21, 19]

3. GP s-tree representation [3, 28, 33, 35, 20|

In the first way, attribute grammars are the most popular
form. They extend context-free grammars, providing con-
text sensitivity through a finite set of attributes [23]. GP in-
dividuals expressed in the form of attribute grammar deriva-
tion trees can incorporate semantic information, which can
be used to eliminate bad (i.e., less fit) individuals from the
population [7] or to prevent the generation of semantically
invalid individuals [41, 4]. The attributes used to present
semantics are generally problem-dependent, and it is not al-
ways obvious how to determine the attributes for a given
problem.

Johnson, in his recent work, has advocated formal meth-
ods as a means to incorporate semantic information into
the GP process [13, 15, 16]. In Johnson’s work, semantic
information extracted by formal methods, such as abstract
interpretation or model checking, is used to quantify the fit-
ness of individuals on some problems for which traditional
sample-point-based fitness measure are unavailable or mis-
leading [13, 15, 16]. Subsequently, Katz and Peled [19] also
used model checking to define fitness in a GP system for the
mutual exclusion problem.

In other work, Keijzer [21] used interval analysis to check
whether an individual is defined over the whole range of in-
put values — if an individual is undefined anywhere, that
individual can be assigned minimal fitness or simply elim-
inated from the population. This allowed Keijzer to avoid
discontinuities arising from protected operators, improving
the evolvability of the system.

The advantage of formal methods lies in their rigorous
mathematical foundations, potentially helping GP to evolve
computer programs. However they are high in complexity
and difficult to implement, possibly explaining the limited
number of related publications since the advocacy of John-
son [14]. Their main application to date has been in evolving
control strategies.

Methods for extracting semantics from expression trees
depend on the problem domain. The finite inputs of Boolean
domains mean that semantics can be accurately estimated in
a variety of ways. Beadle and Johnson [3] investigated the
direct use of semantic information to guide GP crossover.
They checked the semantic equivalence of the offspring with
their parents by transforming them to Reduced Ordered
Binary Decision Diagrams (ROBDDs). This information
is used to determine which individuals are copied to the
next generation. If the offspring are semantically equiva-
lent to their parents, they are discarded and the crossover is
restarted. The authors argued that this results in increased
semantic diversity in the evolving population, and a conse-
quent improvement in GP performance.

By contrast, in [28], semantic is extracted from a Boolean
expression tree by enumerating all its possible inputs. The
semantics of two aspects were considered: the semantics of

subtrees and the semantics of context (the remainder of an
individual after removing a subtree). Special attention was
paid to fixed-semantic subtrees: subtrees where the seman-
tics of the tree does not change when this subtree is replaced
by another subtree. The authors showed that there may
be many such fixed semantic subtrees when the tree size
increases during the evolutionary process; thus it becomes
increasingly difficult to change the semantics of trees with
crossover and mutation, reducing the semantic diversity [28].

While, most of previous research on semantics in GP were
focused on combinatorial and boolean problems [4, 3, 28,
19], research on real-valued domains [33, 35, 26] is much
more recent. Krawiec and Lichocki [26] based the semantics
of individuals on fitness cases, using it to guide crossover
(Approzimating Geometric Crossover - AGC). AGC turned
out no better than standard crossover (SC) on real-valued
problems, and only slightly better on Boolean.

Uy et al. [33] proposed Semantics Aware Crossover (SAC),

another crossover operator promoting semantic diversity, based

on checking semantic equivalence of subtrees. It showed lim-
ited improvement on some real-value problems; it was sub-
sequently extended to Semantic Similarity based Crossover
(SSC) [35], which turned out to perform better than both
standard crossover and SAC [35]. The idea of SSC was then
extended to mutation leading to a counterpart semantic mu-
tation: Semantic Similarity based Mutation (SSM) [34]. The
experimental results in [34] again confirmed the superior per-
formance of SSM to standard mutation (SM).

2.2 Fitness Landscapes in Evolutionary Com-
putation

A fitness landscape is a way of describing the search space
of a problem in evolutionary algorithms. The concept of fit-
ness landscape was first proposed in [42] to study the evo-
lutionary process in biology. Since then, it has widely been
used to model the problem difficulties in evolutionary algo-
rithms (EAs) [32, 8]. A Fitness landscape uses metaphors
from nature such as peaks, hills, valleys, ridges, basins, wa-
tersheds etc. to characterise the search space of a problem
that EAs might encounter. A fitness landscape with many
local peaks surrounded by deep valleys is called rugged. For
the problems with this fitness landscape, it is more difficult
to find solutions (the highest peaks), since the algorithms
can be trapped in any local peak. General knowledge is the
more rugged fitness landscape, the more difficult the prob-
lem is. If all genotypes have the same fitness values, on the
other hand, a fitness landscape is said to be flat. For this fit-
ness landscape, using algorithms can not exploit knowledge
(e.g., fitness gradients) from the search space.

In practice, the visualisation of the whole search space of
a problem is problematic. Therefore, a number of methods
that attempt to describe the structure of fitness landscapes
have been proposed [40, 32, 38]. In fact, before describing
a fitness landscape, its primary components must be de-
fined [17]. The first component is the representation, i.e.,
how we encode the problem on a genotype structure to rep-
resent all potential solutions of the problem. The second
component is the operator that transforms a candidate so-
lution from one point to another point in the search space.
The third component is comprised of a function (the fitness
function) which allows us to assign a measure of quality
(fitness) to each candidate solution, a fitness space, and a
partial order of solutions over the fitness space.



The structure of fitness landscapes influences the ability
of an evolutionary algorithm to perform an efficient search.
There are several characteristics associated with the land-
scape that define its structure. These characteristics include
number, type, magnitude, and the sizes of the optima, and
of their basins of attraction. Researchers have investigated
the different aspects of the structure of fitness landscapes,
such as landscape deceptiveness [9, 10], modality [2] and
ruggedness [20, 40], to understand the nature of evolution-
ary search under different conditions.

Some authors suggest the use of an operator that min-
imises distance traveled in the search space when studying
fitness landscape [12, 36, 37]. In this paper, we follow the
work in [22, 17, 18, 39] to define the metric in terms of
the operators. It is reasonable since the main objective of
this research is to compare the characteristics of the fitness
landscape with different operators.

3. METHODS

This section presents the methods used in the study. A
way to measure semantics in GP is presented followed by
a detailed description of Semantic Similarity based Muta-
tion (SSM). Finally, we discuss two ways that are used to
characterise fitness landscapes in the experiments.

3.1 Measuring Semantics

Although, an exact definition of semantics is non-trivial,
in the field of GP, semantics of an individual program is of-
ten understood as the behavior of that program with respect
to a set of input values. In this paper, we follow the pre-
vious work in [34] in using sampling semantics to measure
semantics of any subtree. Formally, the Sampling Semantics
(SS) of a (sub)tree is defined as follows:

Let F' be a function expressed by a (sub)tree T on a do-
main D. Let P be a sequence of points sampled from do-
main D, P = (p1,p2,...,pn). Then, the Sampling Seman-
tics of T on P in domain D is the corresponding sequence
S = (s1,82,...,$n) where s; = F(p;),i =1,2,...,N.

The optimal choice of N and P depends on the problem;
we follow the approach of [34] in setting the number of points
for evaluating the semantics equal to the number of fitness
cases (20 points — Section 4) and in choosing the sequence
of points P uniformly randomly from the problem domain.

Based on SS, we define a Sampling Semantic Distance
(SSD) between two subtrees. It differs from that in [34] in
using the mean absolute difference in SS values, rather than
the sum of absolute differences. Let U = (u1,uz,...,un)
and V = (v1,v2,...,un) represent the SSs of two subtrees,
S1 and S3; then the SSD between S; and Ss is defined in
equation 1:

SN Jui — vl
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We follow [35] in defining a semantic relationship, Seman-
tic Stmilarity (SSi), on the basis that the replacing of sub-
trees in mutation is most likely to be beneficial if they are
not semantically identical, but also not too different. Two
subtrees are semantically similar if their SSD lies within a
positive interval. The formal definition of SSi between sub-
trees S1 and Ss is given in the following equation:

SSD(S1, S5) =

Algorithm 1: Semantic Similarity based Mutation

select a ParentP;

Count=0;

while Count<Max_Trial do

choose a random mutation point Subtree; in P;

generate at random a subtree Subtrees;

generate a number of random points (Q) on the

problem domain;

calculate the SSD between Subtree; and Subtrees

on @

if Subtreey is similar to Subtrees then
replace Subtreer by Subtrees;
add the children to the new population;
return true;

else

| Count=Count+1;

Choose a random mutation point Subtree; in P;
generate at random a subtree Subtrees;

replace Subtree; by Subtrees;

return true;

SSi(Stl, Stz) = ifa< SSD(SIH, Stz) < [‘3
then true

else false

where o and (8 are two predefined constants, the lower and
upper bounds for semantics sensitivity. In general, the best
values for these semantic sensitivity bounds have been found
to be problem dependent. In this work we set & = 102 and
B = 0.4, which have been found to provide good performance
in the case of SSM.

3.2 Semantic Similarity based Mutation

The mutation for improving semantic locality is inspired
from the crossover for improving semantic locality, SSC.
This mutation is called Semantic Similarity-based Mutation
(SSM). SSM is implemented in a similar manner to SSC, but
adapted to constrain the semantics in mutation rather than
in crossover. In SSM, a parent is selected for mutation in
the normal manner. A mutation point is randomly chosen
in the parent and a new subtree is stochastically generated.
Then the semantic equivalence is checked to determine if
these two subtrees (replaced and replacing subtrees in the
mutation operation) are semantically similar. If they are
similar, we perform mutation by simply replacing the sub-
tree at the mutation point with the new semantically stmilar
subtree. If they are not semantically similar, SSM uses mul-
tiple trials to find a semantically similar pair, only reverting
to random selection after passing a bound on the number of
trials. Algorithm 1 outlines the operation of SSM in detail.

To characterise the fitness landscape using these two dif-
ferent mutation operators, we use two well known tech-
niques. The first is the autocorrelation function, and the
second is the information content.

3.3 Autocorrelation Function

Correlation analysis is a set of techniques for characteris-
ing the problem difficulty by measuring the correlation be-



tween fitness of neighbouring points [8]. There are three
main techniques of correlation analysis. Of these the au-
tocorrelation metric of fitness landscape has been used in
biological evolution, computational evolution, and will be
used in this paper.

Using an autocorrelation function to study fitness land-
scapes was first proposed in [40]. For a given fitness land-
scape with f as the fitness function, a starting point so is
randomly selected. Using a mutation operator to create a
neighbouring point s; of sg. Repeat this process N times
to get a random walk of N steps F' = {f(s;)}io. Then the
autocorrelation function of this random walk is defined as
follows:

p(h) = (2)

where h is the distance between two points in the random
walk. sff is variance of the sequence and calculated as fol-
lows:
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and R(h) is the autocovariance function of sequence F. For

each h, R(h) is estimated by:

R(h) = 2o (J(5) = m;).(ﬂmh) —me)

where mp = ﬁ Zf\;o(f(s,)), is the mean of fitness se-
quence F'. The autocorrelation function indicates the corre-
lation between points that are separated by a distance h. A
smooth landscape is highly correlated as the fitness differ-
ence between a point with its neighouring is small and the
autocorrelation function is greater. Conversely, if a fitness
landscape is rugged, the fitness difference is high, and the
autocorrelation function is smaller.

3.4 Information Content

A method for characterising fitness landscapes based on
the concept of information content was first proposed in [38].
Similar to the autocorrelation function, a random walk of
N — steps, F = {f(s;)}L, is first obtained. A sequence
driven from F, S(€) = s1, s2, ..., SN, to represent this random
walk for each e, is generated, where

s; = U(i,€) (5)

and

—1 if fi — fic1<—¢;
U(i,e) =40 if|fi— fii1] <€ (6)
1 if fi — fici>¢

The parameter € is a real-number from the range [0..L],
where L is the maximal pair-wise difference in the sequence
F'. e determines the accuracy of calculation of S(e). If =0,
the function ¥(i,€) = will be very sensitive, and insensitive
when e=L.

After that, four measures of entropy and amount of fitness
change during the random walk are calculated as follows:

1. Information Content (H(¢)): indicates the ruggedness
of landscape

2. Partial information content (M (€)): indicates the modal-
ity of landscape.

3. Information stability (ex): indicates magnitude of op-
tima in landscape.

4. Density-basin information (h(e)): characterises the struc-

ture of landscape around optima.

The information content characterises the ruggedness of
the fitness landscape. It is defined as follows:

H(e) = Zp[pq]l‘)gﬁp[pq] (7)
P#q

where the probability P, are the frequencies of 6 possible
blocks gp, p # g, of elements from S(e). They are defined as

N
Prog = —" (8)

where N,q is the number of occurrences of pg in S(e).
The partial information content is defined as

I

M(e) = &= 9

(=2 )

where N is the length of frequency S(e). p is calculated by

calling a recursive function of three integer arguments and
called by ®5(1,0,0), with ®s(i, 7, k) is defined as follows:

k if i>N
®s(i+ 1,4,k +1) ifi=0and s; #0;
®s(i,j,k) = ®s(i+1,4,k+1) ifj>0ands; #£0 (10)
and s; # S;;

Ds(i+ 1,7, k) otherwise;

When M (e)=0 it is an indication that there is no slope in
the random walk and when M (e)=1, it is an indication that
there is a maximal of multi-modality in the random walk.
Moreover, for a given partial information content, M (¢), the
number of optimal (Optimal No. in Table 3) in the random
walk can be calculated as L%J

The last measurement, density-basin information, h(e),
can be calculated as

he)= D PuplogsPyy, (11)

pC{-1,0,1}

where pp is one of three sub-blocks, 00, -1-1, 11. A high
value of h(e) presents the high number of peaks in a small
area of the landscape. The low value means that the optima
is isolated.

In general, higher values of information content, partial in-
formation content, number of optimal in the landscape, and
density-basin information define a more rugged landscape
which is more difficult to search. Smaller values define a
smoother landscape which is easier for a search method.

4. EXPERIMENTAL SETTINGS

To examine the fitness landscape of GP using semantic
based mutation, we use a class of problem where difficulty
can be controlled and increased. The aim is to investigate
if the difficulty of these problems is (partly) caused by the



nature of the fitness landscape. The problem class is the
binomial-3 problem. The binomial-3 problem consists of ap-
proximating the function f(z) = (z+1)3. Using the terminal
set of {x, Ephemeral Random Constant (ERC)}, it has been
shown [6, 11] that the difficulty of this problem is increased
with changes to the ERCs. In other words, if ERC > 1, the
difficulty of binomial-3 is increased by increasing ERC. In
this experiment we use three ranges of ERC that have been
used in [6, 11], they are [-1, 1], [-10, 10] and [-100, 100].
Binomial-3 with these ranges of ERC will be referred to as
Binl, Binl0 and Bin100, respectively.

The GP parameter settings are similar to ones in [34, 6].
Fitness cases include 20 points of step 0.05 in interval [0,1).
Raw fitness is the sum of absolute error on all fitness cases.
The function set comprises +, -, *, / (protected version),
sin, cos, exp, log (protected version) and the terminal set
consists of X and ERC. The lower semantic sensitivity used
for SSM is 102 and the upper semantic sensitivity is set to
0.4. The Maxz_Trial (see Algorithm 1) of SSM is set at 20.
These values of the parameters for SSM have been shown as
good values for the performance of SSM.

We divided our experiments into two sets. The first set
was to investigate the performance of Semantic Similarity
based Mutation (SSM) and standard mutation (SM) in solv-
ing these problems. The question we aim to address is
whether semantic based mutation help to improve the per-
formance of GP in solving these problems, especially when
the difficulty of the problems were increased. For this ex-
periment, we used a population size of 500 and run 50 gen-
erations. A run is successful if any individuals hits (<0.01)
on all fitness cases. The mutation rate was set at 1.0 and
crossover rate was set at 0, and 100 runs were performed.

The second set of experiments was to examine the fit-
ness landscape of the above problems with SSM and SM.
To investigate the fitness landscape, random walks of 10000
steps are created using standard mutation (SM) and Seman-
tic Similarity-based Mutation (SSM) for each problem. All
fitness values of individuals encountered during the random
walk were recorded. For each problem, 200 random walks
were conducted, making a total of 2,000,000 fitness evalua-
tions for each experiment.

S. RESULTS AND DISCUSSION

This section presents the results of the experiments and
draws some discussion based on that.

5.1 The Comparison of Performance

To compare the performance of these mutation, we use two
classical metrics, namely mean best fitness and the number
of successful runs. The results of the number of successful
runs out of 100 runs of these mutations (No. Suc row) and
the best fitness found, averaged over all 100 runs of each GP
system (Mean Best row) are presented in Table 1.

Table 1 shows some interesting results. Firstly, it can be
observed that the difficulty of these problem is increased
from Binl to Bin100. It is reflected by the results of both
number of successful runs and mean best fitness. The num-
ber of successful runs was decreased from Binl to Binl00
while the mean best fitness was increased (It means that
the rate of minimising of the best fitness was decreased from
Binl to Bin100). The results are consistent with the results
in [6, 11].

Secondly, the table shows that semantic based mutation,

Table 1: The Comparison of the Performance

Metrics Mutations Binl Binl0 Bin100
No. Suc SM 0 0 0
SSM 12 3 1
Mean Best SM 0.64 1.40 4.28
SSM 0.28 0.88 2.40

Table 2: Autocorrelation Analysis (greater one is
better).

Distance (h) Mutations Binl Bin10 Bin100
1 SM 0.664 0.662 0.668
SSM 0.739 0.740 0.732
2 SM 0.562 0.566 0.580
SSM 0.673 0.676 0.673
4 SM 0.431 0.439 0.442
SSM 0.581 0.588 0.586
8 SM 0.287 0.299 0.324
SSM 0.464 0.473 0.472
16 SM 0.161 0.170 0.192
SSM 0.348 0.340 0.340
32 SM 0.073 0.077 0.091
SSM 0.228 0.208 0.206

SSM, helps to improve the performance of GP in solving
these problems, even when the problems become harder (Bin10
and Binl00). It can be seen that while SM can not find any
solution, SSM can still find some solutons and the mean best
fitness of SSM was also smaller than the one found by SM.
We also tested the statistical significance of the results of
mean best fitness in Table 1 using a Wilcoxon signed-rank
test with a confidence level of 95% and the results of sta-
tistical test show that all enhancement of SSM over SM are
significant.

5.2 The Comparison of Fitness Landscape

To characterise the fitness landscape of these problems,
the autocorrelation and information content of SM and SSM
were measured and the results are shown in Table 2 and
Table 3.

Table 2 shows that improving semantic locality of muta-
tion helps to smooth out the fitness landscape of a problem.
From the table it is clear that the value of the autocorrela-
tion function of SSM is always greater than that of SM. This
means that the fitness value of the individuals in the popula-
tion of SSM has stronger correlation than SM and hence the
fitness landscape of the population that are constructed by
SSM is smoother than the one of SM. We also statistically
tested the difference between autocorrelation values of SM
and SSM using the Wilcoxon rank test and the results show
that all the difference are significant with a confidence level
of 95%. In comparison between each function groups, the
table shows very little difference between Binl to Bin100.
In fact it can be seen that autocorrelation of Bin100 is of-
ten slightly greater than Binl, however, the statistical test
results show that this difference is not significant.

The results presented in Table 3 are consistent with Ta-
ble 2 confirming the ability to smooth out fitness landscape



Table 3: Information Content Analysis of Binomial-3 (smaller one is better).

Epsilon(e) Problems Mutations H(e) h(e) M(e) Optima No.
Bin1 SM 0.771 0.681 0.423 2116
SSM 0.769 0.680 0.392 1963
1 Bin10 SM 0.761 0.696 0.410 2047
SSM 0.755 0.695 0.380 1902
Bin100 SM 0.742 0.689 0.380 1900
SSM 0.731 0.687 0.360 1801
Binl SM 0.767 0.665 0.369 1848
SSM 0.749 0.656 0.331 1656
2 Bin10 SM 0.751 0.669 0.363 1815
SSM 0.733 0.657 0.327 1639
Bin100 SM 0.724 0.658 0.343 1715
SSM 0.706 0.645 0.319 1595
Binl SM 0.715 0.609 0.300 1502
SSM 0.669 0.574 0.256 1280
4 Bin10 SM 0.703 0.614 0.303 1516
SSM 0.663 0.658 0.263 1314
Bin100 SM 0.675 0.604 0.295 1473
SSM 0.642 0.575 0.265 1328
Binl SM 0.607 0.509 0.224 1121
SSM 0.533 0.453 0.181 906
8 Bin10 SM 0.610 0.528 0.238 1190
SSM 0.546 0.480 0.197 986
Bin100 SM 0.592 0.530 0.240 1214
SSM 0.540 0.490 0.211 1056
Binl SM 0.461 0.394 0.154 774
SSM 0.383 0.342 0.124 620
16 Bin10 SM 0.490 0.436 0.179 897
SSM 0.418 0.386 0.145 727
Bin100 SM 0.492 0.458 0.196 982
SSM 0.430 0.416 0.168 842
Binl SM 0.326 0.305 0.111 557
SSM 0.280 0.271 0.093 468
32 Binl0 SM 0.374 0.361 0.139 697
SSM 0.324 0.323 0.116 583
Bin100 SM 0.393 0.401 0.165 826
SSM 0.351 0.369 0.145 728




by improving the semantic locality of mutation. The val-
ues that characterise information content of SSM are always
smaller than those for SM, meaning that SSM helps not
only to reduce the ruggedness of the fitness landscape but
also to decrease the number of local optima in landscape,
and decrease the magnitude of this local optima. We also
statistically tested the difference between SM and SSM in
Table 3 using the Wilcoxon rank test with a confidence level
of 95%. The results of this test show most of the differences
are significant with some exceptions when e = 1.

Comparing between functions, the results in this table
are slightly different from the results in Table 2. Table 3
shows that Binl is more rugged than Binl0 and Bin100 with
the small values of € (1, 2, 4) but Binl0 and Binl00 are
more rugged when e is increased (16, 32). Therefore, it is
difficult to conclude that the difficulty of Bin10 and Bin100
are caused by the changing fitness landscape. We believe
that the increasing difficulty of Binl0 and Binl00 versus
Binl is because of the conflict between context and content
as they have been shown in [6].

6. CONCLUSIONS AND FUTURE WORK

In this paper we study the fitness landscape of both stan-
dard mutation and a recently proposed semantic based mu-
tation, Semantic Similarity based Mutation (SSM). The land-
scape was characterised using two common methods, the au-
tocorrelation function and information content. The exper-
iments were conducted on a family of binomial-3 problems
with increasing difficulty. The results show that improv-
ing semantic locality helps to significantly smooth the fit-
ness landscape of these problems, which should make search
with the semantic based mutation much easier. These re-
sults help to explain the improvement of the SSM operator
versus standard mutation.

Future work includes investigating fitness landscapes of
other semantic based operators such as Semantic Similarity
based Crossover using the techniques in this paper to further
understand the relationship between semantic locality and
fitness landscape.
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