A Comparison of GE and TAGE in Dynamic Environments

Eoin Murphy Michael O’Neill
Anthony Brabazon

Natural Computing Research and Applications Group,
Univeristy College Dublin, Ireland.
{eoin.murphy,m.oneill,anthony.brabazon}@ucd.ie

Abstract

The lack of study of genetic programming in dynamic environments is recognised as a known issue
in the field of genetic programming. This study compares the performance of two forms of genetic
programming, grammatical evolution and a variation of grammatical evolution which uses tree-adjunct
grammars, on a series of dynamic problems. Mean best fitness plots for the two representations are
analysed and compared.

1 Introduction

Genetic Programming (GP) research has most commonly been applied to static or toy problems, since
the properties of these problems are well understood. This helps researchers identify the effects of their
research when attempting to solve problems. Applying GP to real world problems in dynamic and varying
environments is much harder since the problem domain is not as well understood. This can make it more
difficult to comprehend the effects of the research. It is not clear if improvements discovered while searching
static environments cross over when applied to dynamic problems. Indeed, dynamic environments has been
recognised as an open issue for investigation in GP [17].

Grammatical Evolution (GE), a grammar-based form of GP[3, 12, 16], which traditionally uses context-
free grammars (CFG), was extended to use tree-adjunct grammars (TAG) [6, 5] in the form of Tree-Adjunct
Grammatical Evolution (TAGE) [15]. TAGE showed promising improvements in performance when applied
to a series of static problems. Improvements such as finding better solutions in fewer generations and finding
more perfect solutions than traditional GE on those problems [15].

Subsequently, it has been shown by Murphy et al. [14] that the TAGE mutation landscapes have much
greater connectivity than those of GE when a subset of the above problems were examined. It was noted
that this could be partially responsible for TAGE’s improved performance in search [14].

In this study we investigate if TAGE provides an advantage over GE on a series of dynamic problems of
varying dynamism.

The remainder of this study is laid out as follows: descriptions of GE, TAGE and DEs in Section 2; the
experimental work is outlined in Section 3, with the results and discussion presented in Sections 4 and 5;
finally, conclusions and future work are outlined in Section 6.

2 Background information

This section provides a brief introduction into GE and TAGE, as well as a definition the types of DEs that
are used for this study.

Grammar:

<e>:= <e><o><e> | <v> oo N

<o>:= + | - [<e> | [<o> | [<e> |

<y>:= x | y 1 3 4
(o] [] [=5]

Chromosome: 2 5

12, 3, 7, 15, 9, 36, 14

Figure 1: Example GE grammar, chromosome and resulting derivation tree.

2.1 Grammatical Evolution

GE is a grammar-based approach to GP, combining aspects of Darwinian natural selection, genetics and
molecular biology with the representational power of grammar formalisms [3, 12, 16]. The grammar, written
in Backus-Naur form, enables GE to define and modify the legal expressions of an arbitrary computer
language. Moreover, the grammar also enables GE to modify the structure of the expressions generated,
something that is not trivial for other forms of GP. In addition, the separation of the genotype from the
phenotype in GE allows genetic operations to be applied not only to the phenotype, as in GP, but also to
the genotype, extending the search capabilities of GP. GE is considered to be one of the most widely applied
GP methods today [12].

2.1.1 GE Derivation Example

Representation in GE consists of a grammar and a chromosome, see Fig. 1. A genotype-phenotype mapping
uses values of codons in the chromosome to select production rules from the grammar, building up a derivation
tree. The phenotype string can be extracted from this leaf nodes of this derivation tree.

The mapping begins with the start symbol, <e>. The value of the first codon, 12, is read from the
chromosome. The number of production rules for the start symbol are counted, 2, <e><o><e> and <v>. The
rule to be chosen is decided according to the mapping function i mod c, where i is the current codon value
and c is the number of choices available, e.g, 12 mod 2 = 0, therefore the zero-th rule is chosen. <e> is
expanded to <e><o><e>. This expansion forms a partial derivation tree with the start symbol as the root,
attaching each of the new symbols as children. The next symbol to expand is the first non-terminal leaf
node discovered while traversing the tree in a depth first manner. In this case the left-most <e> is chosen.
The next codon, 3, is read, expanding this <e> to <v> and growing the tree further. The next symbol, <v>
is expanded using the next codon, 7. 7 mod 2 = 1, so the rule at index 1, Y, is chosen.

Derivation continues until there are no more non-terminal leaf nodes to expand, or until the end of the
chromosome has been reached. If there are non-terminal leaf nodes left when the end of the chromosome
has been reached, derivation can proceed in one of a few different manners. For example, a bad fitness can
be assigned to the individual, so it is highly unlikely that this individual will survive the selection process.
Alternatively the chromosome can be wrapped, reusing it a predefined number of times. If after the wrapping
limit has been reached and the individual is still invalid, it could then be assigned a bad fitness. The complete
derivation tree for this example is shown in Fig. 1.

2.2 Tree-Adjunct Grammatical Evolution

TAGE, like GE, uses a representation consisting of a grammar and a chromosome. The type of grammar
used in this case is a TAG rather than a CFG. A TAG is defined by a quintuple (T, N, S, I, A) where a) T
is a finite set of terminal symbols; b) N is a finite set of non-terminal symbols: TN N = §; ¢) S is the
start symbol: S € N; d) I is a finite set of finite trees called initial trees (or « trees); e) A is a finite set
of finite trees called auziliary trees (or § trees). Initial trees have the following properties: their root nodes
are labeled with S and the interior nodes are labeled with non-terminal symbols. An initial tree’s leaf nodes

Figure 2: Initial and auxiliary tree sets of the TAG produced from the CFG in Fig. 1.

are labeled with terminal symbols. The interior nodes of auxiliary trees are also labeled with non-terminal
symbols, as well as their leaf nodes being labeled with terminal symbols. However, one special leaf node, the
foot node, is labeled with the same non-terminal symbol as the root. Foot nodes are marked with * [6].

An initial tree represents a minimal non-recursive structure produced by the grammar, i.e., it contains
no recursive non-terminal symbols. Inversely, an auxiliary tree of type X represents a minimal recursive
structure, which allows recursion upon the non-terminal X [9]. The union of initial trees and auxiliary trees
forms the set of elementary trees, E; where INA=0 and TUA = E.

During derivation, composition operations join elementary trees together. The adjunction operation
takes an initial or derived tree a, creating a new derived tree d, by combining a with an auxiliary tree, b. A
sub-tree, ¢ is selected from a. The type of the sub-tree (the symbol at its root) is used to select an auxiliary
tree, b, of the same type. c is removed temporarily from a. b is then attached to a as a sub-tree in place
of ¢ and c is attached to b by replacing ¢’s root node with b’s foot node. An example of TAG derivation is
provided in Section 2.2.1.

2.2.1 TAGE Derivation Example

TAGE generates TAGs from the CFGs used by GE. Joshi and Schabes [6] state that for a “finitely ambiguous
CFG" which does not generate the empty string, there is a lexicalised tree-adjunct grammar generating the
same language and tree set as that CFG”. An algorithm was provided by Joshi and Schabes [6] for generating
such a TAG. The TAG produced from Fig. 1 is shown in Fig. 2.

Derivation in TAGE is different to GE. A TAGE derivation tree is a tree of trees. That is to say, a node
in a TAGE derivation tree contains an elementary tree. The edges between those nodes are labeled with a
node address of the tree in the parent derivation node. It is at this address that the auxiliary tree in the
child node is to be adjuncted. A derived tree in TAGE is a tree of symbols, similar to GE’s derivation tree,
resulting from the application of the adjunction operations defined in the TAGE derivation tree.

Given the TAG G, where T = {z,y,+,—-}, N ={< e > <o ><wv >}, S=<e>and I and A are
shown Fig. 2, derivation, using the chromosome from Fig. 1, operates as follows. An initial tree is chosen to
start derivation. The first codon value, 12, is read and is used to choose an initial tree based on the number
of trees in I. Using the same mapping function as GE, 12 mod 2 = 0, the zero-th tree, g, is chosen from
I. This tree is set as the root node of, t, the derivation tree, see Fig. 3(a).

Next we enter the main stage of the algorithm. A location to perform adjunction must be chosen. The set
N is created of the adjunct-able addresses available within all nodes(trees) contained within t. An adjunct-

1A grammar is said to be finitely ambiguous if all finite length sentences produced by that grammar cannot be analysed in
an infinite number of ways.

(=] [[o] y e)
(o] 4+ b I ! *
<v> - <v> <v> + <v>
— G £] T B B
T R g Rs
i b
(a) The initial (b) Br adjoined to ap at ad- (c) B1 adjoined to B7 at address 1.

tree aq. dress 0.

(d) Be adjoined to B7 at address 0.

Figure 3: The derivation tree and corresponding derived tree at each stage of derivation in TAGE. The
shaded areas indicate the new content added to the tree at each step.

able address in a tree is the breadth first traversal index of a node labeled with a non-terminal symbol of
which there is an auxiliary tree of that type, and there is currently no auxiliary tree already adjoined to the
tree at that index. In this case N = {a(0}, so a codon is read and an address is selected from N, 3 mod 1 =
0 indicating which address to choose, N[0]. Adjunction will be performed at a0, or index 0 of tree g, <e>.
An auxiliary tree is now chosen from A that is of the type 1, i.e., the label of it’s root node is 1, where 1 is
the label of the node adjunction is being performed at. In this case 1 = <e>. Since there are 8 such trees in
A, 7 mod 8 = 7, 37 is chosen. This is added to t as a child of the tree being adjoining to, labeling the edge
with the address 0, see Fig. 3(b). The adjunct-able addresses in 37 will be added to N on the next pass of
the algorithm. This process is repeated until all remaining codons have been read. The resulting derivation
and derived trees at each stage of this process can be seen in Fig. 3.

2.3 Dynamic Environments

It has been shown that dynamic environments can help speed up synthetic evolution in certain cases [7].
Additionaly, it has been theorised that the dynamism of the natural world has helped natural organisms
evolve into the complex systems that they are today [7, 18, 19]. As such it is important to study dynamic
environments in an attempt to understand their properties on natural evolution and how these properties
can be exploited when evolving in silico.

In order to study dynamic environments it is important to define what exactly is meant by dynamic.
There are many ways in which evolutionary algorithms can be classed as dynamic [3, 13, 2]. In the context
of genetic programming, the constraints of a problem, the inputs, or even the objective function itself could
be changed with respect to time. Defining exactly which of these types of change is dynamic is difficult as it
can be problem specific. This paper addresses the definition of dynamism where there is a functional change
over time, i.e. the objective function, and thus the fitness landscape, change with respect to time. By that

definition the objective of evolution depends on time t¢:

[(@)= f(z1) (1)

where f is the fitness function, x is an individual and ¢ is the current generation. The majority of problems
in this study follow this definition but one problem examined changes the problem constraints with respect
to time and is described in section 3.1.

Two important properties of dynamic environments are a) the frequency of change, how many genera-
tions between changing environments and b) the magnitude of change, how much the environment /fitness
landscape changes [20]. This study examines a number of problems each with different magnitudes of change,
across a range of different frequencies. The goal of this study is to discover the advantages and disadvantages
of using the TAGE representation over the standard GE representation when evolving in such environments.

3 Experimental Work

This section outlines the different experiments conducted by this study in order to compare TAGE with GE
when searching in dynamic environments. A series of different problems from the static domain were taken
and extended to operate as dynamic problems, each with a varying range of dynamism. These problems are
outlined in section 3.1 below.

In order to achieve dynamism the GE algorithm was extended to allow the fitness function to change with
respect to time. The population is allowed to evolve normally for a certain number of generations before the
environment changes. This number of generations is know as T', the period, and it is inversely proportional
to the frequency of change, F = 1/T. Once the end of a period is reached, the entire population, including
the elites, are re-evaluated on the new environment. Evolution then contines for T' more generations before
the environment changes once more.

3.1 Dynamic Problems

A number of well understood problems from the static domain have been extended into the dynamic domain,
enabling the form of the problem to change over time. In terms of GP, this is implemented by extending the
fitness function to allow the target solution to be modified after a certain number of generations has past.
Each of the problems are described below with fitness is being minimised for all problems.

Symbolic Regression The static version of this problem tries to find the expression f(x) =1+ x + 2% +
234+ 2*. The fitness is calculated as the sum of the error between the evolved expression and the target
expression when tested on a range of inputs (20 samples between -1 and 1). The dynamic version
used for this study allows each operator to vary between + and —. Starting from all + operators as
seen above, the operators are changed to — from left to right, interpolating between the original and
final expression, —1 — z — 22 — 2> — 2*. This was chosen due to the small magnitude of genotypic
change between each neighbouring expression in the series. For both representations, with the ideal
chromosome each expression is only one mutation distant from it’s neighbouring expressions in the
series.

N-Multiplexer The classic GP input/output line boolean function. Fitness is measured by how many of
the test cases generate correct outputs. The problem was extended so that different values for N could
be chosen, N € {3,6,11} at each period.

Even N Parity The N input even-parity boolean function, in which the best fitness is obtained when the
correct output is returned for each of the 2V test cases. A value for N € {3,4,5} is chosen at each
period and the population is evaluated against that form of the problem for T generations.

Dynamic Ant This is a newly formed problem [4]. It is a variation on the classic ant trail problems such
as Santa Fe [8, 11]. The problem builds upon work by Langdon and Poli [10]. The aim is to evolve an

[T P P PP T T

T

NN
T

Figure 4: The dynamic ant trail - The ant starts from the top left cell in the trail.

ant controller that successfully eats the maximum number of food pellets possible. However, the ant’s
energy constraint changes with respect to time and the trail is engineered so that the ant must behave
differently at each of the different energy levels in order to maximise the food eaten. The trail used,
which is different from the classic Santa Fe ant trail, can be seen in Fig. 4.

Five different energy levels are used in the problem 20,42, 60, 100, and 140. At the start of each period
a new energy level is chosen. Each successive energy level allows the ant to progress further along
the trail, changing the maximum number of food pellets that can be eaten. Each section of the trail
presents a different challenge for the ant, so in order to eat the maximum number of pellets the ant’s
behaviour must change. However, the optimal behaviour for one energy level will not allow the ant to
eat the max number of pellets at other energy levels.

The first energy level encourages the ant to ignore turning, since the energy wasted turning to move
around the small outcrop in the trail would result in not gathering as much food as continuing straight
and crossing the gap. The second energy level causes the ant to learn how to handle corners, and as
such can no longer just move straight. The third introduces gaps with no food to guide the ant, the
fourth is to navigate the corners with gaps and the final energy level is to enable the ant to collect all
the food pellets in the trail.

For the problems described above, if different instances of the problem use different numbers of input
variables, the grammar for the largest number of input variables is used. For the instances of the problem
which don’t make use of all input variables, unused inputs are set to 0 or false, i.e., the 11-multiplexer
grammar is used for all three instances of the multiplexer problem, with unused inputs set to 0 for the lower
values of N. The grammars used for each of the problems can be seen in Fig. 5.

3.2 Experimental Settings

The evolutionary parameters used on each of the problems can be seen in Table 1. 100 independent runs were
performed for the symbolic regression and dynamic ant problems, with 15 independent runs being performed
for the remaining two problems. The random number generator was seeded the same for the GE runs as the
corresponding TAGE runs.

In order to have a more complete view of the spectrum of dynamic environments two different setups
were used:

1. Incremental cyclic where the problem begins from its simplest least complex form, and increments
in complexity at each period before cycling back to it’s initial form and repeating the process until the
maximum number of generations has been reached;

Even-N parity grammar: Dynamic Ant grammar:

<prog> 1:= <expr> <code> ::= <code> <line> | <line>
<expr> 1:= <expr> <op> <expr> <line> ::= if(food_ahead() == 1) {
| (<expr> <op> <expr>) <code>
| <var> } else {
| <pre-op> (<var>) <code>
<pre-op> ::= not }
<op> =" | & | <op>
<var> :=d0 | d1 | d2 | 43 | 44 <op> c:= left(); | right(); | move();
Symbolic Regression grammar: N Multiplexer grammar:
<expr> ::= (<op><expr><expr>) ::= ()&&()
| <var> | ()"|]"()
<op> HE I I | 1()
<var> =x0 | 1.0 | () ? () : ()

| a0 | a1 | a2 | 40| d1 | d2 | 43 | d4| d5 | d6 | d7

Figure 5: CFG grammars in Backus-Naur form used for all the dynamic problems.

Table 1: GE parameters adopted for each of the problems.

Parameter Value
Generations 200
Population Size 500
Initialisation Random
Initial Chromosome Size 15
Max Chromosome Wraps 0
Replacement Strategy Generational
Elitism 10%
Selection Operation Tournament
Tournament Size 1%
One Point Crossover Probability 0.9
Integer Mutation Probability 0.02

2. Random cyclic where each independent run performed generates a random permutation of the above
cycle of problem states. The same permutation is generated for both GE and TAGE. This permutation
is iterated through at each period, cycling until the generations run out.

Each of the above setups were used with 4 different period lengths, T' € {5, 10, 20,40}, i.e. different frequen-
cies of change. In this study we wish to determine if TAGE or GE has a performance advantage on dynamic
problems.

4 Results

The results of the experiments are listed in this section. The mean (across the runs) best fitness plots were
generated and a sample of them can be seen in Fig. 6 and Fig. 7. Three properties of these graphs are
examined (see Table 4):

Area under the curve (AUCQ) is calculated for each line in the mean best fitness plot. The TAGE AUC
is taken as a ratio of the GE AUC. Since fitness is being minimised, a lower ratio means the TAGE is
performing better on average across the run.

Fall Off (FO) is the immediate difference in mean best fitness when a change in the environment occurs,
i.e., the fitness differential between the final generation of a period and the first generation of the next
period. The mean FO across the entire plot is calculated and the distance between TAGE’s mean FO

dy multiproper‘rd’inc cycl's - Best Fitness. dy’multi proper rnd'inc"cycl 10 - Best Fitness

0 0o
|

Bost Finess
Best Finess

o s 100 150 200

Generation

W’m(l&):umu‘my@o - Best Fitness

600 800

Best Finess
Bes! Finess

Figure 6: N Multiplexer Incremental Cyclic - Best fitness plots. T is the period length in generations.

and GE’s mean FO is taken as a ratio against GE’s mean FO. The sign of this value determines which
representation recovers better, on average, when a change in the environment occurs. As fitness is
being minimised a negative value indicates TAGE performs better, whereas positive means GE did.
The magnitude is the ratio of the difference in mean FO’s against GE’s mean FO.

Drawdown (DD) describes the fitness differential from the start of a period to the end of it. This value
is averaged across all of the periods and a ratio of TAGE’s DD is taken against GE’s DD. If the value
is > 1.0 GE’s fitness has improved more than TAGE’s. Whereas if the value is < 1.0, then TAGE has
a greater fitness differential across the period than GE.

5 Discussion

Interpreting the plots seen in Fig. 6 and Fig. 7 visually is difficult. In particular when the there are large
magnitudes of change happening in the environment as can be seen in Fig. 6 when the value for N changes
from 6 to 11. As a result, values on the plot were compiled in to the statistics seen in Table 4.

From the values for AUC in Table 4 it can be seen that on average TAGE’s mean best fitness plot tends to
be slightly lower than that of GE (values < 1.0). Since these plots are minimising fitness, this corresponds to
TAGE populations being slightly fitter across the dynamic runs. Interestingly this trend is more evident in
the random cyclic set up, this could be an indicator that GE is better able to exploit the incremental nature
of the first setup than TAGE. This effect is seen to a lesser extent in the even n parity and n multiplexer
problems and can most likely be attributed to the difficulty of some of the more complex forms of those
problems, and the percentage of the AUC attributed to those forms, e.g. 11 bit multiplexer.

In addition to this, the large number of negative FO values in the table may indicate that TAGE popula-
tions don’t converge as much as GE populations. This might help maintain more solutions with better future
fitness within the population than GE does for when the environment changes. This shows that TAGE may
help maintain population memory better than GE.

Table 4 also shows that on average over a period, GE populations have a larger fitness differential than
TAGE populations (DD values < 1.0). This in a fact is not surprising, since according to the AUC and

Table 2: The AUC (and the t-test p-value of GE against TAGE), FO and DD for each of the problems
across the two setups for a variety of frequencies of change. Values for AUC < 1.0 indicate TAGE’s best
fitness is on average, better than that of GE. The value is a ratio against GE. Positive FO values indicate
TAGE’s best fitness increases more than GE’s does on average, a negative value indicates the opposite. The
magnitude of the value is the ratio of the differential between TAGE and GE’s FO values with respect to
GE’s value. DD is the ratio of TAGE’s average fitness differential across a period against the same for GE.
Values < 1.0 indicate on average a greater fitness differential across a period for GE.

Inc. 5 | Inc. 10 | Inc.20 | Inc. 40 | Rnd. 5 | Rnd. 10 | Rnd. 20 | Rnd. 40

Sym. Reg.

AUC 1.22 0.88 0.81 0.84 0.83 0.76 0.76 0.52
AUC p-value 0.034 0.084 0.004 0.035 0.026 0.001 0.003 0.00
FO 0.07 0.06 -0.12 -0.04 -0.12 -0.08 -0.08 -0.32
DD 0.96 0.89 0.70 0.60 0.82 0.82 0.79 0.52
Dynamic Ant

AUC 0.89 0.93 0.95 0.97 0.88 0.91 0.94 0.94
AUC p-value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FO -0.65 -0.65 -0.56 -0.50 -0.48 -0.44 -0.52 -0.44
DD 0.35 0.35 0.43 0.50 0.62 0.66 0.63 0.71
Even N Parity

AUC 0.98 0.99 0.98 0.99 0.97 0.97 0.94 0.95
AUC p-value 0.109 0.811 0.333 0.474 0.004 0.268 0.007 0.168
FO -0.19 -0.14 -0.26 -0.15 -2.80 -1.41 -0.50 -0.71
DD 0.51 0.48 0.50 0.45 0.52 0.45 0.70 0.66
N Multiplexer

AUC 0.93 0.93 1.00 1.00 1.00 0.94 0.98 0.95
AUC p-value 0.234 0.353 0.732 0.978 0.491 0.872 0.567 0.619
FO -0.11 -0.14 -0.22 -0.07 0.37 0.03 -0.24 -0.13
DD 0.88 0.81 0.78 0.91 1.15 0.99 0.74 0.87

dy'sr'proper md inc cycl 20 - Best Fitness dy’sr'proper’md'inc cycl 40 - Best Fitness

s 100 150

— T
T D s s Yoo T e - o s

— e
-

—
- g

Figure 7: Symbolic Regression Incremental Cyclic a) and b) and Random Cyclic ¢) and d) - Best fitness
plots. T is the period length in generations.

FO values GE populations are slightly less fit than TAGE populations as well as being less fit after the
environment has changed, so while TAGE may be stuck in a local optima GE has not even reached this level
of fitness and can try to catch up before the environment changes again.

6 Conclusions

The aim of this study was to investigate the effectiveness of two different forms of GP in dynamic environ-
ments, a topic which is recognised as an open issue in the field of GP [17]. In particular this study compares
the use of CFGs against the use of TAGs with GE on a series of dynamic problems.

For the problems and grammars examined across the different setups, it was shown that TAGE on average
performs slightly better than GE. However, that on problems of high difficulty, or dynamic environments with
high magnitude of change, there seems to be no advantage. It was also shown that the TAGE representation
may help maintain a greater population memory than GE.

One clear result of this study is the indication that there is a need for the development of benchmark
dynamic problems for the field of GP, similar to the moving peaks problem in other evolutionary algorithm
fields [1].

Future work emerging from this study is to investigate creating better benchmark dynamic problems for
the field of GP/GE, as well as to further study the advantages and disadvantages of using the GE and TAGE
representations in dynamic environments

Acknowledgments

This research is based upon works supported by the Science Foundation Ireland under Grant No. 08/IN.1/I1868.

10

References

[1]

J. Branke. Memory enhanced evolutionary algorithms for changing optimization problems. In FEvo-
lutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 3, pages 3 vol.
(xxxvii+2348), 1999.

J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, Norwell,
MA, USA, 2001.

I. Dempsey, M. O’Neill, and A. Brabazon. Foundations in Grammatical Evolution for Dynamic Envi-
ronments. Studies in Computational Intelligence. Springer, 2009.

D. Fagan, M. Nicolau, E. Hemberg, M. O’Neill, and A. Brabazon. Dynamic ant: Introducing a new
benchmark for genetic programming in dynamic environments. In Proceedings of the 13th Annual
conference on Genetic and evolutionary computation, GECCO '11, New York, NY, USA, 2011. ACM.

A. Joshi, L. Levy, and M. Takahashi. Tree adjunct grammars. Journal of Computer and System Sciences,
10(1):136-163, 1975.

A. Joshi and Y. Schabes. Tree-Adjoining Grammars. Handbook of Formal Languages, Beyond Words,
3:69-123, 1997.

N. Kashtan, E. Noor, and U. Alon. Varying environments can speed up evolution. Proceedings of the
National Academy of Sciences, 104(34):13711-13716, 2007.

J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection.
MIT Press, Cambridge, MA, USA, 1992.

A. Kroch and A. Joshi. The Linguistic Relevance of Tree Adjoining Grammar, Technical Report,
University Of Pennsylvania, 1985.

W. B. Langdon and R. Poli. Genetic programming bloat with dynamic fitness. In W. Banzhaf, R. Poli,
M. Schoenauer, and T. Fogarty, editors, Genetic Programming, volume 1391 of Lecture Notes in Com-
puter Science, pages 97—. Springer Berlin / Heidelberg, 1998.

W. B. Langdon and R. Poli. Why ants are hard. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb,
M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors, Genetic Pro-
gramming 1998: Proceedings of the Third Annual Conference, pages 193-201, University of Wisconsin,
Madison, Wisconsin, USA, 22-25 July 1998. Morgan Kaufmann.

11

[12]

[13]
[14]

[15]

[16]

[17]

[19]

[20]

R. McKay, N. Hoai, P. Whigham, Y. Shan, and M. O’Neill. Grammar-based genetic programming: a
survey. Genetic Programming and Evolvable Machines, 11:365-396, 2010.

R. W. Morrison. Designing Evolutionary Algorithms for Dynamic Environments. SpringerVerlag, 2004.

E. Murphy, M. O’Neill, and A. Brabazon. Examining mutation landscapes in grammar based genetic
programming. In Proc. of the 14th FEuropean Conference on Genetic Programming, EuroGP 2011,
volume 6621 of LNCS, pages 131-142, Turin, Italy, 27-29 Apr. 2011. Springer Verlag.

E. Murphy, M. O’Neill, E. Galvan-Lopez, and A. Brabazon. Tree-adjunct grammatical evolution. In
2010 IEEE World Congress on Computational Intelligence, pages 4449-4456, Barcelona, Spain, 18-23
July 2010. IEEE Computational Intelligence Society, IEEE Press.

M. O’Neill and C. Ryan. Grammatical Evolution: Evolutionary Automatic Programming in a Arbitrary
Language, volume 4 of Genetic programming. Kluwer Academic Publishers, 2003.

M. O’Neill, L. Vanneschi, S. Gustafson, and W. Banzhaf. Open issues in genetic programming. Genetic
Programming and Evolvable Machines, 11(3/4):339-363, Sept. 2010. Tenth Anniversary Issue: Progress
in Genetic Programming and Evolvable Machines.

M. Parter, N. Kashtan, and U. Alon. Environmental variability and modularity of bacterial metabolic
networks. BMC' Evolutionary Biology, 7(1):169, 2007.

M. Parter, N. Kashtan, and U. Alon. Facilitated variation: How evolution learns from past environments
to generalize to new environments. PLoS Comput Biol, 4(11):e1000206, 11 2008.

P. Rohlfshagen, P. K. Lehre, and X. Yao. Dynamic evolutionary optimisation: an analysis of frequency
and magnitude of change. In Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, GECCO ’09, pages 17131720, New York, NY, USA, 2009. ACM.

12

