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Abstract

We present a novel application of Grammatical Evolutionhe teal-world
application of femtocell coverage. A symbolic regressippraach is adopted in
which we wish to uncover an expression to automatically rgartae power set-
tings of individual femtocells in a larger femtocell groupdptimise the coverage
of the network under time varying load. The generation of l3glic expressions
is important as it facilitates the analysis of the evolveldisons. Given the multi-
objective nature of the problem we hybridise Grammaticall&von with NSGA-
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Figure 1: Coverage of a femtocell setup for an office envirenhwith 12 cells, the
color shows the pilot channel power in dBm. The base staio@dn their initial state
with power -40dbm.

Il connected to tabu search. The best evolved solutions iverior power con-
sumption characteristics than a fixed coverage femtocplbgtenent.
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1 Introduction

In telecommunication networks, femtocells are low powew-tost, user- deployed
cellular base stations with a typical coverage range of tédnweters [4]. In order
to minimize operational expenses, femtocells have coredidke self-configuration and
self-optimization capability to enable plug-and-play bgment. These capabilities
are implemented using algorithms that are designed to attoatly change certain
network configuration parameters in response to any changhs environment it is
operating in.

Furthermore, to maintain scalability when used in largevoeks, these algorithms
should work in a distributed manner whenever possible,gugitly local information
but achieving good global performance.

Designing these highly distributed algorithms can be difficparticularly if the
network environment varies significantly. Moreover, fomtecell deployments in en-
terprise environments a group of femtocells are deployedrevithe individual cells
need to work together to jointly provide continuous coveraga large building or
campus. Figure 1 shows the coverage of a femtocell setumfoffees environment
with 12 cells, with the colored areas indicating areas oftéemll coverage. The base
stations are in their initial state with a power of -40dBm. &ktfemtocell users enter
any gaps in the coverage between the femtocells, mobiliigguiures (handovers or
cell re-selections) to the underlying macrocell is perfedyor a loss of service occurs
if macrocell coverage is unavailable.



In this study we expand on previous work by Ho et al. [9] whiclopted Ge-
netic Programming(GP)[15] to optimize femtocell coveradgehe evolved solution
trees were comprised of a set of conditional statementdssitai a decision tree ar-
chitecture. In this paper, a grammar-based GP setup is edleyich allows us to
manipulate the structure of the solutions and incorporateain knowledge. More
explicitly, we aim to widen our search space by investigaifrit is possible to fine
tune the pilot power increments using equations, insteatboilitional programs for
increasing or decreasing the pilot power by a preset sté&ul). With this approach
we also aim to generate solutions that are easier to analyze.

In addition to the novel application of GE to the dynamic,lwwarld, femtocell
coverage optimisation problem we examine the utility of enber of extensions to the
basic GE approach, including the use of NSGA-II with tabud®and the use of more
refined forms of mutation.

The rest of the paper is structured as follows, in Sectioreipus work and GE is
shown. The setup of the algorithm and the experiments adaiexg in Section 3, and
the results are shown in Section 4. Finally, conclusionsfande work are discussed
in Section 5.

2 Background

This section describes the femtocell coverage problemjque work and a description
of Grammatical Evolution.

2.1 Femtocell Coverage problem

We consider an intended area of coverage, such as an eséegprironment, where
a group of femtocells is deployed to jointly provide end+uservices. The problem
addresses distributed coverage optimization by adjusttiegoverage of the femtocells
to satisfy the mobility, load and power objectives:

Mobility - To minimize femtocell mobility events within the femtotegroup’s in-
tended area of coverage.

Load - To balance the load amongst the femtocells in the groupaegmt overloading
or under-utilization.

Power - To minimize the pilot channel transmission power. Thiseahiye is to pre-
vent, whenever possible, leakage of the femtocell groupieiage outside its
intended area of coverage.

This is a multi-objective optimization problem with conflity objectives. For ex-
ample, increasing the coverage of a femtocell would redbeeatmount of mobility
events, but doing so may increase the load of the femtocwllirecrease its pilot chan-
nel power. Thus it is necessary to balance the requiremdra$f three objectives
according to their importance.



2.2 Previous Work

There have been previous studies of telecommunicationsE&hl], but only one
specifically covering coverage algorithms and GP [9]. Mesgpthere have been no
studies of GE and femtocell coverage algorithms. Firstaréigg cellular coverage
optimization, most related work in the literature dealshwdentralized computation
methods [9], e.g. the calculation of parameters such asutmdar and locations of base
stations (BS), pilot channel transmit powers or antenndigorations using a central
server running an optimization algorithm. Many studie dtscus on determining
the optimal BS numbers or placements to achieve the opé&rajoality of service
or coverage target. This approach is not always practiczdime network design is
restricted by BS placements. Instead, optimization of thefiguration of cellular
networks where the locations of the base stations have beshdan be more realistic.

One example of self-configuration and self-optimizatiopatality in femtocells
deployments is coverage optimization. The aim of coveragienization in residential
femtocell deployments is to ensure that leakage of coverggesingle femtocell into
public spaces is minimized while at the same time maximimiigigor coverage [8, 5].
The methods for this deployment are not applicable to erisgrgnvironments [9].

Previous work with GP and femtocells [9] automatically ded a distributed al-
gorithm to dynamically optimize the coverage of a femtogetlup using Genetic Pro-
gramming. The resulting evolved algorithm showed the gbit optimize the cov-
erage well, and was able to offer increased overall netwapacity compared with a
fixed coverage femtocell deployment. The functions anditeathset for GP consisted
of conditions checking if the load, overlap and probabitifyisers entering a gap was
over a predefined threshold, as well as combining the braraftthe conditionals. The
terminals were increase power, decrease power or do notHerg, we extend the GP
approach using grammatical GP, and using an equation fohms,The solutions that
are evolved in our study are less constrained than in Ho §2]ednd different fithess
functions are used.

For work with a grammar and GP, Lewis et al. [11] enhanced IBBEE11 DCF.
They designed MAC layer algorithms using GP by evolving athms instead of op-
timizing values and tuning parameters,and a wider behayiace was searched. The
variation of contention window sizes was explored, the lteswtperformed standard
802.11 behavior on a variable sized network under standad! land the throughput
performance is comparable to the best aspects of the plofemaheir studies they use
a grammar to embed domain knowledge in the algorithms thelyevOne way to ex-
tend this work is to use a formal grammar specification, eagkBs-Naur Form(BNF),
as used in grammar based approaches of GE.

GE has been used by O’Neill and Ryan [13] to automaticalljne/oaching algo-
rithms, where simple caching algorithm solutions were fhudu and Goodman [10]
used GP for wireless access point configuration, the reisuftsoved when they post-
processed their solutions to find the minimum spanning tissuda and Sato [16]
used linear GP and a pruning operator on their solutions ficl@ss LAN access point
configuration to gain improved performance and run time dpg® which shows that
pruning can be efficient.

This section concludes that grammatical GP approaches,GEjg are viable for
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Figure 2: The GE algorithm

telecommunication network studies. It also reveals gapisérgeneration of coverage
algorithms for femtocells.

2.3 Grammatical Evolution

Grammatical Evolution (GE) [14, 7] is a grammar-based fofi@B [12]. It is inspired
by representation in molecular biology and combines thth ¥armal grammars. The
GE system is flexible and allows the use of alternative sestrekegies, whether evolu-
tionary, deterministic or of some other approach. Thisepsalso includes the ability
to bias the search by changing the grammar used. Since a guaisiased to describe
the structures that are generated by GE, editing the grammodifies the output struc-
tures. This constraining power is one of GE’s main featufés genotype-phenotype,
i.e. input-output mapping means that GE allows search ¢prsréo be performed on
any representation in the algorithm, e.g. on the genotypeedl as on partially gen-
erated phenotypes, and on the completely generated deniates or phenotypes.
Figure 2 shows an overview of the GE algorithm and its comptme

The components of GE are the mapping of the genotype to theopyyee via a
grammar, the evaluation of the phenotype in the fitness ifmmetnd the application of
evolutionary operators to the individuals.

In GE, the grammar mapping uses a Context Free Grammar, whafour tuple
G = (N,%, R, S), where:

e N is a finite non-empty set of non-terminal symbols
e Y is a finite non-empty set of terminal symbols akd 3 = §), the empty set

e R is afinite set of production rules of the forR1: N <~V : A <— a or (4, )
whereA € N anda € V. V is the set of all strings constructed frafhU X and
RCNxV,R=10

e Sisthe start symbol§ € N.

The genotype is used to map the start symbol into a senteptiee BNF-grammar.
The mapping is done by reading input(codons) from the gereoty generate a corre-
sponding integer value, from which an appropriate produnatille is selected by using
the mapping function. The production choices is determimgthe current codon’s
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Figure 3: Example of GE genotype-to-phenotype mapping.dEniation order codon
value and production choice are shown to the right of thewasr@.g. from the start
symbol0 : 4%2 = 0.

integer value mod the number of production choices of ctmde. The genotype is
read from left to right, and the codon to be read is shiftedyetiene the current rule
has more than one production. The derivation sequencedsafsanded left to right
(depth-first). An example of a genotype generating a funatising a small equation
grammar

<E> = <O><E><E> | <V>
<O> = + | -
V> = x| 1

is shown in Figure 3.
The basic mapping function of GE has been described in thifose In Section 3
we introduce the setup of the experiments.

3 Setup

This section describes the femtocell simulation, the GBrélgm, the grammar used
in the GE algorithm and the fitness function.

3.1 GE Algorithm
The steps in a single iteration of the GE algorithm used hege a

1. Initialization: The genotype input in the initial solatis is generated, uniformly
randomly generated integer sequences

2. Mapping: A BNF form Context Free Grammar is used for the piragp
(a) Integer to String translation where the grammar mapegat value to a
sentential form.

(b) When the end of the genotype is reached and the outpuaicgnbon-
terminal symbols it wraps and is read from the start againthil still
has non- terminals the individual is reinitialized.



3. Evaluation: The individual solutions are evaluated gghre femtocell simula-
tion.

4. Selection: Some individuals from the current populatioaincluded in a new
population using a tournament selection.

5. Variation operators: Individuals are modified by one poinssover and uniform
integer codon mutation.

6. Replacement: A new population is created from the salgmpulation and from
the current population

The steps 2-7 are repeated until the maximum number of géoreséiterations) is
reached.

3.2 Grammar Description

The grammars used are for generating coverage algorithuticnd which are equa-
tions, differing from the previous conditional expressiarsed by Ho et al. [9]. The
solutions the grammar generates does not use any preddfiestiold parameters. A
wide range of functions were used to attmempt to capturerdifft behaviours. More-
over, in order to avoid imaginary numbers, we only use thé velued part of the
function values. The argument passed to the trigonometnictfonssin, cos, tan is in
degrees, hencgind, cosd, tand , and the unary minus isminus . The gram-
mar adopted in this study is in MATLAB syntax and is presertelbw.

<CODE> := value = <expr_0>;
<expr_0> := (<expr><op><expr>) | <preop>
<expr> ;= (<expr><op><expr>) | <var> | <preop>

| <preop_step> | <preop_monotone>
<op> =+ | - | |
<preop> ::= sind(real(<expr>)) | sind(real(<expr>))

| cosd(real(<expr>)) | log(real(<expr>))

| tand(real(<expr>))
<preop_monotone> ::= exp(round(real(<expr>)))

| uminus(<expr>)

<preop_step> ::= heaviside(<expr>) | sigmoid(<expr>)
<var> := my_power | my_load | my_handover | <cnst>
<cnst> = <nr><nr> | <nr> | 0.<nr><nr> | 0.<nr>

<ar> = 112|3|4(5|6]718]9

Many solutions found in earlier exploratory runs were ofdtions that were mono-
tonic (increasing, decreasing or simply constant). Sihes¢ monotonic functions are
not capable of responding to all environmental changes ag dightly towards non-
monotonic solutions by usingexpr_0> and also reduce the probability of using
exp. In addition, we introduce sigmoid and heavyside functionsrder to increase
the number of non-monotonic solutions. An example of a smiuthat will always
increase the pilot power based on a constant and the cuwesetr@and load ivalue
= (5 + (my power + my load))



3.3 Fitness Function

The fitness function is used by GE to determine the qualithefgenerated solutions
when applied to the femtocell network. The functions are ifitpdoad and power, and
the duration of the simulation i8, the number of femtocells &, andzx is a vector of
femtocells. Statistics of mobility, load and power are ecled over a specified update
period. These statistics are then used as inputs into tleitlon, and for calculating
the fithess. The fitness function is a vector comprised of theds for each function,
F = [fy(M(h.), f(L@)), fr(P(@))].

We tried two different fitness functions approaches a weighnd a Pareto optimal
front. A weighted fitness function would use the weights tadifiothe impact of each
fithess component. The results from using a weighted fitnesgibn showed a very
fast convergence to a local optima, with very low diversityaag the solutions in
experiment 1. Therefore we used a different approach araitieeNSGA-I1 algorithm
to calculate fithess. The NSGA- Il creates a Pareto optinwadtfof non-dominated
solutions[6].

3.3.1 Mohbility fitness

The fitness function for mobility is based on the number ofdwaers and relocation
of users using the statistics of the mobility events of thetfecells involving femtocell
users. During the simulation, the number of update peridusra/the mobility events
(handovers and relocation) between femtocells and maktsdseecorded during the
update period. The number of femtocell handovers, isacrocell handovers i,
femtocell relocations is, and macrocell relocations id”. Mobility M is composed
of

T N T N
MM (hyr) =3 N " hi Y i

t=0 i=1 t=0 i=1
T N
My(hyr) = MM (hyr) + > b + sz
t=0 i=1 t=0 i=1

Mobility is the ratio of update periods where a mobility eveocurs to the total number
of update periods is calculated. It is maximized when thezena handovers or reloca-
tion to the macrocell underlay occur, and is 0 when all feraliacser handovers are to
or from macrocells. The average mobility is 1 if there are aodovers or relocation,
otherwise it is

MM (h,r)/My(h,r) if My(h,r) >0

M(h,r) = {1 if My(h,7) =0

The mobility fitness is calculated as

1/4

far(M (k7)) = e M1 —M(h,r) ")



3.3.2 Load Fitness

The fitness for the load is based on the average number of tineetoad has been
greater than a defined maximum load threshhjd,.. If the mean cell load during an
update period exceeds this threshdldis equal to one, else it is equal to zero. Cell
load0 < z < Tisthe load/,,., = 7 users in this scenario. This is just below the
capacity of the femtocell, as the aim is to prevent the ferltdoom operating at its
capacity.

1 ifx>lhaee
0 ifz<lnas

Average load is

The fitness function for load is

1/4

frl@) = e "1 -T@) ")

3.3.3 Power Fitness

Finally, the fitness for poweP is the normalized power. Powét, —50dBm < x <
11dBm

T — Tmin
P(z) = ———min
(x) Tmazx — Tmin
The average power is
T N
P(z) =1/TY > P(xi)
t=0 =0

and the fitness function for power is

fp(P(x)) =1- P(z)

3.4 Femtocell Scenario

The femtocell problem addresses distributed coveragenigation by adjusting the
coverage of the femtocells to satisfy the mobility, load podver objectives:

Mobility: Minimize the number of mobility procedures between femlis@nd macro-
cells (in both directions) for femtocell users within thelding.

Load: Balance the load amongst the femtocells in the group to ptexerloading or
under-utilization



Power: Minimize the pilot channel transmission power to preveakbge of the fem-
tocell group’s coverage outside its intended area of c@eera

This is a multi-objective optimization problem with conflitg objectives and it is nec-
essary to balance the requirements of all three objectives.

The simulation scenario used to calculate the fitness oflg@ithms is an office
environment shown in Figure 1. The building is an office witlbicles, closed meeting
rooms, and toilets. The exterior of the building is mainlggd and the interior is mostly
light interior walls and cubicle partitions. There are fatairwells at each corner with
thick concrete walls. The location of the 12 Femtocells waresen such that they
are spaced fairly evenly apart, but without any cell sumgydone. This reflects a
plug-and-play deployment where some heuristic has beahingbe deployment, i.e.
the femtocells are not placed too closely to each other. iBhésrealistic plug-and-
play femtocell deployment, but can be sub-optimal due tddhk of exhaustive cell
planning. In the simulation each femtocell has a maximunac#y of 8 voice calls,
a macrocell underlay coverage is also assumed. A path logssyggenerated for the
450m x 500m area for each femtocell. For shorter distancepéth loss (dB) at
d (meters) from a BS is modeled 88.5 4+ 20log10(d) + PLyaus, With a smooth
transition to28 + 35log10(d) + P Laus Otherwise. A correlated shadow fading with
a standard deviation of 8 dB and spatial correlationr(@f) = ¢*/?° for a distance
x (meters) is considered. The assumed transmission logseisef explicit building
model are a function of the incident angle, the model is tdkam Ho et al. [9].

A user mobility and traffic model with the users moving to mfded way points
in the map at a speed afns~!, spending a some time in a way point before moving
to another way point. At the start the users are randomlyeplat way points. In total
200 users are modeled, and each user has a voice traffic mbagi produces 0.2
Erlangs of traffic.

When evaluating an algorithm, the scenario is run to sineidthours of operation
time, with the algorithm adjusting the femtocell pilot pavadter collecting statistics
for 30 minutes. The algorithm start time for each femtocelldandomly dithered so
that the femtocells to avoid synchronous pilot powers upglavith each femtocell's
initial pilot channel power set to -40dBm, the maximum pgbannel power is 11dBm
and minimum power is -50dBm. In order to keep the users cdrdeo the femtocell
network, femtocell to macrocell handovers are triggereénva user terminal’s pilot
channel receive power goes below -100dBm.

One evaluation of the Femtocell scenario on a core of anilhB3GHz processor
takes approximately 10 minutes.

3.5 Maodifications to the GE Engine

We replace the standamteger mutationwhich randomly modifies an integer codon
value to another random value with nodal mutation proposeByne et al. [2, 3].
The nodal mutation operator has a superior property of ikyctd the standard GE
mutation operator which is applied indiscriminately to @oglon value irrespective of
it's context within the derivation tree. Nodal mutation isly applied to individuals
who have not undergone crossover.
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Table 1: Experimental Parameter Settings

Parameter Value

MAX _WRAPS 2

CODONSIZE 128

POPULATION SIZE 200
INITIALISATION Ramped half-and-half
GENERATIONS 50
TOURNAMENT_SIZE 2
CROSSOVERPROBABILITY 0.5

MUTATION 1 event per individual
PARSIMONY_PRESSURE True
EXTENDED_NODAL _PROBABILITY 0.5
EXTENDED_NODAL _TRIES 1000

NSGA-II is used to rank the individuals according to domioiat The top individ-
uals from each front are used until the population is fillegk Beb et al. [6]. When
regenerating individuals the depth is picked from the itistion of depths in the first
front. This is both an attempt to restrict bloat and searatepths were good solutions
have been found. All evaluated solutions are added to aistbifla solution is already
on the tabu list it will also be regenerated.

The evolutionary parameter settings for the GE algorithepsesented in Table 1.
Due to the long run time to evaluate each individual algamith the femtocell scenario,
the number of generations was limited to 50.

4 Results

The equations of the two best evolved soluticB& 6andGE7) are outlined below, and
their corresponding power output behaviour during the it simulation are shown
in Figure 4.

GES®6: In Figure 4(a),F = [0.685,0.562,0.766)

tand(real(sind(real(sind(real(cosd(real(
my_handover))))))))+(log(real(exp(round(real(
(heaviside(my_handover)~(98-my_load)))))))
-tand(real(sigmoid(sigmoid(my_load))))));

GE7: In Figure 4(b),F = [0.699, 0.583,0.741]

((my_handover. *75)-sind(real(my_load))) *
sind(real(6)));

This solution only uses mobility and load input data.

The solutions GE6 and GE7 show a desirable behaviour, wherpdwer is step-
wise increased and then slowly decreasing, when compatbdviked coverage fem-
tocell deployment, or other extreme forms of evolved sgia® which simply switch
between power on and off.

11



Power output ~(((my, andover.*75)-sind(real(myoad))) *sind(real(©)));

,andover).

Power Output (dB)

Power Output (dB)

1000
1000

A 200
base Staton (85) o T Base Staion (B5) ° Time (9

(a) GE6 (b) GE7

Figure 4: Power output of the Femtocells during simulatibthe two best evolved
solutions found.

Power output joad-my, owen))):

9./my, andover) (0.8+my

Power Output (dB)

1000

Base Station (8S)

Time () Base Station (8S)

(a) GE4 (b) GE5

Figure 5: Power output of the Femtocells during simulatiérivao evolved power
on/off switching solutions.

Examples of two evolved solution&E4andGES which alternate power on and
off can be seen in Figure 5, and the resulting expressionsravéded below.

GE4: In Figure 5(a),F = [0.842,0.450,0.749]

(log(real(tand(real(my_load))))/(((73 *my_handover)/
(0.8+my_power))-(heaviside(my_load)-heaviside(
sigmoid(exp(round(real(my_power))))))));

GE5: In Figure 5(b),F = [0.745,0.490, 0.770]

(uminus((my_load  *my_power))-exp(round(real(exp(
round(real(my_power)))))));

When analyzing the correlation between the fitness valiere ik a positive corre-
lation between power and load, and a negative correlatitwadsmn mobility and power,

12



Figure 6: Fitness values for all objectives for all the indials in the last generation.

as well as mobility and load, see Figure 6. This is to be exggfrom how the values
of the fitness functions are calculated. With higher powés possible for a cell to
have more users and reach max capacity.

Moreover we tried to get an indication of terminal symboldgs by studying the
number of times a terminal had been used in the solutionsrenaMerage fitness value
of the average of the fitness function values there was neletion. In Figure 7 we
analyse the composition of solutions within a populatiorfdgusing on the ratio of
production choices for each generation in the first paretotfrThe increasing size of
the solutions in the first front can be seen from the incremaed ratio of<var> .

In summary, the best evolved solutions demonstrate thatpbssible to find so-
lutions with good fitness that have non-trivial behaviounafis, the behaviour is not
only switching power on and off or settling in constant stadach as a typical fixed
coverage deployment.

5 Conclusions & Future Work

We described how to evolve the coverage of femtocells usgygrébolic regression ap-
proach with GE. In order to maximize the coverage of the femite and minimize the
power used the algorithm controlling the power settingsheffemtocell are evolved.
The study contributes to automatic equation generatioroeérage optimisation for
telecoms networks, and it investigates how GE behaves imardic real-world envi-
ronment.

The evolved solutions are simpler to understand and read farman compared
to some evolved programs which use conditional statemerti®iet al. [9]. The best
evolved solutions are superior on two of the objectives tharcurrent approach which
is to use the maximum power setting (11dBm).

We also introduced novel modifications to Grammatical Etoiu(GE), such as in-
corporating NSGA-II and tabu search in the search engine.uBe of a non-weighted
fitness function allows a more diverse set of solutions toxXpdoeed. More points on
the Pareto front were found when tabu search was used.

We are currently investigating the use of a hybrid approacérean Evolutionary
Strategy is used for a local optimisation of the constanfsromising equations. In

13
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addition, alternative fitness measures are being examined.
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