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Abstract

This paper is concerned with the effect of the grammar type on gram-

matical evolution when evolving in dynamic environments. Both repre-

sentation and dynamic environments have been recognised as important

open issues in the field of genetic programming. This paper outlines the

need for further study on both topics in the context of grammatical evo-

lution, suggesting further inspiration be taken from nature in an attempt

to improve the representations available to grammatical evolution. The

research undertaken to date is listed, along with the future work to be

completed.

1 Introduction

The goal of the forthcoming thesis is to explore the effect of the grammar type on
Grammatical Evolution (GE) [15, 2] when evolving in a Dynamic Environment
(DE).

The traditional Genetic Programming (GP) expression tree representation,
popularised by Koza [10], is restricted by the property of closure to only support
the use of a single data type. Grammar-Based GP (GBGP), an extension of
standard GP, has the ability to ensure closure while allowing multiple types, as
well as having a number of other benefits over standard GP.

GE, a linearised GBGP system which uses a genotype phenotype mapping
and is one of the most widely applied GP methods today [11], traditionally
uses a context-free grammar (CFG). The grammar is an integral component of
the GE algorithm. This research aims to further improve the grammar-based
representations available to GE.

One possible way is to strengthen the representation’s analogy with nature.
Evolutionary computing takes principles from the neo-Darwinian theory of nat-
ural selection, mimicking, in silica, these principles in an attempt to exploit
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them to solve problems. Genetic algorithms (GAs) and GP take further inspi-
ration from nature in the form of virtual DNA, imitating one of nature’s main
representations, with GE taking one step further, making use of the genotype-
phenotype mapping.

In addition, the majority of GP research to date has been on solving static
problems. Little work has been done on dynamic problems, where the goal,
the constraints or the environment of the problem can change with respect to
time. Such problems are important as most real world problems inhabit DEs,
including natural selection. DEs have been recognized as an open issue in the
field [16, 2].

This research will focus on designing and examining the behaviour of differ-
ent types of grammar-based representations when used with GE in DEs. The re-
search undertaken to date has appeared as a number of publications [14, 13, 12].
The remainder of the paper is structured as follows: background in Sec. 2, re-
search questions in Sec. 3, followed by work undertaken in Sec. 4 and future
work in Sec. 5.

2 Background

The use of grammars in GP [11] has been shown to offer many advantages,
e.g., the limitation imposed upon tree-based GP by closure can be avoided
since type/syntactic information can be embedded in the grammar, allowing
the genetic operations to operate on multi-type expressions. Grammars also
allow the easy integration of domain knowledge into the search.

One of the main advantages of using GBGP is that the grammar allows the
search space to be easily transformed. Grammars define the legal statements
of the language, as well as the structures to be used to generate the solutions.
By designing the grammar correctly, the search space can be greatly reduced,
speeding up search. While speeding up search is desirable, in an extreme case
the search space can be too heavily constrained, excluding the solution from
the language and making the problem impossible to solve. This is similar to
sufficiency in tree-based GP.

In addition to the advantages listed here, a survey of GBGP was completed
by McKay et al. [11] listing further advantages, as well as costs, attributed
with the use of grammars. Certain GP representations such as GE and TAG3P
[4, 5] manage to avoid some of the disadvantages listed, such as alleviating the
difficulty in creating new operators due to feasibility constraints.

The grammar traditionally used by GE, and indeed by many GBGP sys-
tems, is the CFG. While most work undertaken with GE makes use of regular
CFGs to generate solutions, another key advantage of GBGP systems is how
extensible they are, allowing many different grammar types to be explored. A
comprehensive background can be found in the survey by McKay et al. [11], and
Hemberg [3] completed a thesis on the use of grammars in GE.

Tree-adjunct grammars (TAGs) are a tree generating system. Unlike CFGs,
TAGs can also generate some context-sensitive languages [8]. While TAGs orig-

2



inated in the field of natural language processing, they have been successful in
GP, in the form of TAG3P [4, 5].

TAGs have some interesting properties making them ideal for GBGP. One
of the most interesting properties is that TAGs overcome the disadvantage suf-
fered by other GBGP systems, of having to deal with invalid individuals. Since
the elementary trees used to compose TAG derivation trees are complete, the
phenotype is always executable.

As mentioned in Sec. 1, strengthening the representation’s analogy with
nature could be beneficial. It has been shown that systems which allow the
development of individuals to be effected by the external environment, as seen in
nature, can greatly improve their performance, and hence speed up evolution [6].
The complete nature of TAG trees throughout derivation/development enables
this notion to be explored in the context of GP/GE. Indeed, some work has
already been completed on this topic by Hoang et al. [6].

In regards to DEs, little work has been undertaken with GE, and indeed
GP, on the topic [2, 16]. However, it has been shown that in certain cases,
varying environments can help speed up evolution [9]. Additionally, it has been
theorised that the dynamism of nature has helped natural organisms evolve into
such complex systems [9, 17, 18]. In fact, many real world problems inhabit DEs
and if GP is to be applied to these fields, further research must be undertaken.
As such, it is important to study DEs in order to understand how their properties
effect natural evolution and how they can be exploited when evolving in silica.

The primary aim of this research is to discover new grammar types and
representations which will help improve search in GE. Both GP and GE take
inspiration from natural systems, further examination of these natural systems
and their properties may be a good initial approach to creating new representa-
tions. This research will also attempt to better understand and improve GE’s
performance in DEs, in particular, this study aims to understand what makes
a good representation for search in DEs.

3 Research Questions

In order to fulfill the research aims outlined directly above, the following ques-
tions need to be addressed:

• Can further inspiration be taken from nature to help improve

the representations used in GP? One of the properties of GE is that
it improves upon the analogy between GP and nature. By doing so it
hopes to better mimic nature and improve GE’s performance as an opti-
misation search algorithm. By committing further research into the field
of representation and by trying to help strengthen this analogy even more,
it is hoped to improve GE’s current performance. One example of where
the current analogy breaks down is that the CFG representation produces
static, non-growing fully developed individuals, generated solely from the
genotype.
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• The choice of representation can benefit performance in static

environments. Do these benefits translate into DEs? There has
previously been studies on different grammar types and their effect on the
GE algorithm [3]. What needs to be addressed is whether the different
advantages and disadvantages of these representations remain when ap-
plied to DEs, and if so to what extent does the frequency or magnitude of
change affect them. That is to say, what makes a good representation for
DEs?

• What are the properties of the representation which produce

this performance increase? Can they be exploited? Different
grammar types and representations have different beneficial properties.
New representations or GP systems could be developed to take advantage
of these, perhaps even combining properties from multiple grammars to
maximise performance.

4 Work Achieved to Date

A good deal of work has already been undertaken addressing the questions
above, including three first author publications and another separate co-authored
publication related to the research aims. This section outlines the work pre-
sented to date, the conclusions drawn from each body of work and how they
address the research questions presented in Sec. 3.

4.1 Tree-Adjunct Grammatical Evolution

Tree-adjunct grammatical evolution (TAGE) [14] is an extension of the GE
algorithm to work with TAGs. A comparison of the performance of TAGE
against standard GE (using CFGs) across a range of benchmark problems drawn
from GP literature was performed.

This study demonstrates that the use of TAGs in GE has a beneficial effect
on GE’s ability to move through the solution search space and to find successful
solutions, see Fig. 1. TAGs have been found to have a positive effect on the
performance of GP [4, 5], results which are shown by this study to carry over
into the field of GE. The study showed that for four out of the five problems
examined, TAGE found better solutions in fewer generations, as well as finding
more perfect solutions than GE. Other interesting properties of using TAGs in
GE were noted also, such as minimal growth of the chromosome, and the increase
of connectivity in the search space which helps TAGE maintain diversity.

The decision to use TAGs was due to their developmental property which is
synonymous to nature. This arises from the property of TAG derivation trees
always being complete, unlike CFG derivation trees, allowing evaluation at dif-
ferent stages of development, a property that is synonymous to the development
of embryos into adult organisms in nature. Natural development is not purely
guided by genetics, but merely sets the blueprint for development, with exter-
nal or environmental factors influencing development at each step. While this
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Figure 1: A comparison of GE and TAGE: Mean best fitness plots (minimising)
across 100 runs at each generation with error bars of one standard deviation.

Figure 2: A heatmap where a black cell denotes phenotypes with neighbouring
genotypes.

property was not taken advantage of directly in this study, it was shown that
the TAG representation by itself improved the performance of GE.

4.2 Examining Mutation Landscapes In

Grammar-Based GP

This study extends the previous by examining one of the properties of the
TAG representation, namely the connectivity of the mutation landscape for a
number of problems. The study compares the single Integer Flip Mutation
(IFM) landscapes of GE and TAGE for a series of problems in an attempt to
further understand how the change in representation effects each algorithm’s
ability to search [13].

Landscapes are a tool to help understand complex processes [7]. They have
been employed here in an attempt to further understand how the use of TAGs in
GE effects performance. Viewing the entire search space/landscape is difficult
due to its large size and high complexity. To alleviate this problem, this study
employs a novel method of visualisation little used in the field of GP, heat maps
(an example can be seen in Fig. 2.

For the problems and grammars used in this study, it was found that phe-
notypes in the TAGE landscapes have a much higher degree of connectivity
with the rest of the phenotypes than their counterparts in the GE landscapes.
This may help explain the increased diversity within TAGE populations ob-
served previously. Moreover, it was discovered that the connectivity in TAGE
landscapes is much more evenly distributed between the other phenotypes in
the landscape. Whereas in GE landscapes, shorter phenotypes are much more
densely connected not only between themselves, but also, to a lesser extent, to
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the rest of the landscape.
Diversity is an important property for a representation to have when applied

to DEs [2, 19]. The fact that TAGE landscapes have much higher connectivity
than those of standard GE is encouraging and could benefit TAGE to maintain
better diversity and to follow changing optima quicker.

4.3 A Comparison of GE and TAGE in DEs

With the previous two works in mind, this study performs a comparison of GE
and TAGE when operating in DEs [12]. The definition of dynamism taken here
is one where there is a functional change over time, i.e. the objective function
changes with respect to time. By that definition the objective of evolution
depends on time t:

f (x) := f (x, t) (1)

where f is the fitness function, x is an individual and t is the current genera-
tion. This is considered as the simplest case and is one of the most commonly
considered definitions in the evolutionary algorithms literature [19]. In order to
compare the two setups a number of well understood static problems have been
extended into the dynamic domain, enabling the form of the problem to change
over time.

For the problems and grammars examined across the different setups, it was
shown that TAGE on average performs slightly better than GE. However, on
DEs with high magnitude of change, there is no clear advantage. It was also
shown that the TAGE representation may help maintain a greater population
memory than GE.

One clear result of this study is the indication that there is a need for the
development of benchmark dynamic problems for GP, such as the moving peaks
problem for GAs [1].

The study compares two different grammar types, one was chosen as a result
of having a property analogous with what happens in nature (although not
exploited in this case) and that the comparison took place while operating in a
number of different DEs. It was shown that representation can have an effect
on performance while operating in DEs, it was also shown that the benefits that
were seen in the static environment were not directly observed in the dynamic
domain.

5 Future Work

Expanding upon the work described in Sec. 4, the following research needs to
be completed in order to properly address the aims of this forthcoming thesis.

Further work on the TAG representation for GE will be undertaken. While it
has been shown that there are advantages to using TAGs, much work has been
done using CFGs since GE’s inception, some of which needs to be examined
with TAGs. This includes work done on population initialisation. Initialisers
will be created for TAG allowing similar structures to be generated as with
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CFGs, enabling better comparisons between grammar types, and in doing so
help further understand how the TAG representation operates.

In addition, the TAG representation has the inherent property of using the
entire chromosome when mapping the phenotype, unlike standard GE which
uses some percentage of codons. The result of which is that the only standard
GP operator that can affect the size of a TAGE genotype, and hence phenotype,
is crossover, which can be very destructive. This can be detrimental when the
size of the ideal solution is far from the distribution of sizes in the population.
With this in mind, other operators will be studied for use with TAGs in GE to
try to alleviate this limitation.

One interesting property of the TAG representation is its ability to be eval-
uated at each stage of derivation, allowing the environment to influence the
development of an individual as seen in nature. Building upon work by Hoang
et al. [6], research will be done on examining the (dis)advantages of this prop-
erty when used with GE. In particular, how a DE during development can effect
performance [9].

In parallel to this, further research will be done into the natural computing
and biological literature in an effort to identify other methods/properties of nat-
ural systems which might help create new, or improve current representations.

With regards to dynamic problems, as mentioned in Sec. 2, some work has
been done on examining GE’s performance in DEs, but there is a need for
further work. A number of different approaches to search in DEs are outlined by
Dempsey et al. [2] that need to studied in the context of GE, including memory,
diversity, multiple populations, problem decomposition and evolvability. By
doing so, better comparisons can be made on the performance of representations
in DEs.

A big problem with the current state of the field is that there are no clearly
defined benchmark problems for GP similar to the moving peaks problem for
GAs [1]. In order to study GE’s performance and behaviour in DEs, a small set
of benchmark problems will be assembled. In order to achieve this, definitions
will also be created to define what exactly is meant by a DE. A taxonomy of
problems will be created, ranging in dynamism from small predictable change
to large random change, in terms of the frequency and magnitude.

In conjunction with this, further study will be done on the role of the gram-
mar type with regards to both the properties of dynamism above, frequency
etc, as well as the approaches to solving dynamic problems listed by Dempsey
et al. [2].
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