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Abstract

Modularity has proven to be an important aspect of evolutionary computation. This work is
concerned with discovering and using modules in one form of grammar-based genetic programming,
grammatical evolution (GE). Previous work has shown that simply adding modules to GE’s grammar
has the potential to disrupt fit individuals developed by evolution up to that point. This paper
presents a solution to prevent the disturbance in fitness that can come with modifying GE’s grammar
with previously discovered modules. The results show an increase in performance from a previously
examined grammar modification approach and also an increase in performance when compared to
standard GE.

1 Introduction

Modularity is an important open issue in the field of genetic programming [18], and has been studied
in a variety of contexts. These range from examining abstract principles taken from biology [21] to
the empirical analysis of the performance of different approaches to enabling and exploiting modularity
in evolutionary computation. This research is classified under the latter. As modularity has been
shown to be extremely useful for the scalability of evolutionary algorithms (Koza shows this for genetic
programming [12]), it is important to understand the effects of different methods of encapsulating and
exploiting modularity in these stochastic search methods.

Genetic algorithms (GAs) [9] and genetic programming (GP) [11] have been studied fairly extensively
in this context. However, modularity in grammatical evolution (GE) [3, 17] has not been examined as
thoroughly, and is the focus of this work. Studying modularity in the context of GE is especially
interesting because of its genotype-to-phenotype mapping. The context-free grammar used in this process
provides an easy method for reusing encapsulated information from GE’s individuals. By examining the
derivation trees created by this mapping process, “good” information discovered by GE can be identified,
encapsulated, and placed directly into the grammar to be used in the appropriate context. Previous
research by Swafford et al. [22] has shown the potential advantages and drawbacks of this approach to
modularity in GE. Here, an improved method for enhancing GE’s grammar with modules is proposed in



order to alleviate such drawbacks. To accomplish this, two methods of modifying the grammar will be
examined:

1. modifying the grammar and remapping each individual with it’s original genotype and the new
grammar, and

2. modifying the grammar and each individual’s genotype so the productions picked during the map-
ping process is the same as it was before the grammar modification.

The differences in their performance will be noted and compared to each other, as well as compared to
standard GE’s.

In this paper, a module is the sub-derivation tree of an individual which is considered to contain
beneficial information (Refer to Figures 1(b) and 1(c) in Section 4 for examples of a derivation tree and
a module). Once modules are discovered and encapsulated, they are inserted into a global grammar
and may not be modified or evolved, unlike Koza’s automatically defined functions(ADFs) [12]. Koza’s
ADF's are also parameterized and local to each individual, where the modules in this study are stored in
a global grammar for all individuals.

The rest of the paper is structured as follows. The following section outlines some previous work
relating to modularity in GP and GE. Section 3 describes the method used to identify modules. Next,
Section 4 explains how the identified modules are incorporated into GE’s grammar. Then, Section 5
presents the experimental setup, and Section 6 details the results of this work, as well as their meaning.
Finally, Section 7 gives the conclusions and avenues for future work.

2 Previous Work

There have been many previous explorations into different methods of discovering, creating, and using
modules in GP. Some of the earliest work in this area is that of Angeline and Pollack [1, 2]. They
developed methods for picking out modules of useful information to be passed from individual to indi-
vidual during an evolutionary run. They use compress, expand, and atomization operations to “lock”
potentially useful parts of GP syntax trees, to “unlock” previously compressed portions of syntax trees,
and to compress more information into previously compressed syntax trees. They show the first step
in basic module encapsulation and how advantageous this can be, and how beneficial capturing these
modules is during the course of an evolutionary run.

Next, the most popular and most studied of approaches to exploiting modularity in GP is Koza’s
ADFs [12]. ADFs are functions which are generated as separate branches of a GP individual’s syntax
tree. They are then used by that individual’s result-producing branch (RPB) of the syntax tree. The
most notable feature of ADF's is that they can be modified by evolutionary operators and parameterized
to accept any number of parameters. This particular approach to modularity in GP has been shown
to outperform standard GP on many benchmark problems. It has also been shown that ADF's are not
beneficial on too simple of problems, and to see any significant increase in performance, the problem
must be sufficiently difficult.

Keijzer et al. [10] also explore the notion of modularity, but on a different scale than most other
work. Where most approaches to modularity focus on improving performance on a per-run basis, Keijzer
and his colleagues use entire evolutionary trials to discover modules. They introduce run-transferable
libraries (RTLs), which are lists of modules discovered over a number of independent runs and are used
to seed the population of a new run. These RTLs show an increase in performance over standard GP,
and greatly enhance the scalability of GP by training the RTLs on simple problems before using them
for harder problems [20].

Further research on modularity in GP was carried out by Krawiec and Weiloch [13]. They define a
new way to exploit modularity, called functional modularity. They attempt to discover modules without
using the context of the problem as a whole. They use semantics to evaluate how good a module is
without using that module in the original problem. They give the example of a battery in a flashlight.
There may be a way to determine the quality of the battery without using it in the flashlight. The use
of semantics is a very difficult problem and Krawiec and Weiloch state that further studies are needed
to fully understand how to best exploit the semantics of modules.

Modularity has also been studied in the context of grammar-based forms of GP. Whigham [24] uses
a non-mapping form of grammar-based GP to exploit modularity. He examines the parse trees created



by individuals and extracts sub-trees to enhance the grammar during the evolutionary run. He uses
sub-trees from the fittest individuals and turns them into additional productions and/or rules to add to
the grammar. His results showed that altering the grammar in this way led to an increase in the number
of successful runs on the six-multiplexer problem.

Hemberg et al. [7] also study modularity in a grammar-based form of GP (grammatical evolution)
which uses a mapping process to create individuals by implementing meta-grammars, or grammars which
generate grammars, which are then used to solve the given problem, called GE2. GE? is shown to have
increased performance and scale better in comparison to the Modular Genetic Algorithm (MGA) [4] on
problems known to have regularities (one example of such a problem is the checkerboard problem).

Approaches to enabling ADF's in grammar-based forms of GP have also been examined. Hemberg et
al. [8] and O’Neill and Ryan [16] use ADFs in GE and achieve increases in performance over standard GE
on certain problems (Santa Fe Ant Trail, Los Altos Ant Trail, and San Mateo Ant Trail), and decreases in
performance on others. Similarly, Harper and Blair [5] use Dynamically Defined Functions (DDFs) with
GE on the Minesweeper problem, showing that DDF's outperform standard GE, and GE with ADFs.

For a more in-depth review of previous work of modularity in GP, refer to the work by Walker and
Miller [23] and Hemberg [6].

3 Module Identification

In this paper, the module identification approach is based on that adopted by Swafford et al.[22]. The
first step in identifying a module is choosing a parent individual to provide a candidate module. This is
done by iterating the population and allowing each individual to contribute one candidate module. Next,
the candidate module must be evaluated. A node on the parent’s derivation tree is randomly picked.
The sub-derivation tree starting at this node is the candidate module, and the original fitness of the
individual, fo, is recorded. Next, n new derivation trees starting with the same root as the candidate
module are randomly created and take turns replacing the candidate module in the parent. After each
replacement, the fitness of the new parent individual is calculated, f1. . If fo is a better fitness than p%
of fi.. n, the candidate module is saved for later use. When this is the case, the difference between fy and
each of f; ., is taken and the average of these is the module’s fitness value. This approach to module
identification was inspired by that taken by Majeed and Ryan [14]. To keep the number of modules
being incorporated into the grammar at a reasonable size, only the m (where m > 0) best modules are
kept after each module identification step before they are used to modify the grammar. Some variations
of the parameters n, p, and, m were tested in preliminary experiments, but there were no significant
differences in performance between the variations examined.

4 Grammar Enhancement by Modules

Once modules have been identified, they need to be incorporated into the evolving population. To accom-
plish this, they are added to GE’s grammar. Consider the simple grammar in Figure 1(a), an individual
producible by that grammar (Figure1l(b)), and a module selected from that individual (Figure1(c)).
This module is incorporated into the grammar by taking the phenotype produced by this particular
module (move move) and making it a production of the rule matching the module’s root symbol. Since
the module’s root symbol is <acts>, a module library non-terminal is added to the rule matching the
module’s root node, and a new rule is created for this library non-terminal. Actual module non-terminals
are added to the library non-terminal. A grammar modified in this way can be seen in Figure 1(d).
Swafford et al. [22] show how this approach to modifying the grammar in GE has the potential to be
extremely destructive to the fitness of the entire population. In an attempt to remedy this, a “genotype
repair” was also implemented. When the grammar is changed, it is highly likely that any given codon
in an individual’s genotype will not pick the same production as it did pre-grammar modification. This
repair mechanism ensures the genotype maps to the same phenotype it did before the grammar was
changed. Once the grammar has been modified and modules are being used in the population, it is
possible, and actually very likely, that new modules will be discovered and will replace some or all of
the previously discovered modules. When using the genotype repair method, this can cause a potential
problem if an individual previously mapped to a module which no longer exists in the grammar. To
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Figure 1: These figures show how a grammar is modified when a module is added to it.

remedy this problem, any module which appears in the population is allowed to remain in the grammar,
even if it is not one of the twenty best modules kept at each module identification step. When this
module no longer appears in the population it is then removed from the grammar.

5 Experimental Setup

The purpose of this work is to further examine grammar modification using modules. The experimental
setup shown here compares three approaches:

1. Remap: Modules are added to the grammar and the population is remapped with the new gram-
mar. When individuals are remapped, their genotypes remain unchanged, but the mapping process
may (but is not required to) produce a new phenotype because of the altered grammar.

2. Repair: Modules are added to the grammar and the genotype of each individual is repaired so
the productions picked during the mapping process with the new grammar are the same as the
productions picked before the grammar was changed. It is possible that some individuals use
modules that have been removed from the grammar. When this is the case, those modules are
added back to the grammar and allowed to remain until individuals no longer use them.

3. The last variant is standard GE where the grammar is never changed.

These three variations of GE are used on five different benchmark problems: Santa Fe Ant Trail [8, 12],
2% — 22% + x Symbolic Regression [19], 8 x 8 Lawn Mower, 12 x 12 Lawn Mower, and 14 x 14 Lawn
Mower [12]. Koza [12], Walker and Miller [23], and Hemberg [8] all used different approaches to modularity
to achieve improvements in performance on the Santa Fe Ant Trail. Both Koza[12] and Walker and
Miller [23] demonstrated better performance on different symbolic regression problems and various Lawn
Mower problems. The experimental parameters for these problems are shown in Tablel. The sub-
derivation tree operators mentioned in Table1 operate on GE individuals’ derivation trees as opposed
to the typical single-point crossover and int-flip mutation, which operate on GE individuals’ genotypes.
It should be noted that the implementation of GE used for this work is GEVA [15]. GEVA minimizes
fitness, so in the following figures and tables, lower fitness values are always better.



Table 1: Experimental setup for all evolutionary runs unless otherwise noted

Parameter Value

Generations 100

Population 500

Selection Tournament (Size 5)

Wrapping None

Crossover Sub-derivation  tree
(80%)

Mutation Sub-derivation  tree
(20%)

Elites 5

Initialization Ramped Half and
Half

Replacement Generational

Max. Derivation | 25 (100 for Lawn

Tree Depth Mower problems)

Initial Depth 10

Trials 50

6 Results and Discussion

Modifying the grammar during an evolutionary run can potentially be highly destructive to the pop-
ulation’s fitness, even if beneficial information is used for the modification [22]. This is due to the
genotype-to-phenotype mapping process GE employs. By still modifying the grammar, but ensuring
individuals keep their original mapping, good information can be encapsulated and put into GE’s gram-
mar, without destroying the information the population has already discovered. The results reported in
this section demonstrate how the approaches outlined in Section 5 perform and compare to one another.

6.1 Grammar Modification and Fitness

The primary goal of this research is to identify methods of encapsulating modules and using them in
GE’s grammar with no undesirable side effects and maximal benefits. To compare the methods presented
here, the first characteristic to examine is how they impact the best fitness of a population during an
evolutionary run. Figures 2(a) — 2(e) show the average best fitness achieved for each approach over
the course of 50 evolutionary runs. The Remap lines represent GE using the grammar modification
approach without genotype repair. The Repair lines represent GE using grammar modification and
genotype repair. The Std. GE simply represent the standard GE setup. The errors bar on each graph
are plotted using a 95% confidence interval, except Figure 2(b), which has no error bars due to the y-axis
being a log scale.

One of the most obvious characteristics of Figure 2(a) and 2(b) is the occasional degradation in fitness
every 20 generations on the Remap approach. The generations at which these degradations of fitness
occur coincide with the generations the grammar is modified. This loss of fitness is especially bad at
generation 20 because this is the first time the grammar is modified and when the grammar will undergo
the largest changes to the original grammar. These large changes come from the addition of module
library non-terminals to the original grammar. The degradations in fitness at each subsequent grammar
modification step is much less because it is unlikely that a module library non-terminal will be added
or removed from the grammar after they are introduced. The primary modifications being made are
localized within the module library non-terminals. Using this particular approach, valuable information
is being lost when the grammar is modified and GE appears unable to fully recover from the disruption
caused by the remapping. On the other hand, in Figures 2(a) and 2(b) the Repair approach does not
suffer from this drawback. When the grammar is changed, there is no loss in fitness at all, and evolution
continues to progress.

Note that the fitness of all approaches in Figures 2(c) — 2(e). Both the Remap and Repair approaches
suffer no degradation in fitness when the grammar is changed, unlike the previous problems. They also
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both significantly outperform standard GE. The reason for this is the amount of information compression
that occurs when modules are added to the grammar and the size of the derivation trees required to
reach a solution. Standard GE has to incrementally grow its individuals using crossover and mutation
operations, making it more difficult to reach larger phenotypes needed to solve the problems. The gram-
mar modification approaches encapsulate potentially large sub-derivation trees into a single production
in the grammar. These large sub-derivation trees might require many codons to derive initially, but once
they have been encapsulated into a module, they may be produced using only one or two codons.

A summary of these graphs is given in Table 2. This table shows the average best fitness for each
approach at the end of their respective evolutionary runs. It further shows the merit of modifying the
grammar and using the genotype repair approach. For every benchmark problem, the Repair approach
boasts more successful runs than standard GE. It also finds more target solutions than the Remap



approach in three out of five benchmark problems, and for the remaining two problems the difference
in successful runs is minimal at only two and one respectively. It also shows the Remap and Repair
performing better than standard GE with statistically significant results on the Lawn Mower problems.

Table 2: This table summarizes the graphs in Figures 2(a) — 2(e) as well as gives the number of successful
runs, paired t-tests for significance comparing the Remap and Repair approaches to standard GE, and a
paired t-test comparing the Remap approach to the Repair approach. Note that a run for the Symbolic
Regression benchmark is considered a success if the best fitness is less than or equal to 0.01. For every

other benchmark, a run is a success if the best fitness is 0.

Approach | Best Fitness | P. Value P. Value | Number Solved
+ Std. Dev. | (Std. GE) | (Remap) (Out of 50)
Santa Fe Ant Trail
Remap 19.10 = 11.67 1 NA 8
Repair 13.98 + 11.06 0.44 1 16
Std. GE 14.98 +10.04 NA NA 12
Sympbolic Regression (x° —2z° + x)
Remap 0.57 +0.81 1 NA 29
Repair 0.17£0.94 0.19 1 41
Std. GE 0.29+0.73 NA NA 36
Lawn Mower (8 x 8)
Remap 4.76 +7.74 0 NA 25
Repair 0+ 0.001 0 1 49
Std. GE 9.17 £ 5.89 NA NA 9
Lawn Mower (12 x 12)
Remap 2.83 £ 8.61 0 NA 14
Repair 2.47 + 8.49 0 1 12
Std. GE 73.24 £2.49 NA NA 0
Lawn Mower (14 x 14)
Remap 15.94 + 19.83 0 NA 2
Repair 31.174+16.91 0 0 1
Std. GE 121.81 £2.04 NA NA 0

6.2 Grammar Modification and Information Compression

One advantage of being able to exploit modularity is the capability to compress beneficial information
into a module and make that information more accessible for reuse during evolution. This can also be
thought of as changing the bias of the grammar. The grammar modification approaches used in this
work are notably good at compressing information for further reuse. For the sake of space, only the
problem which best exhibits this is shown (the 12 x 12 Lawn Mower problem).

Figure 2 shows the average derivation tree depth per individual in the population. The graph of the
average codons used in the population is similar, but has been omitted to save space. Figure 2 shows
the size of the individuals’ derivation trees races to the depth of 80 early in the evolutionary process.
This is because phenotypes with relatively large numbers of terminal symbols are needed to hold enough
information to solve this particular problem. The average used codons also increase with the derivation
tree depth as they are tightly linked to one-another.

At generation 20 the Remap approach plummets in terms of the the size of derivation trees, but
referring back to Figure 2(d) it is apparent that the average best fitness does not suffer. At this gen-
eration, the grammar is modified and modules are added, facilitating a more codon-efficient manner to
express larger amounts of information. Simply put, this allows for more lawn-mowing instructions to be
represented with fewer codons and more shallow derivation trees. The Repair approach also drops in
codon usage and derivation tree size, but not nearly to the extent of the Remap approach. After the first
module identification/grammar modification step, the size of derivation trees begin to increase and a
wave-like pattern can be seen. This figure (Figure 2) suggests that when new modules are encapsulated,
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they are likely to encompass an old module, or possibly multiple old modules, containing some amount
of good phenotypic information. This information is then placed in the grammar and can be easily
accessed by future individuals. Standard GE, on the other hand quickly reaches the limit for derivation
tree depths and becomes stuck, both in the size of individuals and in fitness (again see Figure 2(d)).
These results show how evolution is able to compress and reuse the good information encapsulated into
modules and made more accessible through adding it to the grammar.

6.2.1 Module Example

The claim is made throughout this paper that modules are being used by individuals to find better
solutions and compress good information during evolution. To back this claim up, an example of a
frequently used module that appears in highly fit individuals is given. The module in Figure 3(a)
appears in the 84" generation of one run of the 12 x 12 Lawn Mower problem. In that generation,
this module was used by 81.2% of the population and the average fitness of individuals containing this
module was 0.1789. This module uses 271 terminal symbols and 542 codons to produce. After considering
Figure 3(b), it is easy to imagine how large a genotype is needed to encode this amount of information
as well as information that was not part of the module. By encapsulating all these terminal symbols
into one module, such a large quantity of information may now be expressed using one or two codons
(depending on how many modules are in a particular module library rule).

6.3 Grammar Modification Comparison

Now that the differences in performance have been described, more analysis will be given in order to
understand the differences between the Remap and Repair approaches. The manner in which they impact
how often modules are used in the population and the fitness of individuals they appear in is explained.
To complete this analysis, Table 3 will be used. In this table, the lifetime of a module refers to how
many generations a module appears, the proportion is the number of individuals which use a particular
module, and the fitness is the fitness of individuals containing a particular module.

The first thing to notice in Table 3 is that for every problem, at least one of the modules that was
encapsulated and used in the grammar was present in the optimal solution in at least one run. This
suggests that even the best solutions are using at least one module. When this and Table 2 are considered
together, it is reasonable to believe that both the Remap and Repair approaches are able to use modules
to find better solutions.

The next aspect of this table to acknowledge is the proportion of the population that modules appear
in. For each module-encapsulating approach, there are modules that get used in large proportions (92%-—
100%) of the population. This is easily explained in the Remap approach because when the grammar
is modified, it is very likely that a large percentage of the individuals in the population will contain
modules after they have been added to the grammar and all individuals have been remapped. This
forces modules into the population at the expense of information developed over the generations leading
up to the grammar modification. This is reflected in the best fitnesses achieved by this approach in
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(a) The phenotype of an example module found for the
12 x 12 Lawn Mower problem

<prog> ::= <command> | <command> <prog>
<command> ::= mow | left | right

(b) The initial grammar used for all Lawn Mower prob-
lems

Figure 3

Table 2. With the Repair approach, modules are added to the grammar, but they are introduced into
individuals through crossover and mutation operators, which is not destructive to the mapping and,
depending on the location in the individual of the crossover and/or mutation, is not so destructive to
the information previously assembled by evolution. This same reasoning also explains the differences
between the two grammar modification approaches in the average proportion of individuals in which
modules are found.

The final notable characteristic of this table is the lifetime of modules in the population. For the
Santa Fe Ant Trail, Symbolic Regression, and 8 x 8 Lawn Mower problems, some modules are introduced
at the first module identification/ grammar modification step and persist through the entire evolutionary
run. This suggests that some of the early modules are beneficial enough to not be replaced or evolved
out of the population. On the harder Lawn Mower problems, however, no module was ever discovered in
50 trials per experimental setup that lasted the longest possible number of generations. Given the nature
of these problems (being able to express more phenotypic information with less genotypic information
is beneficial), it is very probable that modules are being encapsulated into larger, better modules which
eventually replace the initially discovered modules. This is enforced by the average lifetime of modules
which is less on the 12 x 12 and 14 x 14 Lawn Mower problems than all the other problems.

7 Conclusion and Future Work

This paper presents two approaches to enhancing GE’s grammar over the course of an evolutionary run
(Remap and Repair) and compares them to standard GE. These new approaches identify potentially
beneficial modules and add them to GE’s grammar. The difference between them is that the Remap
approach simply adds modules to the grammar and remaps the entire population using the new grammar,
while the Repair approach ensures that all individual maintain their pre-grammar modification mapping.
The results show that there are varying levels of merit in being able to encapsulate beneficial information
and make it easily accessible through a grammar, depending on the problem. By simply changing the
grammar and letting evolution take over, beneficial information can be destroyed, but by changing the
grammar and ensuring that no information is disrupted during the grammar modification process, there
are potential gains in performance.

The results of the research presented in this paper bring to mind a number of possible venues for future
work. The first of these is allowing the identified modules to be modified and/or evolved by evolutionary



Table 3: This table shows the average lifetime of modules, average proportion of individuals a module
is used in, and average fitness of individuals a module is present in (all & Std. Dev.). It also shows the
maximum lifetime a module existed in the population, the maximum proportion of individuals a module
appeared in, and the average best fitness of an individual with at least one module in it.

Lifetime Proportion Fitness
Approach Avg. \ Max. Avg. \ Max. Avg. \ Best
Santa Fe Ant Trail
Remap 41.124+25.07 | 80.00 | 0.07+0.14 | 0.99 58.58 +27.35 0.00
Repair 32.01 £23.52 | 79.00 | 0.03+0.10 | 0.98 70.00 £ 17.02 0.00
Sym. Reg. (x° — 223 +z)

Remap 40.76 £22.56 | 80.00 | 0.08+0.20 | 1.00 2.12 x 107 4 1.40 x 10° 0.00
Repair 59.99 +£21.41 | 79.00 | 0.04+0.13 | 0.97 | 5.39 x 10" £2.87 x 10™ | 0.00
Lawn Mower (8 x 8)

Remap 35.81+19.96 | 80.00 | 0.05+0.17 | 0.95 15.53 £9.69 0.00
Repair 35.154+16.19 | 79.00 | 0.04 +0.10 | 0.92 9.33 +£10.15 0.00
Lawn Mower (12 x 12)

Remap 17.68 £5.64 | 55.00 | 0.06+0.18 | 0.94 48.22 4+ 30.47 0.00
Repair 20.92 £9.67 | 65.00 | 0.04+0.14 | 0.94 46.26 +24.43 0.00
Lawn Mower (14 x 14)

Remap 16.51 £5.53 | 59.00 | 0.06 +0.19 | 0.96 84.22 £+ 37.08 0.00
Repair 19.38 £9.11 | 59.00 | 0.05+0.15 | 0.93 81.82 +29.57 0.00

operators like crossover and mutation. Identified modules may also be parameterized, creating a type
of grammatical function. Other possibilities for future work include examining alternative methods for
identifying modules and fine tuning the parameters used in Section 3. While identifying modules is not
the primary focus of this paper, the ability to identify better modules could lead to improvements in the
grammar modification methods used here. This paper tackled three different classes of problems, and to
further test the limits of the grammar modification approaches more benchmark problems can tested, as
well as dynamic and real world problems.
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