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ABSTRACT
We focus on a representation for evolutionary music based on
executable graphs in which nodes execute arithmetic func-
tions. Input nodes supply time variables and abstract con-
trol variables, and multiple output nodes are mapped to
MIDI data. The motivation is that multiple outputs from
a single graph should tend to behave in related ways, a key
characteristic of good music. While the graph itself deter-
mines the short-term behaviour of the music, the control
variables can be used to specify large-scale musical struc-
ture. This separation of music into form and content en-
ables novel compositional techniques well-suited to writing
for games and film, as well as for standalone pieces. A
mapping from integer-array genotypes to executable graph
phenotypes means that evolution, both interactive and non-
interactive, can be applied. Experiments with and without
human listeners support several specific claims concerning
the system’s benefits.

Digital Entertainment Technologies and Arts Track.

Categories and Subject Descriptors
H.5.5 [Information interfaces and presentation]: Sound
and Music Computing—Methodologies and techniques, Sys-
tems; I.2.2 [Artificial Intelligence]: Automatic program-
ming—Program synthesis

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Attempting to define what does and does not constitute

music is often fruitless. Cariani’s broad characterisation un-
dercuts the debate: “music entails the temporal patterning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

of sound for pleasure” [2]. The sheer variety of different types
of sound patterns which are deemed pleasurable by different
people is one of the most amazing aspects of music. How-
ever, Cariani reminds us that in a broad category of music
(as in many types of abstract art), pattern is primary.

This category includes those composers, such as Philip
Glass and Eric Satie, who are not greatly concerned with
improvisation, long melodic lines, and expressive and emo-
tional performance. Instead it is abstract pattern, whether
simple or complex, which is of interest. It is this genre of
music, broadly construed, which is the long-term goal in this
project. Algorithmic techniques such as evolutionary com-
putation tend to fit well into the genre.

Many authors have used evolutionary techniques to gener-
ate music of diverse types, and to perform various sub-tasks
of musical composition, but none claim it to be a solved
problem. There are still many open challenges and oppor-
tunities for new evolutionary music research.

We believe that representations are crucial to successful
evolutionary computation for music. With this in mind we
present a representation for evolutionary music, based on the
NEAT Drummer project, [7, 8] but extended and tailored
to our goals. It is summarised in Fig. 1. An integer-array
genotype (a) is mapped to an executable graph (b). It maps
multiple time-series of numerical inputs (c–e) to multiple
numerical outputs interpreted as musical voices (f).

In a sense, the executable graph represents the local or
short-term content of the music. By varying certain of the
input variables in a structured way, longer-term form is
imposed. Since the input variables are abstract and have
no direct or fixed musical interpretation, they can be pre-
specified. This does not require any musical knowledge. The
structure might also be specified in other ways, for example
responding in real-time to in-game events in an adventure
game, or to scene changes in a movie.

The multiple output voices are related, not in the sense
that one depends on the others, but in that they are all influ-
enced by the same underlying variables and computations.
If they are perceived as being musically related, this will
enforce the essential sense that the voices are aware of each
other, and reduce the sense of randomness which is a com-
mon fault in generative and evolutionary music. Both in-
teractive and non-interactive modes are available, and they
can be combined to good effect.

The remainder of this paper is laid out as follows. Pre-
vious work is reviewed in Section 2. The executable graph
and other aspects of the representation are described in Sec-
tion 3. Fitness functions and the interactive mode are de-
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scribed in Sects. 3.3 and 3.4. The system is evaluated in Sec-
tion 4: each sub-section describes a feature of the system,
and as far as is possible provides support through experi-
mental results or references to specific pieces. Conclusions
and questions for future work are in Section 5.

2. RELATED WORK
Evolutionary approaches to generative music are well known

[1, 11]. Despite some successful and innovative work, the
evolution of good music is very far from being a solved prob-
lem. A key question, as in all aesthetic domains, is that of
the fitness function. Four points of view may be distin-
guished:

1. Non-interactive calculation of aesthetic fitness may be
regarded as impossible. It is then natural to allow the
user to evaluate fitness, or more commonly to perform
direct aesthetic selection [12].

2. Computational features may be defined and optimised.
Sometimes the appropriate target values for such fea-
tures are derived from analysis of a musical corpus [14].

3. In some research, computational features are defined
with a view to guiding the evolution towards plausible
areas of the search space, but there is no true opti-
misation. Pieces evolved for thousands of generations
may not be expected to be better than those evolved
for a few. The features may be regarded as limited
surrogates for the composer’s aesthetics [4].

4. A very different approach dispenses with the idea of
a genome representing a piece of music, and instead
deems the artwork to consist of the dynamics of the
entire system (a population of multiple genomes evolv-
ing over time). The fitness function serves to drive the
system, but optimisation is not the real aim [5].

The system to be presented here uses non-interactive fitness
as in (3), and interactive selection as in (1).

The representation is also crucial. Generative music typ-
ically represents music as a function of time. The use of
data-flow and signal-flow graphs in generative music has
been common for decades, including in software such as
Max/MSP (http://cycling74.com/) and Jeskola Buzz (http:
//buzzmachines.com/). Two items of previous research are
of particular interest. In NEAT Drummer [7], networks of
functional relationships map input variables, derived from
pre-written input music, to plausible, realistic drum tracks.
The aim is to automatically provide drums to accompany
pre-existing music. The functional networks are created us-
ing interactive evolution. They are encoded directly as net-
works in the NEAT (neuro-evolution of augmenting topolo-
gies) representation. At each time-step, input variables are
derived from the currently-sounding notes of the input mu-
sic, and mapped to triggers and volume information for a
set of drums. In a later version of NEAT Drummer [8], in-
puts are also taken directly from time variables: the current
position in the song, in the bar, and in the beat. The user
can specify “complex conductors”, i.e. time series, as further
input variables.

The Jive system [12] extends these ideas, again regarding
music as a function of time. It uses interactive grammatical
evolution to produce arithmetic tree-expressions mapping a
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(e) Control variables x, y, and z im-
pose an AABA structure.

(f) Output in three voices, reflecting the AABA structure.

Figure 1: The representation consists of an integer-
array genotype, mapped to an executable graph phe-
notype, and five time-series of variables which serve
as inputs to the graphs. The output is one MIDI
voice per output.
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Feature NEAT Drummer XG
Representation executable graph same
Genome NEAT network integer array
Node types Gaussian, sigmoid, arithmetic, etc.

etc. (unary) (various arities)
Edge labels weights none
Fitness interactive interactive

* or non-interactive
Inputs existing music conductors

and conductors
Conductors:

primary time-based same
complex * produce motifs large-scale structure

Output nodes:
volume* activity activity/threshold

pitch none second input
Output * drums pitched material

Table 1: Similarities and differences between NEAT
Drummer and XG, the executable graph system de-
scribed here. Asterisks mark important differences.

time variable to music. Further numerical variables, con-
trolled by a mouse or 3d controller, are also available. They
allow the user to perform and to impose structure, as well
as controlling the interactive evolution.

The system we propose builds on and extends both of
those mentioned above. It uses directed acyclic graphs (as
in NEAT Drummer) to represent multiple intertwined func-
tional relationships, and uses both time and abstract control
variables (as in both NEAT Drummer and Jive). The new
system also differs from both, in some superficial and some
significant ways. It does not use pre-existing music as an
input. It uses a different encoding for graphs, somewhat
similar to Cartesian GP (CGP) [10]. Node types and graph
execution are different. Numerical control variables are used
to impose abstract, large-scale structure on the music, rather
than being a means of performance, as in Jive, or a means
of imposing local motifs, as in NEAT Drummer. Both inter-
active and non-interactive fitness modes are available, and
can be combined. The similarities and differences vis-à-vis
NEAT Drummer are summarised in Table 1.

We also draw a distinction between the new system and
Nodal [9]. There is a similarity between the two, in that
both use a graph representation to generate music. However
this is largely superficial: in Nodal the graph is a finite state
machine, which is an entirely different model of computation
from the executable graphs used here.

In contrast to systems such as David Cope’s Experiments
in Musical Intelligence [3], ours is a deliberately knowledge-
poor representation. It has no knowledge of chords, pro-
gressions, melodic or harmonic rules, nor a training corpus.
This choice may have both advantages and disadvantages.
The motivation is a belief that good music can arise from
abstract pattern. An abstract pattern might be expressed
through different musical parameters, such as pitch, volume,
rhythm, and yet be recognisably the same. With minimal
explicit or implicit musical knowledge, the system may have
a better chance of surprising its creators. It is certainly
simple to implement. On the other hand, a lack of explicit
rules allows the system to make some obvious mistakes (for
example see Sects. 4.8 and 4.9).

3. THE EXECUTABLE GRAPH REPRESEN-
TATION

In the proposed representation, a piece of music consists
of a directed, acyclic multigraph together with time-series of
values for several continuous control variables. In the graph,
nodes are labelled by functions such as cos, log and ‘+’.
Edges are directed and unlabelled, multiple distinct edges
from one node to another can exist, and cycles are disallowed
(taking account of edge direction). Functions have fixed
arities, and each node has exactly the number of inbound
edges required for the arity of its associated function.

Such a graph can be executed. It is first sorted topologi-
cally so that later nodes depend only on (i.e. have inbound
edges only from) earlier nodes. For each node in the sort
order, the function associated with it is then executed using
the inputs taken from the outputs of its predecessor nodes.
Note that this is a different model of computation from that
used in neural networks, where each node is unary, and takes
as its input the sum of its weighted inbound edges.

The process begins with five designated input nodes which
contain the current values of two input time variables (bar
and beat), and three input control variables. These are sim-
ilar to “conductors” and “complex conductors” in the NEAT
Drummer system. Values for the control variables are read
from a file. Each node is executed in the order determined by
the topological sort. Three designated output nodes contain
the overall results of the execution, which are interpreted
as MIDI data (see Section 3.2 below for details). The num-
ber of control variables and the number of output nodes are
easily changed, but are always 3 and 3, respectively, in this
paper. By executing a graph many times for appropriate
values of the time variables, and corresponding values of
control variables, a piece of music is produced.

Each output in an executable graph may be thought of as
the root of an arithmetic expression tree, similar to that in
genetic programming symbolic regression. Indeed, one can
always rewrite an executable graph into multiple disjoint
trees, by duplicating nodes and edges as necessary. It is the
fact that a graph’s outputs share some computations which
makes the graph a promising data structure for problems
where patterning and re-use are required [10, 7, 8].

3.1 Genotype–phenotype mapping
The executable graphs are encoded as variable-length in-

teger arrays, and a genotype-phenotype mapping is required
to produce the graphs themselves. The mapping is similar
(but not identical) to CGP [10]. It begins by creating an
empty graph, and adding five designated input nodes, each
of arity zero. These five nodes will output the values of the
bar, beat, x, y, and z variables.

The genotype is then read from start to finish to add in-
ternal nodes. The genotype is divided into chunks of length
m + 1, where m is the largest arity among node functions.
In the current system m = 2 (see Section 3.2). Each chunk
gives rise to a single new node. The first integer in each
chunk gives the node type: it is chosen from a list of func-
tions (listed in Section 3.2, next) including cos, log, and ‘+’
by taking the function with index g mod nn, where g is the
value of the integer and nn is the number of node functions.
Later integers in the chunk are then read to determine the
source nodes (which must already exist) from which inbound
connections to the new node will be taken, up to the new
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node’s arity. The index of the source node is given by g
mod ni, where ni is the number of existing nodes. If the
arity is less than m, then some integers in the chunk will
be redundant: their values then have no effect on the final
graph, so they are introns. A later mutation changing the
node type might bring them back into play, however.

The process of reading chunks of the genotype and adding
new nodes and edges continues until only 3 chunks remain.
Each of these final chunks gives rise to an output node. Since
the node type is fixed in these cases, the first integer in each
chunk is again redundant. As before, the source nodes for
each output node’s inbound edges are determined by the
later integers in the chunk.

The genetic operators are defined on the genotype. Muta-
tion is per-node and with a given, low probably, alters genes
to new random values. One-point crossover is constrained
to preserve semantics of crossed-over material. That is, the
crossover point in the first individual is chosen randomly,
but that in the second is constrained to occur at the corre-
sponding position in a randomly-chosen chunk. That is, x0

mod m = x1 mod m, where xi are the two crossover points.
Note that this allows genomes to vary in length, and there-
fore graphs can grow or shrink in size. As described later
(see Section 4.6), this has implications for the complexity of
the resulting pieces.

3.2 Node functions
The following node functions are available (arity is given

in brackets): sin (1), cos (1), + (2), - (2), * (2), / (2), - (1),
mod (2), max (2), sin2 (2), delta (2), edge (1), branch (2).
Some of these were chosen as typical of symbolic regression
applications of GP. Both / and mod are protected versions:
to avoid zero division they return a0 when a1 = 0, where ai

are the input arguments. Both binary and unary minus are
available. Max returns the larger of its two inputs.

Several of the node types were chosen as particulary suited
to representing music as a time-based medium. Sin2 returns
a0 ·sin(bar·a1). Delta returns 1 if its two arguments differ by
less than a threshold value, 0.1; otherwise it returns 0. Edge
returns 0 if its input is less than zero, but otherwise it returns
a rapidly-decreasing function of the input. The input nodes,
of arity zero, are bar, beat, x, y, and z. Nodes representing
numerical constants also have arity zero: 0.1, 0.2, and 0.5
are available in the current system. Other constants can be
created as functions of the existing constants.

Output nodes have arity two. Each output node corre-
sponds to a single musical voice. The two inputs are in-
terpreted as an activity value and a frequency value. Each
output node also contains an activity accumulator. When
executed, the accumulator decays by a factor of 2, and the
new activity value is then added. If the accumulator is now
very low, a note-off signal is output, ending any current note
on the current output’s voice. If the accumulator is higher,
but still fails to exceed a fixed threshold value (1), a distinct
null value is output, interpreted as “hold”—if a note is al-
ready playing, it is allowed to continue, but no new note is
added. However if the accumulator exceeds the threshold,
then any existing note is ended and a new note-on signal
is output. The volume of the new note is determined by
the amount by which the activity exceeds the threshold. Its
pitch is determined by a sigmoid (tanh) mapping from the
frequency value: this is a continuous, monotonic mapping,
so small changes in the frequency value lead to small changes

Figure 2: The graphical user interface for interac-
tive evolution. Information flows from right to left,
representing time. The values of the three control
variables (here, long bars) are red on-screen. Out-
put pitches (shorter bars) are green. The top row of
buttons chooses which individual to audition, and
the bottom row selects individuals. A larger pop-
ulation is filtered to just 10 using non-interactive
criteria, reducing the user’s workload.

in output pitch, and upward changes in the frequency value
lead to upward changes in output pitch. It prevents notes
outside a typical range similar to that of a piano. Finally,
pitch is mapped to a diatonic scale.

3.3 Fitness functions
Two non-interactive fitness functions are provided.

Feature-Vector A suite of 24 musical features are calcu-
lated over each voice of a piece. They include features
such as note density, rhythmic variety, and pitch direc-
tion. Details are to be found in [14]. A fitness value is
calculated by calculating the mean error against target
values for some or all of the features. In this paper,
the target values were all set to intermediate values,
always 0.5 in a [0, 1] scale.

Variety A simple measurement of the variety of a graph’s
behaviour can be calculated by executing the graph
and saving its output while varying its inputs. The
inputs’ values are drawn from all points in a coarse
grid (4 points per dimension). Although the suite of
feature vectors contains measures of pitch and rhyth-
mic variety, this method is distinct because it does not
depend on a particular file of control variable data.

3.4 Interactive use
The system can also be used interactively. Fig. 2 shows

the graphical user interface (GUI). The method is typical
of interactive evolution of music, in that just one individual
can be auditioned at a time. Selection is binary (yes-or-no).
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That is, the user is required only to select favoured individ-
uals, not to provide numerical fitness. This reduced task
helps to avoid some user fatigue and is common in previous
work [13]. Keyboard shortcuts are available for auditioning,
selection, and iteration of the algorithm. The “y” and “n”
keys (for “yes” and “no”) select/deselect the current individ-
ual and begin auditioning of the next. The shortcuts are
emphasised in the GUI. The aim is to make the auditioning,
selection, and iteration process as streamlined as possible.

A file containing time-series of time and control variables
is loaded at startup (future implementations will allow the
time-series to be edited, saved, and manipulated in real-
time). The time-series is looped continuously. It does not
restart when a new individual is auditioned. Since evalua-
tion of complete pieces is time-consuming, a useful strategy
is to evolve using a compressed version of the time-series.
For example, one might use just an AB structure instead of
AAABBA1. The user is free to select or deselect at any time
and move on to audition the next individual. Bad individ-
uals can therefore often be rejected before they waste too
much of the user’s time.

Note that the population may be much larger than the 10
shown by default in the GUI. Non-interactive fitness can be
used to filter out bad individuals, reducing user fatigue. For
example, individuals of low Variety (see Section 3.3) can be
automatically filtered out. Again, the aim is to avoid user
fatigue and frustration, two of the key issues in interactive
evolution [11].

4. FEATURES OF THE REPRESENTATION
The representation consists of the variable-length integer-

array encoding, the method of “growing” executable graphs,
the distinct node functions, and the control variables. It has
several potential advantages and disadvantages. In the fol-
lowing sub-sections, the features are described and evidence
for each is provided.

We report several types of evidence. In one set of ex-
periments, subjects were asked to listen to specific pieces
produced by the system and answer a questionnaire con-
cerning their preference between pairs of pieces, the points
in time at which pieces altered most noticeably, and the
pairs of tracks which fit together best. 10 subjects were re-
cruited, of varying ages and musical training (from novice
to expert). In order to increase the number of pieces ex-
posed to subjects, two complete sets of pieces were evolved
and rendered for these experiments. These two sets are
available for download and include the questionnaire: http:

//www.skynet.ie/~jmmcd/xg.html.
Control variables followed pre-determined structures such

as AAB, ABAB, and so on. Time signatures included 3/4,
4/4, 6/8, 8/8, 9/8, and 12/8. Pieces were roughly 15 to 30
seconds in length. The available diatonic notes were those
of F minor, though there was no bias towards playing in
this key as opposed to its enharmonic G# major or other
equivalent modes.

In other cases, fitness values during evolution provide ev-

1This notation for musical structure is standard. Each letter
refers to a section of music. A pop song’s verse-chorus-verse-
chorus structure might be written ABAB. The letters do not
correspond to the letter names for notes or chords. Note that
although control variables are often arranged into A and B
sections throughout the paper, there is no constraint to use
just two section types, or to use any clear-cut sections at all.

idence. Finally, some aesthetic questions have seemed diffi-
cult or impossible to investigate objectively, and so the only
available approach is to provide references to specific pieces
which display desired features or behaviour. It is of course
acknowledged that such evidence is purely subjective. These
pieces are also available for download, again from the URL
given above. Most of these tracks were rendered directly
from evolved outputs. In some cases, the tempo or instru-
mentation was changed. In just one or two, the entire track
was repeated multiple times, and one or other voice muted
for one of the repeats.

In all experiments reported here, pieces of music were cre-
ated through purely non-interactive evolution. Individuals
were initialised to have lengths between 45 and 90 genes,
i.e. between 15 and 30 nodes, plus inputs. The popula-
tion was 30 and number of generations 20, except where
noted (these low numbers were chosen partly because very
good music often occurs at the end of such runs, and partly
to reflect the restrictions on population size and number
of generations in interactive mode). Tournament selection
was applied with size 7. Elitism passed-through a propor-
tion of 0.05 of the population. Crossover was one-point, as
described above. Mutation re-randomised each gene with
probability 0.05.

4.1 Structure is represented in an abstract way
The control variables x, y, and z do not have any direct

interpretation such as controlling crescendo or rallentando.
Instead, they work together to produce abstract structure.
If x varies between one value and another on an alternating
schedule of, say, 8 bars, then an ABAB structure will be
produced, even though A and B themselves have not yet
been specified. If y is varied continuously from a low value
to a high value while the value of x alternates, the extra
structure will be somehow superimposed on the music even
if y has no known interpretation.

The hypothesis is made precise as follows: listeners are
able to determine the point in time at which control variables
values change. Two sets of four tracks were used, using
pre-determined structures such as AABB, ABB, AAABB,
and so on, with in every case a single transition from the
A sections to the B sections. This transition was imposed
purely by a change in the control variables, all changing at
the same time. Listeners were asked to identify the most
noticeable change in each piece. The question asked was
“Listen to track 9. In this track, at what point in time does
the music change most noticeably? Use rewind if necessary.
Please give a time, in seconds: .” The transition point
was different for different pieces, since they had different
structures and tempos. Therefore listeners did not receive
clues about the current piece from previous pieces.

For each such trial, the“error”was calculated as the differ-
ence between the point in time at which the control variables
changed, and the time given by the listener. The results were
quite clear-cut. The mean error was 0.94s, with standard de-
viation 1.9. The number of errors greater than 1s was just 7
out of 40. This supports the claim that the abstract control
variables provide discernible structure.

4.2 Form and content are separated
When holding control variables constant, a simple piece

of music will be produced by the increase of the time vari-
ables. It will repeat after a short time since they are peri-
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odic. We can regard this music as the local content of the
piece, while the form or structure is created by varying the
control variables. In practice the distinction is not always
clear-cut, especially when the control variables move contin-
uously. This reflects the difficulty of separating form and
content in (non-generative) music in general. Nevertheless,
some interesting compositional techniques become available
using this idea. One possibility is to automatically alter the
time signature of a piece. This is demonstrated in tracks
Transform 6, 8 in the demo pieces available for download.
A simple piece in 6/8 time is automatically extended to 8/8.
Note that a transformation in the other direction would be
easy to program even in a non-generative representation.
This is accomplished by evolving a piece in 6/8 time and
then changing the control data to 8/8. The generation or
manual editing of such control data is trivial. The result is
that the 8/8 piece sounds like a natural transformation of
the 6/8 piece. The first 6 beats of each bar are identical
between the two pieces, and since the two extra beats are
generated by the same graph that generated the previous 6,
they seem to fit. The two tracks are clearly related. This
type of operation allows a user to think in more abstract
terms when composing: large-scale transformations can be
tried out trivially, without a great deal of manual editing.

4.3 Multiple voices are related
Since a piece of music is represented by a single graph

(together with values for control variables), the calculations
performed for the multiple voices share common inputs (time
and control variables) and some common nodes and edges.
Therefore they may be expected to sound related. For ex-
ample, when control variables change, all voices react to the
change simultaneously. This creates the impression of the
music being deliberately written rather than random. Note
that the relationship between voices is not that of one voice
controlling another: rather, all voices are influenced by their
common inputs and calculations. This is the motivation be-
hind the use of graphs, here and in NEAT Drummer.

The hypothesis in this experiment is that a piece of mu-
sic of two simultaneous voices, both derived from the same
graph, will sound more coherent (the voices more related)
than a “Frankenstein” piece of two voices taken from differ-
ent graphs. Two sets of four pieces were created. To avoid
superficial differences, all pieces shared the same parame-
ters, control data, and so on. Each pair of pieces provided
two Frankenstein pieces, by swapping voices, and two nor-
mal pieces. A single trial of the experiment consisted of
comparing a normal piece with a Frankenstein piece (these
labels were not known to the subjects). The question asked
was “Listen to tracks 13 and 14. Each is made of two simul-
taneous melodies. In which track do the two melodies fit
together best? Track 13: Track 14: Neither: .”

Each subject performed four such trials. If two evolved
pieces p and q consist of voices p1, p2 and q1, q2, then the
first trial for a user compared p1/p2 and p1/q2, and the sec-
ond compared q1/p2 and q1/q2. The third and fourth trials
were similar, with entirely new evolved pieces for p and q.
In summary, any bias arising from some voices simply be-
ing better (as opposed to matching other voices better) was
avoided by design.

The results do not confirm the hypothesis in this case.
In Fig. 3, the original pieces and Frankenstein pieces were
approximately equally liked There are at least two possible
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Figure 3: Pieces composed by the system and
“Frankenstein” pieces created by swapping voices
from unrelated pieces were approximately equally
liked.

explanations for this unexpected result. Firstly, it may have
arisen partly because the multiple voices in Frankenstein
pieces tended to fit together surprisingly well—as opposed
to those in normal pieces fitting together badly. The orig-
inal pieces whose voices were swapped-over to create the
Frankenstein pieces were possibly so close together in the
search space that all voices suited each other quite well. Re-
call that they used precisely the same control data, tempo,
and pitch mapping. They were “unrelated” only in being
drawn from different graphs. Secondly, several subjects re-
ported difficulty in interpreting this question and under-
standing their task. It is possible that a different experi-
mental design, in which the normal pieces were evolved to
different targets and thus drawn from different areas of the
search space, and a better wording of the question, would
lead to a different result on this topic. In any case, there
is no reason to believe that the executable graph represen-
tation produces pieces whose voices are less suited to each
other than alternative functional representations.

Listening to outputs leaves no doubt that control vari-
ables’ abstract structure simultaneously affects multiple voices.
In general, when one voice changes, they all do. This rein-
forces the sense of teleology and purpose in the piece, some-
thing that is often absent from generative music. The two
pieces Transform 6, 8 demonstrate this clearly. The pieces
Piano 1–3 also appear to have real purpose behind them.

4.4 Natural-sounding syntax and dynamics
The output nodes are quite simple, but seem to be very

effective in producing human-like syntax and dynamics. It
is the activity/threshold mechanism which is responsible for
setting patterns of note-on and note-off commands, and dy-
namics. Good examples include tracks Dynamics 1–3 in
the demo pieces available for download. There is an obvi-
ous improvement over a system such as Jive [12], in which
dynamics are entirely absent.

4.5 Direct control of duration
Just as musical structure can be controlled by providing

time-series of values for the control variables, so can the
length of the piece. In itself this point is trivial: almost any
generative system can produce pieces of unlimited length
which can be cut to give a desired length. However, evo-
lutionary representations are not always controllable in this
way. A good example is the Ossia system [4], where a geno-
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Figure 4: Non-interactive evolution can produce
good results even with a small population (30) and
few generations (20). In (a) and (b), two non-
interactive fitness functions are each improved over
the course of 30 runs. In (c), the results of (a) are
preferred by subjects over unevolved pieces.

type corresponds to a fixed amount of musical material and
can not be easily extended.

4.6 Direct and indirect control of musical com-
plexity

Good music exists in a range between overly patterned
and repetitious music, on one side, and randomness on the
other. Different styles require different balances between the
two. A method of controlling complexity is therefore poten-
tially useful. Controlling the number of nodes is a likely
method. Assuming that the Variety fitness function is a
reasonable surrogate for a complexity measure, our hypoth-
esis is that variety is related to the number of nodes.

Data taken from the same experiments reported in Sec-
tion 4.7 confirms the hypothesis. Individuals were randomly-
initialised to have between 45 and 90 genes, corresponding
to between 15 and 30 nodes (plus input nodes which do not
require genes). The mean over 30 runs of the best indi-
vidual’s genome size at initialisation was 64, rising to 252
after 20 generations. This increase is caused by selecting for
variety, as opposed to being a side-effect of evolutionary dy-
namics: in runs with effectively random selection, the mean
best genome’s size increased very slightly, from 65 to 70.
Therefore, controlling genotype size via choice of crossover
points allows some direct control over musical complexity.
The Variety fitness function might also be used to provide
indirect control, in that one can not immediately produce a
given value for variety, as one can for node-count.

4.7 Non-interactive evolution is effective
Figure 4 (a–b) shows best-of-generation fitness over 30

short evolutionary runs using each of the two non-interactive

fitness functions Variety and Feature-vector (explained in
Section 3.3). Despite the small population size (30) and
number of generations (20), large improvements in fitness
can take place during a run. This is perhaps a surprising
result. It suggests that even the short runs characteristic
of interactive evolution may allow the user to improve the
population, or direct it towards desired areas of the search
space.

Figure 4 (c) tells the same story from the point of view of
user approval of pieces generated by non-interactive evolu-
tion. Two sets of pieces were created, both using the same
structural inputs. One set was created by random genera-
tion, as in the initialisation stage of the evolutionary algo-
rithm, with no selection, crossover, or mutation. The sec-
ond set was created by evolving a population of size 30 over
20 generations with selection driven by the Variety fitness
function. The pieces were presented to the same users, in
the same sessions as in Sects. 4.1 and 4.3. The question
asked was “Listen to tracks 7 and 8. Which do you prefer?
Track 7: Track 8: Neither: .” Users’ preferences
among the two sets of pieces are summarised in the barchart
(Fig. 4 (d)): pieces evolved with this fitness function, even
in a small population and over few generations, are a clear
improvement over unevolved pieces.

4.8 Over-complexity appears as randomness
A piece of music in which the underlying patterns are too

complex to be understood or perceived might as well be ran-
dom. This is one common failure mode of the system. The
Variety fitness function in particular rewards large numbers
of distinct pitches. In typical runs, this leads the popula-
tion towards areas where variety is high, but not too high.
In some runs, variety is more strongly maximised, leading
to random-sounding music. A better fitness function might
aim for a middle-ground of variety, rather than maximising
it. This possibility will be explored in future work.

4.9 Repeated notes are too common
The most common weakness of the system is the produc-

tion of a long string of short notes of identical pitch. This
is a consequence of the activity/threshold mechanism in the
output nodes. A constant value for the output node’s fre-
quency input is easily achieved, so a string of short notes
of the same pitch will occur whenever high activation val-
ues arrive. Many randomly-generated graphs fall into this
failure mode, and so interactive users typically have to deal
with several very weak pieces of this type in early genera-
tions. In non-interactive mode, the fitness functions tend to
weed out such individuals, though it is not uncommon for
them to survive into the final generation. Allowing a larger
population size and number of generations would would help
to alleviate this problem at the expense of producing more
random-sounding pieces, as described in the previous sec-
tion. Again, highly tuned fitness functions might help to
solve this problem, but they are not the focus of this paper.

5. CONCLUSIONS
In the representation for evolutionary music described here,

variable-length integer genotypes are decoded to executable
graph phenotypes. Numerical values for time and control
variables are input to the graph, and the output is inter-
preted as MIDI data. After relatively little optimisation
with simple, non-interactive fitness functions, the resulting
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music is surprisingly good. Many pieces have been created
which (subjectively speaking) exhibit well-formed structure,
teleology, and coherence among multiple voices. Sometimes
they work well as standalone pieces, sometimes only as the
seed of a new piece. They are surprising and novel in that
they exhibit qualities the authors do not typically use in
their hand-written music. The melodic, rhythmic, harmonic
and dynamic aspects of the music often feel surprisingly hu-
man. The quality of the results is inevitably subjective, so
the reader is encouraged to download and listen to the demo
tracks available from http://www.skynet.ie/~jmmcd/xg.html.
The source code of the system is also available.

The graph representation described in this paper is influ-
enced by NEAT Drummer [7, 8], though it also differs in
some ways (see Section 2). The fact that good results are
achieved despite several dissimilarities, both superficial and
significant, reflects the richness of the original ideas.

The system has been evaluated objectively in as far as
is possible. Both purely computational experiments, and
some with human listeners, have been carried out to test the
various claimed benefits of the system, and have in general
confirmed them.

After evaluating the system in terms of EC design choices,
we now turn to the choice of EC itself. The GA (with
variable-length integer genotype) seems to be the right choice
for this problem. The non-interactive fitness functions used
in this work seem unlikely to be amenable to the calcula-
tion of derivatives, as required by gradient-based methods
of search and optimisation. A similar problem exists for bi-
nary (yes-or-no) selection as used in interactive mode. In
this case, the lack of a ranking among the selected individu-
als makes evolutionary methods such as particle swarm op-
timisation unsuitable. However, recombination-based evo-
lutionary methods, such as the GA, are applicable even in
these circumstances. The abstract processes of selection, re-
combination, and variation seem to match some models of
creativity well [6], and they are intuitively well-understood
by non-technical users.

The separation of form and content allows a new approach
to a common problem in interactive evolutionary art and
music. Users of such systems often find that a good individ-
ual requires a simple edit, addition, or deletion in order to
be much better, but the system fails to provide the desired
change. This is frustrating in that the user user may feel it
would be better to abandon evolution and work manually.
Usually, manually-edited pieces can not be re-imported to
the population. The ability in our new system to cut out or
repeat a section of the time-series of control variables allows
the user to make a quick fix and continue evolution.

The system’s method of specifying music as a function of
time and control variables has great potential for creating
generative music for film and video games. Non-generative
music has a disadvantage in these contexts in that it does
not respond to changes in the visual material. A film direc-
tor making a last-minute cut to a scene might require the
music to be re-edited to fit. A game designer might be un-
happy with abrupt changes in music to suit sudden events.
The system we describe has the potential to address these
problems, because the executable graph is responsive to in-
put. Changing length or structure can be accomplished by
simple editing of the existing time-series of control variables.
A single piece of music can be designed to react to in-game
events without losing its original character.

One branch of future work will seek to develop applica-
tions such as those mentioned above. Another will improve
non-interactive fitness functions. The most common faults
in current outputs will be identified and fitness functions
written to avoid them. Alternative methods of specifying
control variables will also be investigated, including real-
time control (as in Jive), a specialised time-series editor,
and the derivation of control variables from other types of
structured time-series.
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