
Acceleration of Grammatical Evolution Using Graphics
Processing Units

Computational Intelligence on Consumer Games and Graphics Hardware

Petr Pospichal
Faculty of Information

Technology
Brno University of Technology

Czech Republic
ipospichal@fit.vutbr.cz

Eoin Murphy
Natural Computing Research

and Applications Group
University College Dublin

Ireland
eoin.murphy@ucd.ie

Michael O’Neill
Natural Computing Research

and Applications Group
University College Dublin

Ireland
m.oneill@ucd.ie

Josef Schwarz
Faculty of Information

Technology
Brno University of Technology

Czech Republic
schwarz@fit.vutbr.cz

Jiri Jaros
Faculty of Information

Technology
Brno University of Technology

Czech Republic
jarosjir@fit.vutbr.cz

ABSTRACT

Several papers show that symbolic regression is suitable for
data analysis and prediction in financial markets. Gram-
matical Evolution (GE), a grammar-based form of Genetic
Programming (GP), has been successfully applied in solving
various tasks including symbolic regression. However, often
the computational effort to calculate the fitness of a solu-
tion in GP can limit the area of possible application and/or
the extent of experimentation undertaken. This paper deals
with utilizing mainstream graphics processing units (GPU)
for acceleration of GE solving symbolic regression. GPU
optimization details are discussed and the NVCC compiler
is analyzed. We design an effective mapping of the algo-
rithm to the CUDA framework, and in so doing must tackle
constraints of the GPU approach, such as the PCI-express
bottleneck and main memory transactions.

This is the first occasion GE has been adapted for running
on a GPU. We measure our implementation running on one
core of CPU Core i7 and GPU GTX 480 together with a GE
library written in JAVA, GEVA.

Results indicate that our algorithm offers the same con-
vergence, and it is suitable for a larger number of regression
points where GPU is able to reach speedups of up to 39
times faster when compared to GEVA on a serial CPU code
written in C. In conclusion, properly utilized, GPU can offer
an interesting performance boost for GE tackling symbolic
regression.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0690-4/11/07 ...$10.00.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—complexity mea-

sures, performance measures

General Terms

Algorithms

Keywords

CUDA, grammatical evolution, graphics chips, GPU, GPGPU,
speedup, symbolic regression

1. INTRODUCTION
Problems of symbolic regression require finding a func-

tion, in symbolic form that fits a given finite sampling of
data points [11]. Areas of applications include econometric
modeling and forecasting, image compression and others.

Grammatical evolution [20, 4], a grammar-based form of
Genetic Programming [13], is a promising tool based on the
fusion of evolutionary operators and formal grammars. It
has been successfully applied to various problems including
symbolic regression [17, 1]. Although GE is very effective
in solving many practical problems, like all GP methods, its
execution time can become a limiting factor for computa-
tionally intensive problems, as a lot of candidate solutions
must be evaluated, and each evaluation is expensive.

Driven by ever increasing requirements from the video
game industry, graphics chips (GPUs) have evolved into very
powerful and flexible processors, while their price has re-
mained in the range of the consumer market. They now of-
fer floating-point calculations much faster than today’s CPU
and, beyond graphics applications; they are very well suited
to address general problems that can be expressed as data-
parallel computations (i.e., the same code is executed on
many different data elements)[9].

In this paper, we explore the possibility of using consumer-
level a GPU for acceleration of the grammatical evolution
solving symbolic regression problems.

431

The remainder of the paper is organized as follows. The
next section describes the Grammatical Evolution and possi-
ble areas of its application. Section 3 deals with GPUs in the
context of CUDA general purpose computations with spe-
cial focus on optimization techniques used in recent papers.
The focus of section 4 is a GPU utilization analysis, where
the CUDA compiler is discussed in detail. A mapping of
the grammatical evolution algorithm to the GPU hardware
is described in the next section. After that, performance
and convergence of the proposed algorithm is measured and
compared with the GEVA GE library. The paper concludes
with section 7.

2. GRAMMATICAL EVOLUTION
The basic motivation behind Grammatical Evolution (GE) [20,

4, 19] is to “evolve complete programs in an arbitrary lan-
guage using variable length binary strings“ [19]. It is being
used for various tasks including financial modelling [17], 3D
Design [2] and game strategies [5].

binary string

array of numbers

rules (grammar in BNF)

terminals

amino acids

protein

grammatical evolution biological system

translation

DNA

RNA
transcription

program phenotypic effect

Figure 1: Grammatical evolution

As it is shown in Fig. 1, the process of Grammatical Evo-
lution is inspired by biological systems. Whereas in living
organisms, the transformation of genotype to phenotype is
performed by transcribing DNA into intermediate RNA and
then translated into amino acids forming proteins, GE re-
sembles this process by using an intermediate representation
and building rules in a form of a grammar.

A grammar in the Backus-Naur form allows users to de-
fine constraints as well as potential building blocks for the
problem at a hand. Embedded domain knowledge in this
manner can be beneficial in some applications [19, 21]. GE is
a population-based, iterative, stochastic algorithm that uses
genetic operators known from other methods of the evolu-
tionary computation [8]. It is formed by the following steps:

selection ensures propagation of fitter individuals to the
next generation, which allows convergence towards a
solution

crossover is responsible for mixing good features of indi-
viduals together [7]

mutation includes small changes into genotype which has
a positive effect for overcoming local extremes [2, 3]

genotype-phenotype mapping is a process of rewriting
a genotype (binary string or array of integers) into a
phenotype (evolved program) using the user-defined
grammar

evaluation is a problem-dependent process of getting the
fitness value of individual’s phenotype. In this paper,
we focus on symbolic regression, which can be defined
as a sum of local differences in a set of data points:

fitness =

n∑

i=0

|x[i]− f [i]| (1)

where x[i] is the value of individuals phenotype, f [i] is
the value of the desired solution and n is the number
of regression points.

Additional information and examples are available in [18].

3. GRAPHICS PROCESSING UNITS (GPUS)
Historically, GPUs were used exclusively for fast raster-

ization of graphics primitives such as lines, polygons and
ellipses. These chips had a strictly fixed functionality. Over
time, a growing gaming market and increasing game com-
plexity won GPUs limited programmable functionality. This
turned out to be very beneficial, so their capabilities quickly
developed up to a milestone, unified shader units. This hard-
ware and software model has given birth to the nVidia Com-
pute Unified Device Architecture (CUDA) framework [16],
which is now often used for General Purpose Computation
on these GPUs (GPGPU) with interesting results [23, 24].

3.1 CUDA
The CUDA hardware model is shown in Fig. 2: the graph-

ics card is divided into a graphics chip (GPU) and main
memory. Main memory, acting as an interface between the
host CPU and GPU, is connected to the host system using a
PCI-Express bus. This bus has a very high latency and low
transfer rates in comparison to inter-GPU memory trans-
fers [23]. Main memory is optimized for stream processing
and block transactions as it has low bandwidth compared to
the GPU on-chip memory. Actual GPUs consist of several
independent Single Instruction, Multiple Data (SIMD) en-
gines called stream multiprocessors (SM) in nVidia’s termi-
nology. Simple processors (CUDA cores) within these mul-
tiprocessors share an instruction unit and a hardware sched-
uler so they are unable to execute different codes in parallel
but, on the other hand, can be synchronized quickly in order
to maintain data consistency. Multiprocessors also possess a
small amount (16-48KB) of very fast, shared memory and a
read-only cache for code and constant data. Newer, DirectX
11 GPUs have also a read-write L1 cache and some of them
have a L2 cache as well.

The CUDA software model maps all mentioned GPU fea-
tures to actual user programs. The programmer’s job is to
perform this mapping efficiently to fully utilize the capabil-
ities of the GPU.

The main advantage of GPUs is very high raw floating
point performance resulting from a moderate degree of par-
allelism. Proper usage of this hardware can lead to a speedup
up to hundred times compared to general CPUs. But in or-
der to utilize such power, a programmer must consider a
variety of restrictions:

432

GPU VRAM

host system

main memory = local data + textures + constants

GPU

processor1

re
g
is

te
rs

processor2

processorM

shared instruction unit
and

hardware scheduler

...

SIMD multiprocesor 0
SIMD multiprocesor 1

SIMD multiprocesor N

co
n
st

an
t

ca
ch

e

te
xt

u
re

 c
ac

h
e

sh
ar

ed
 m

em
o
ry

CUDA hardware model - graphics card

re
g
is

te
rs

re
g
is

te
rs

...

input, output

L1/L2 cache (only some GPUs)

Figure 2: CUDA hardware model

• GPUs require massive parallelism in order do be fully
utilized. Applications must be therefore decomposable
into thousands of relatively independent tasks.

• GPUs are optimized for the SIMD type processing,
meaning that the target application must be data par-
allel otherwise the performance is significantly decreased.

• A graphics card is connected to the host system via a
PCI-Express bus, which is, compared to GPU memory,
very slow (80x for GTX285).

The OS driver transfer overhead is also very performance-
choking for small tasks, so applications should mini-
mize the number of data transfers between CPU and
GPU. The GPU must also be utilized for a sufficiently
long time in order to obtain meaningful speedup.

• A properly designed application should also take into
account the memory architecture. Transactions to main
GPUmemory are up to 500x slower in comparison with
on-chip transfers.

• GPUs are optimized for float data type, double is
usually very slow.

3.2 CUDA compiler
CUDA allows the compilation of the C source code to an

intermediate PTX assembly language as well as to a binary
CUBIN package. PTX has the advantage of being compiled
at runtime to a specific GPU and allows user modification
without a need to run the whole NVCC package. On the
other hand, module load time is, in the case of PTX, much
higher, which brings an unpleasant overhead upon GPU in-
vocation.

CUDA allows the caching of the source code on the graph-
ics memory so that code doesn’t have to be transferred be-
fore each execution.

4. GPU UTILIZATION ANALYSIS
As mentioned earlier, GE consists of several independent

steps: selection, crossover, mutation, genotype-phenotype
mapping and evaluation. The most straightforward way to
utilize the GPU for acceleration of GE is to outsource the
most time-consuming part, evaluation, to the GPU. This ap-
proach shows benefit of the least programming effort but it
also has a major limitation: due to CPU-GPU connection,
data has to be transferred to and from GPU every gener-
ation, which is a serious performance bottleneck. In our
work, we have chosen the approach of running the whole
Grammatical Evolution algorithm on a GPU.

Experiments implemented by Pospichal and Jaros [23, 24]
indicate that avoiding conditions in source code by compiling
algorithm parameters directly into GPU code can lead to
significant speedup. In this paper we have applied the same
approach.

GPU performance is very sensitive to divergent branching
in the code path. Therefore, we considered an option of gen-
erating optimized source code for evaluating the population
of individuals with respect to the current population charac-
teristics. This source code would be compiled and uploaded
to the GPU upon every iteration of GE so that evaluation
is effective.

In order to do this, we would have needed either a fast
compiler or the option of modifying GPU code directly so
that the GPU part would not be slowed down by this opera-
tion. We have investigated this option with a simple exper-
iment illustrated in figures 3. We simulated rising compiler
input source code complexity as shown in Fig. 3(a). Every
generated source code was compiled and run 10× . Fig. 3(b)
shows that both PTX and CUBIN versions of compilation
took at least 350ms. This is too much as one generation of
GE often takes no more than a second (depending on param-
eters). Because of these results, our implementation doesn’t
compile every population of individuals each generation.

On the other hand, module load times are very different
(see Fig. 3(c) and 3(d)). The CUBIN module is loaded in
less than 0.12ms while PTX takes as much as 80ms. As a
result, we chose CUBIN and compromise between optimiza-
tion and compiler invocation overhead – GPU source code
is compiled once in the beginning of the GE run. This gets
rid of 350ms of compilation time every generation and offers
good optimization based on GE parameters [6].

5. GE RUNNING ON GPU
The CUDA software model requires programmer to iden-

tify application parallelism on three levels of abstraction:
kernels, thread blocks and threads within these blocks [25,

433

 __device__ void randomname1(int inputs, int output)
 {
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 for(int n=0;n<100;n++)
 dest[i] = a[i] + b[i];
 }

 __device__ void randomname2(int inputs, int output)
 {
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 for(int n=0;n<100;n++)
 dest[i] = a[i] + b[i];
}

....

__global__ void vec(int inputs, int outputs)
{
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 for(int n=0;n<100;n++)
 dest[i] = a[i] * b[i];
 randomname1(dest,a,b);
 randomname2(dest,a,b);

}

N same
nested
functions
with
random
name

main - application
entry point

call all nested
functions so they
dont get excluded
by compiler

(a) source code of nested functions experiment

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 10 20 30 40 50 60 70 80 90

c
o

m
p

ile
r

w
a

ll
ti
m

e
 [

m
s
]

source code complexity (number of nested functions)

CUBIN mean value
dispersion

PTX mean value

(b) comparision of CUBIN and PTX compiler times
depending on source code complexity

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 10 20 30 40 50 60 70 80 90

m
o

d
u

le
 l
o

a
d

 t
im

e
 [

m
s
]

source code complexity (number of nested functions)

mean value
dispersion

(c) CUBIN module load times

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

m
o

d
u

le
 l
o

a
d

 t
im

e
 [

m
s
]

source code complexity (number of nested functions)

mean value
dispersion

(d) PTX module load times

Figure 3: CUDA NVCC compiler analysis

15, 16, 14, 22]. Kernels are complete programs executed
independently on the GPU hardware. The GPU hardware
scheduler dynamically maps blocks to SIMD multiprocessors
and threads to processors within them during runtime. Be-
cause of this and the CUDA hardware model, threads should
execute the same code over different data and use their
shared memory extensively to avoid main memory trans-
actions [24].

In some research [23, 24], this mapping has been per-
formed by running individuals by threads and independent
islands by blocks. However for GE, it may not be the best
option for these reasons:

• Individuals are running potentially different code (in-
terpreting the symbolic regression problem)

• The most time-consuming part is the fitness function
evaluation, which can be parallelized for many prob-
lems

• Individuals use larger amounts of shared memory, so
island populations would be very limited

Therefore, we have decided to alter the mapping to the
CUDA software model so that individuals are maintained by
thread blocks and threads are used to manipulate individuals
(i.e., the number of thread blocks equals the number of indi-
viduals in the population). This brings massive parallelism
needed for GPU to reach its full potential as well as one ma-
jor issue: according to the nVidia documentation, thread
blocks cannot be mutually synchronized. This is necessary
for data consistency, as selection should not happen before
evaluation, evaluation before genotype-phenotype mapping
and so on. To overcome this, we separated evolution into two
independent kernels which ensures synchronization between
blocks upon kernel completion.

The concept of our system is shown in Fig. 4. The appli-
cation is started on the CPU with defined GE parameters
and the NVCC compiler is invoked to compile CUDA kernels
with defined macros as these parameters. GPU code com-
pilation and transfer is actually performed only if the GPU
has never run a program with the same parameters before,
as NVCC caches previous programs in the GPU. Next, the

434

GPU selection kernel

...

...

...

selection, elite, crossover data

fitnesses

...
crossover

selection

transcription

evaluation

...

barrier
within
thread
block

po
pu

la
tio

n
po

pu
la

tio
n,

 p
ro

gr
am

s,
 s

ta
ck

thread
block

selection, elite, crossover data, population

fitnesses, population

GPU evolution kernel

G
PU

 m
ai

n
m

em
or

y
=

 G
PU

 C
PU

 h
os

t i
nt

er
fa

ce

gr
am

m
ar

thread block = individual
thread
shared memory
constant memory
data transfer
control

CPU control

CPU control

CPU control

ne
w

 it
er

at
io

n

CPU control

CPU control

results termination

startinitial
population

output

input

optional NVCC compilation

GPU code

 params

mutation

Figure 4: Grammatical evolution running on GPU

GPU is initialized with a random population and other ini-
tial values. Following this an iterative algorithm of evolution
consisting of two successive kernels is executed.

The first GPU kernel performs selection while the second
is used for the rest of the evolutionary process.

All kernels use the same data pointers to main memory,
so the CPU doesn’t need to copy data back and forth ev-
ery iteration of GE, therefore the PCI-Express bottleneck is
avoided. Kernels also copy just the minimum amount of data
between shared and main memory with respect to effective
block transfers. This tight interoperability eliminates most
of the main memory transactions as the population is kept
in fast-shared memory through the whole process. Constant
cache is used for grammar data, and the implementation
uses an effective PRNG GPU generator from [22, 14].

As noted earlier, GE is mapped to the GPU so that thread
blocks running in parallel on SIMDmultiprocessors are main-
taining individuals. Threads within these blocks, on the
other hand, are running on processors (CUDA cores) in
SIMD. Thus, there are two levels of parallelism: 1) indi-
viduals are evaluated in parallel and 2) data within individ-
uals (genes, crossover points, mutations, fitness points, etc.)
are maintained by parallel access as well. GE phases are
performed as follows:

selection begins with a parallel copy of fitness values of
all individuals to the shared memory. Elitism is per-
formed afterwards by a single thread walking the ar-
ray of fitness values. Then, the selection is performed:
threads up to tournament size index (i.e. tournament size
= 3, so threads 0,1,2) perform random number genera-
tion as Tournament selection. The fittest individual in-
dex is then chosen as the tournament winner and writ-
ten as an index to main memory. Random crossover
points and probabilities for the following kernel are
also generated and stored by each thread. These values
are later used by the second kernel. As a consequence,
there is no need for inter block synchronization after
the second kernel is launched.

crossover is mixing genes of two individuals together and
therefore requires inter-individual (inter-thread block)
communication, so shared memory cannot be used.
This is solved by using main-memory data gathered by
the previous kernel. From now on, each thread block
stores its individual in fast, shared memory. In the
case of elitism, the first thread block just reads elite
individuals. Other thread blocks are working in pairs
(i.e., block 1 and 2, 3 and 4,...) performing crossover
if the probability to read from main memory is higher
than the crossover rate. Crossover itself is performed
by reading corresponding parts of chromosomes to the
shared memory.

mutation is performed on every gene with a defined prob-
ability upon writing to the population in shared mem-
ory. This is achieved by threads generating random
values in parallel and then mutating if necessary.

genotype-phenotype mapping is a serial process as the
rewritten nonterminal from a final string depends on
the previous grammar rule applied. As a consequence,
mapping is the only part of GE which is performed on
GPU by a single thread in a thread block (individual).
In addition to shared memory used to store the chro-
mosome and generated programs, grammar rules are
kept in constant data cache while rules are encoded in
a form of array as shown in Fig. 5. A GEVA grammar

435

// GEVA grammar de f i n i t i on
<expr> : := (<op> <expr> <expr>) | <var>
<op> : := + | − | ∗
<var> : := x0 | 1 .0

// GPU grammar de f i n i t i on
c o n s t a n t const int grammar metadata [] [2] =

{
// # of ru l e s , beginning index

{2 , 0} , // EXPR
{3 , 2} , // OP
{2 , 5} // VAR

} ;

// constant preca l cu la t ed t a b l e grammar rules
c o n s t a n t const int grammar rules [] [5] =

{
// # of NT , # of symbols , ru l e symbols

{3 ,3 , EXPR, EXPR, OP } ,// <expr> ::=
// <expr> <expr> <op>

{1 ,1 , VAR, EMPTY, EMPTY} ,// <expr> ::= <var>
{0 ,1 , OPPLUS, EMPTY, EMPTY} ,// <op> ::= +
{0 ,1 , OPMINUS,EMPTY, EMPTY} ,// <op> ::= −
{0 ,1 , OPMUL, EMPTY, EMPTY} ,// <op> ::= ∗
{0 ,1 , VAR1, EMPTY, EMPTY} ,// <var> ::= x
{0 ,1 , ONE, EMPTY, EMPTY} // <var> ::= 1.0

} ;

Figure 5: Grammar rules in GEVA and CUDA

definition requires further decoding while our CUDA
grammar uses preprocessor integer constants EXPR,
OP, VAR, etc. for each symbol. An individual’s string
is rewritten during mapping by accessing arrays gram-
mar metadata and grammar rules very quickly in the
GPU constant cache. This completely eliminates slow
main-memory transfers. More information about the
process of mapping can be found in [20].

evaluation is implemented by all threads in thread blocks
in parallel: symbolic regression points are simulated
using the GPU stack described by Langdon [12] and
mapped strings are compared with the desired solu-
tion value in each point computed on-fly from the pre-
defined target expression. Finally the sum of differ-
ences in these points are computed serially by a single
thread.

GPU code written in lowlevel C is maintained by the
Python CUDA wrapper PyCUDA[10]. According to the
Klockner, actual CUDA calls are done in C++ so GPU mea-
surements have no additional overhead.

5.1 Limitations
Our implementation uses shared memory transactions. The

size of this memory is limited to 16, resp. 48 KB per SIMD
multiprocessor (individual) in case of pre-Fermi resp. Fermi
GPUs. There is a possibility to use main memory (size varies
around 1GB), but these transactions are much slower so they
would degrade speed (actual impact depends on how often
is main memory used).

6. RESULTS
In the following sections, we compare three implementa-

tions of grammatical evolution:

CPUG is implemented using the GEVA library (JAVA lan-
guage)

Table 1: Algorithm parameters

parameter
value

convergence performance
mutation rate 5%
crossover rate 90%

mutation operator Integer flip
selection operator Tournament
replacement policy Generational

elitist size 1
tournament size 3
initialization random

chromosomze size 128
symbolic reg. problem x+ x2 + x3 + x4

symbolic reg. terminals {+,−, ∗, x, 1}
symbolic reg. interval 〈0; 10〉
symbolic regr. points 128 {128, 256, 1280, 2560}

population size 32 {2, 4, 8, 16, 32, 64}
generations 100 1000

GPU is the previously described parallel GPU implemen-
tation (C language) running on nVidia Geforce GTX
480 GPU

CPUC is a serial (single-threaded) CPU version of the de-
scribed GPU implementation (C language) where threads
as well as thread blocks are simulated using for cycles

Our primary focus was to compare performance. In ad-
dition we performed a convergence test as well to see if all
algorithms were able to optimize the selected problem. For
testing purposes, we used settings shown in table 1 together
with hardware and software described in table 3.

6.1 Algorithms convergence
As a convergence test, we measured the success rate of

100 runs with the random population initialization. The
success was defined as fitness of the best individual in the
last generation has zero value (i.e. solution is found). We
observed 77% success rate in the case of CPUC and GPU

implementations and 74% in case of CPUG. Just 3% differ-
ence indicating that all algorithms are able to optimize the
examined problem similarly.

6.2 Performance
The execution time was measured using the Unix time

utility in all cases, in addition for GPU , we measured kernels
execution times as well. GPU run is thereby evaluated both
with and without additional time overhead resulting from
data copy to GPU, GPU initialization and NVCC compiler
execution [6].

The overhead times are more or less constant so the less
the program spends time utilizing GPU, the more overhead
affects total timings. Thereby in general, we can say that for
an infinite number of generations, times and speedup will be
close to measurements excluding overhead.

In the following paragraphs, the GPU execution speed is
compared with other two implementations of the GE, CPUG

and CPUC .
Each GE implementation has been executed 10 times for

all 24 combinations of input parameters showed in table 3.
The averaged results rounded to 1 decimal digit are shown
in table 2.

436

128
256

128∗10
256∗10

2
4

8
16

32
64

 0
 5

 10
 15
 20
 25
 30

s
p

e
e

d
u

p
 w

rt
 C

P
U

max=[2560,64]=25.9494736842
min=[128,2]=0.1238938053

regression points

individuals
(thread blocks)

128
256

128∗10
256∗10

2
4

8
16

32
64

 0
 5

 10
 15
 20
 25
 30

(a) CPUC and GPU execution speed comparision

128
256

128∗10
256∗10

2
4

8
16

32
64

 0

 100

 200

 300

 400

 500

s
p

e
e

d
u

p
 w

rt
 C

P
U

max=[2560,64]=413.8816842105
min=[128,2]=0.8902654867

regression points

individuals
(thread blocks)

128
256

128∗10
256∗10

2
4

8
16

32
64

 0

 100

 200

 300

 400

 500

(b) CPUG and GPU execution speed comparision

Figure 6: Speedup comparision including GPU overhead

Table 2: Speedup comparision

implementation min max avg
execution time [s]

GPU without overhead 0.2 1.6 0.5
GPU with overhead 0.9 2.4 1.3
CPUG 1.0 982.9 175.2
CPUC 0.1 61.6 9.3

GPU speedup including overhead
CPUG 0.9× 413.9× 102.8×
CPUC 0.1× 25.9× 5.3×

GPU speedup excluding overhead
CPUG 5.4× 636.7× 215.4×
CPUC 0.8× 39.0× 11.0×

CPUC speedup
CPUG 7.2× 32.1× 20.6×

Evidentely execution times vary greatly. Obviously worst
performance was observed with the GEVA implementation
(CPUG), which is on average for all runs 20.6× slower than
serial CPU version written in C (CPUC) and more than
400× resp. 600× slower than GPU including resp. exclud-
ing overhead times. However, the serial CPU version is
faster than the GPU version in some cases. Examining sur-
face plots shown in Fig. 6, we can observe that GPU perfor-
mance is significantly better in tasks where there is enough
data to exploit GPU’s massively-parallel nature. Such situ-
ations can lead to speedups up to 25× (39× for sufficiently
difficult problem) compared to CPUC and several hundred
times in comparision with the GEVA library. On the other
hand, GPU is unsuitable for simple tasks where data trans-
fer and compilation overhead take their toll. comparision

The GEVA library is written in a very general fashion.
This allows programmers to easily experiment with virtually
any part of the Grammatical Evolution algorithm, but at the
same time it costs a lot of performance during execution.
Furthermore, JAVA is an interpreted, high-level language.
Table 2 shows that a well-designed, single-threaded version
of the same algorithm written in C can perform on average
20× faster.

Table 3: Testing environment

hardware
CPU Core i7 3.3GHz
GPU nVidia GeForce GTX 480

software
OS Ubuntu Linux 10.04, 64bit

CUDA SDK v 3.2, driver 260.19.06-0ubuntu1
java 6.20dlj-0ubuntu1.9.10

Python 2.6 + PyCUDA 0.94.2

GE
GEVA v 1.2

presented custom GE, serial CPU version
presented custom GE, parallel GPU version

In general, we can say that GPU is very suitable for diffi-
cult data-parallel tasks. In the case of Grammatical Evolu-
tion used for symbolic regression problems, GPUs can offer
very interesting performance boost up to 400× in compari-
sion with GEVA. However, C code running on a CPU can
perform better on simple problems as GPU utilization in-
volves some overhead.

7. CONCLUSIONS
In this paper, we have focused on the possibility of ac-

celerating Grammatical Evolution (GE) using graphics pro-
cessing units (GPUs). This is the first attempt to run GE
entirely on a GPU.

We have briefly introduced GE and its ability to solve
problems, followed by an overview of the architecture of
modern nVidia GPUs. The architecture has been presented
with special focus on performance optimization techniques
used in the literature. In order to utilize GPU efficiently, we
have analyzed the possibility of compiling GPU code every
GE iteration and based on presented data made a decision
to run the compiler at the beginning of evolution. This offers
a good code optimization overhead tradeoff.

Section 5 has shown our innovative mapping of GE to the
CUDA GPU hardware model featuring two levels of par-
allelism: individuals are evaluated on multiprocessors and
threads are used to maintain individuals. This model is
tested on both CPU and GPU and compared to standard

437

GEVA framework running on Core i7 3.3 Ghz with nVidia
GeForce GTX 480 GPU.
It is shown that GPU is suitable especially for tasks with

larger numbers of symbolic regression points (1280,2560)
evaluated in parallel where it performs up to 636× resp. 39×
faster compared to GEVA and serial CPU code, respectively.
For smaller problems, the same lowlevel CPU code written
in C can perform better as GPU utilization involves addi-
tional overhead of the code compilation, data transfer and
initialization.

Overall, we have shown that properly utilized mainstream
GPU is an interesting hardware platform for acceleration of
grammatical evolution solving symbolic regression problems.

8. ACKNOWLEDGMENTS
This research has been carried out under the financial

support of the research grants “Natural Computing on Un-
conventional Platforms“, GP103/10/1517 (2010-2013) of the
Czech Science Foundation, “Security-Oriented Research in
Information Technology”, MSM 0021630528 (2007-13), the
BUT FIT grant FIT-S-11-1, and with financial support of
GA CR 102/09/H042 and FR2641/2011/G1. This research
is also based upon works supported by the Science Founda-
tion Ireland under Grant No. 08/IN.1/I1868

9. REFERENCES

[1] A. Brabazon and M. O’Neill. Biologically Inspired

Algorithms for Financial Modelling. Springer, 2006.

[2] J. Byrne, J. McDermott, E. Galvan-Lopez, and
M. O’Neill. Implementing an intuitive mutation
operator for interactive evolutionary 3d design. In
IEEE Congress on Evolutionary Computation, 2010.

[3] J. Byrne, M. O’Neill, and A. Brabazon. Structural and
nodal mutation in grammatical evolution. In GECCO

’09: Proceedings of the 11th Annual conference on

Genetic and evolutionary computation, pages
1881–1882, Montreal, Québec, Canada, 8-12 July
2009. ACM.

[4] I. Dempsey, M. O’Neill, and A. Brabazon. Foundations
in Grammatical Evolution for Dynamic Environments.
Studies in Computational Intelligence. Springer, 2009.

[5] E. Galvan-Lopez, J. Swafford, and M. O’Neill.
Evolving a ms.pac-man controller using grammatical
evolution. In EvoGAMES 2010 the 2nd European event

on Bio-inspired Algorithms in Games. Springer, 2010.

[6] S. Harding and W. Banzhaf. Fast genetic
programming on gpus. In Genetic Programming,
volume 4445 of Lecture Notes in Computer Science,
pages 90–101. Springer Berlin / Heidelberg, 2007.

[7] R. Harper and A. Blair. A structure preserving
crossover in grammatical evolution. In IEEE Congress

on Evolutionary Computation, pages 349–358, 2001.

[8] J. Jaros. Evolutionary optimization of multistage
interconnection networks performance. In GECCO ’09:

Proceedings of the 11th Annual conference on Genetic

and evolutionary computation, pages 1537–1544,
Montreal, Québec, Canada, 8-12 July 2009. ACM.

[9] D. Kirk and W. Whu. Programming Massively Parallel

Processors: A Hands-on Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition,
2010.

[10] A. Klockner, N. Pinto, Y. Lee, B. Catazaro, P. Ivanov,
and A. Fasih. Pycuda: Gpu run-time code generation
for high-performance computing.

[11] J. R. Koza. Genetic Programming: On the

Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge, MA, USA, 1992.

[12] W. B. Langdon and W. Banzhaf. A simd interpreter
for genetic programming on gpu graphics cards. In
Proceedings of the 11th European conference on

Genetic programming, EuroGP’08, pages 73–85,
Berlin, Heidelberg, 2008. Springer-Verlag.

[13] R. McKay, X. Nguyen, P. Whigham, Y. Shan, and
M. O’Neill. Grammar-based genetic programming: a
survey. Genetic Programming and Evolvable Machines,
11(3-4):365–296, 2010.

[14] Nguyen and Hubert. Gpu gems 3. Addison-Wesley
Professional, 2007.

[15] nVidia. Cuda c best practices guide.

[16] nVidia. Cuda programming guide 3.0.

[17] M. O’Neill, T. Brabazon, C. Ryan, and J. Collins.
Evolving market index trading rules using
grammatical evolution. In EvoIASP 2001, 2001.

[18] M. O’Neill, E. Hemberg, C. Gilligan, E. Bartley,
J. McDermott, and A. Brabazon. GEVA: Grammatical
evolution in java. SIGEVOlution, 3(2), 2008.

[19] M. O’Neill and C. Ryan. Grammatical evolution. In
IEEE Transactions on Evolutionary Computation,
pages 349–358, 2001.

[20] M. O’Neill and C. Ryan. Grammatical Evolution:

Evolutionary Automatic Programming in a Arbitrary

Language. Genetic programming. Kluwer Academic
Publishers, 2003.

[21] M. O’Neill, J. Swafford, J. McDermott, J. Byrne,
A. Brabazon, E. Shotton, C. McNally, and
M. Hemberg. Shape grammars and grammatical
evolution for evolutionary design. In GECCO ’09:

Proceedings of the 11th Annual conference on Genetic

and evolutionary computation, pages 1035–1042,
Montreal, Québec, Canada, 8-12 July 2009. ACM.

[22] M. Pharr and R. Fernando. GPU Gems 2:

Programming Techniques for High-Performance

Graphics and General-Purpose Computation.
Addison-Wesley Professional, 2005.

[23] P. Pospichal, J. Schwarz, and J. Jaros. Parallel genetic
algorithm on the cuda architecture. In Applications of

Evolutionary Computation, LNCS 6024, pages
442–451. Springer Verlag, 2010.

[24] P. Pospichal, J. Schwarz, and J. Jaros. Parallel genetic
algorithm solving 0/1 knapsack problem running on
the gpu. In 16th International Conference on Soft

Computing MENDEL 2010, pages 64–70. Brno
University of Technology, 2010.

[25] D. Tarjan, K. Skadron, and P. Micikevicius. The art of
performance tuning for cuda and manycore
architectures.

438

