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Abstract

We present a novel application of Grammatical Evolution to the real-world
application of femtocell coverage. A symbolic regression approach is adopted in
which we wish to uncover an expression to automatically manage the power set-
tings of individual femtocells in a larger femtocell group to optimise the coverage
of the network under time varying load. The generation of symbolic expressions
is important as it facilitates the analysis of the evolved solutions. Given the multi-
objective nature of the problem we hybridise Grammatical Evolution with NSGA-

1



Figure 1: Coverage of a femtocell setup for an office environment with 12 cells, the
color shows the pilot channel power in dBm. The base stationsare in their initial state
with power -40dbm.

II connected to tabu search. The best evolved solutions havesuperior power con-
sumption characteristics than a fixed coverage femtocell deployment.

D.1.2 Programming Techniques Automatic Programming
Algorithms
Femtocell, symbolic regression, wireless networks, grammatical evolution

1 Introduction

In telecommunication networks, femtocells are low power, low-cost, user- deployed
cellular base stations with a typical coverage range of tensof meters [4]. In order
to minimize operational expenses, femtocells have considerable self-configuration and
self-optimization capability to enable plug-and-play deployment. These capabilities
are implemented using algorithms that are designed to automatically change certain
network configuration parameters in response to any changesin the environment it is
operating in.

Furthermore, to maintain scalability when used in large networks, these algorithms
should work in a distributed manner whenever possible, using only local information
but achieving good global performance.

Designing these highly distributed algorithms can be difficult, particularly if the
network environment varies significantly. Moreover, for femtocell deployments in en-
terprise environments a group of femtocells are deployed where the individual cells
need to work together to jointly provide continuous coverage in a large building or
campus. Figure 1 shows the coverage of a femtocell setup for an offices environment
with 12 cells, with the colored areas indicating areas of femtocell coverage. The base
stations are in their initial state with a power of -40dBm. When femtocell users enter
any gaps in the coverage between the femtocells, mobility procedures (handovers or
cell re-selections) to the underlying macrocell is performed, or a loss of service occurs
if macrocell coverage is unavailable.
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In this study we expand on previous work by Ho et al. [9] which adopted Ge-
netic Programming(GP)[15] to optimize femtocell coverage. The evolved solution
trees were comprised of a set of conditional statements similar to a decision tree ar-
chitecture. In this paper, a grammar-based GP setup is adopted which allows us to
manipulate the structure of the solutions and incorporate domain knowledge. More
explicitly, we aim to widen our search space by investigating if it is possible to fine
tune the pilot power increments using equations, instead ofconditional programs for
increasing or decreasing the pilot power by a preset step (0.5dB). With this approach
we also aim to generate solutions that are easier to analyze.

In addition to the novel application of GE to the dynamic, real-world, femtocell
coverage optimisation problem we examine the utility of a number of extensions to the
basic GE approach, including the use of NSGA-II with tabu search and the use of more
refined forms of mutation.

The rest of the paper is structured as follows, in Section 2 previous work and GE is
shown. The setup of the algorithm and the experiments are explained in Section 3, and
the results are shown in Section 4. Finally, conclusions andfuture work are discussed
in Section 5.

2 Background

This section describes the femtocell coverage problem, previous work and a description
of Grammatical Evolution.

2.1 Femtocell Coverage problem

We consider an intended area of coverage, such as an enterprise environment, where
a group of femtocells is deployed to jointly provide end-user services. The problem
addresses distributed coverage optimization by adjustingthe coverage of the femtocells
to satisfy the mobility, load and power objectives:

Mobility - To minimize femtocell mobility events within the femtocell group’s in-
tended area of coverage.

Load - To balance the load amongst the femtocells in the group to prevent overloading
or under-utilization.

Power - To minimize the pilot channel transmission power. This objective is to pre-
vent, whenever possible, leakage of the femtocell group’s coverage outside its
intended area of coverage.

This is a multi-objective optimization problem with conflicting objectives. For ex-
ample, increasing the coverage of a femtocell would reduce the amount of mobility
events, but doing so may increase the load of the femtocell, and increase its pilot chan-
nel power. Thus it is necessary to balance the requirements of all three objectives
according to their importance.
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2.2 Previous Work

There have been previous studies of telecommunications andEC [1], but only one
specifically covering coverage algorithms and GP [9]. Moreover, there have been no
studies of GE and femtocell coverage algorithms. First, regarding cellular coverage
optimization, most related work in the literature deals with centralized computation
methods [9], e.g. the calculation of parameters such as the number and locations of base
stations (BS), pilot channel transmit powers or antenna configurations using a central
server running an optimization algorithm. Many studies also focus on determining
the optimal BS numbers or placements to achieve the operator’s quality of service
or coverage target. This approach is not always practical because network design is
restricted by BS placements. Instead, optimization of the configuration of cellular
networks where the locations of the base stations have been fixed can be more realistic.

One example of self-configuration and self-optimization capability in femtocells
deployments is coverage optimization. The aim of coverage optimization in residential
femtocell deployments is to ensure that leakage of coverageby a single femtocell into
public spaces is minimized while at the same time maximizingindoor coverage [8, 5].
The methods for this deployment are not applicable to enterprise environments [9].

Previous work with GP and femtocells [9] automatically derived a distributed al-
gorithm to dynamically optimize the coverage of a femtocellgroup using Genetic Pro-
gramming. The resulting evolved algorithm showed the ability to optimize the cov-
erage well, and was able to offer increased overall network capacity compared with a
fixed coverage femtocell deployment. The functions and terminal set for GP consisted
of conditions checking if the load, overlap and probabilityof users entering a gap was
over a predefined threshold, as well as combining the branches of the conditionals. The
terminals were increase power, decrease power or do nothing. Here, we extend the GP
approach using grammatical GP, and using an equation form. Thus, the solutions that
are evolved in our study are less constrained than in Ho et al.[9] and different fitness
functions are used.

For work with a grammar and GP, Lewis et al. [11] enhanced IEEE802.11 DCF.
They designed MAC layer algorithms using GP by evolving algorithms instead of op-
timizing values and tuning parameters,and a wider behaviorspace was searched. The
variation of contention window sizes was explored, the results outperformed standard
802.11 behavior on a variable sized network under standard load, and the throughput
performance is comparable to the best aspects of the protocol. For their studies they use
a grammar to embed domain knowledge in the algorithms they evolve. One way to ex-
tend this work is to use a formal grammar specification, e.g. Backus-Naur Form(BNF),
as used in grammar based approaches of GE.

GE has been used by O’Neill and Ryan [13] to automatically evolve caching algo-
rithms, where simple caching algorithm solutions were found. Hu and Goodman [10]
used GP for wireless access point configuration, the resultsimproved when they post-
processed their solutions to find the minimum spanning tree.Yasuda and Sato [16]
used linear GP and a pruning operator on their solutions for wireless LAN access point
configuration to gain improved performance and run time speed-up, which shows that
pruning can be efficient.

This section concludes that grammatical GP approaches, e.g. GE, are viable for
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Figure 2: The GE algorithm

telecommunication network studies. It also reveals gaps inthe generation of coverage
algorithms for femtocells.

2.3 Grammatical Evolution

Grammatical Evolution (GE) [14, 7] is a grammar-based form of GP [12]. It is inspired
by representation in molecular biology and combines this with formal grammars. The
GE system is flexible and allows the use of alternative searchstrategies, whether evolu-
tionary, deterministic or of some other approach. This system also includes the ability
to bias the search by changing the grammar used. Since a grammar is used to describe
the structures that are generated by GE, editing the grammarmodifies the output struc-
tures. This constraining power is one of GE’s main features.The genotype-phenotype,
i.e. input-output mapping means that GE allows search operators to be performed on
any representation in the algorithm, e.g. on the genotype, as well as on partially gen-
erated phenotypes, and on the completely generated derivation trees or phenotypes.
Figure 2 shows an overview of the GE algorithm and its components.

The components of GE are the mapping of the genotype to the phenotype via a
grammar, the evaluation of the phenotype in the fitness function and the application of
evolutionary operators to the individuals.

In GE, the grammar mapping uses a Context Free Grammar, whichis a four tuple
G = (N,Σ, R, S), where:

• N is a finite non-empty set of non-terminal symbols

• Σ is a finite non-empty set of terminal symbols andN ∩ Σ = ∅, the empty set

• R is a finite set of production rules of the formR : N ← V : A ← α or (A,α)
whereA ∈ N andα ∈ V . V is the set of all strings constructed fromN ∪Σ and
R ⊆ N × V ,R = ∅

• S is the start symbol,S ∈ N .

The genotype is used to map the start symbol into a sentence, by the BNF-grammar.
The mapping is done by reading input(codons) from the genotype to generate a corre-
sponding integer value, from which an appropriate production rule is selected by using
the mapping function. The production choices is determinedby the current codon’s
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Figure 3: Example of GE genotype-to-phenotype mapping. Thederivation order codon
value and production choice are shown to the right of the arrows, e.g. from the start
symbol0 : 4%2 = 0.

integer value mod the number of production choices of current rule. The genotype is
read from left to right, and the codon to be read is shifted every time the current rule
has more than one production. The derivation sequence is also expanded left to right
(depth-first). An example of a genotype generating a function using a small equation
grammar

<E> ::= <O><E><E> | <V>
<O> ::= + | -
<V> ::= x | 1

is shown in Figure 3.
The basic mapping function of GE has been described in this section. In Section 3

we introduce the setup of the experiments.

3 Setup

This section describes the femtocell simulation, the GE algorithm, the grammar used
in the GE algorithm and the fitness function.

3.1 GE Algorithm

The steps in a single iteration of the GE algorithm used here are:

1. Initialization: The genotype input in the initial solutions is generated, uniformly
randomly generated integer sequences

2. Mapping: A BNF form Context Free Grammar is used for the mapping

(a) Integer to String translation where the grammar maps integer value to a
sentential form.

(b) When the end of the genotype is reached and the output contains non-
terminal symbols it wraps and is read from the start again. Ifthis still
has non- terminals the individual is reinitialized.

6



3. Evaluation: The individual solutions are evaluated using the femtocell simula-
tion.

4. Selection: Some individuals from the current populationare included in a new
population using a tournament selection.

5. Variation operators: Individuals are modified by one point crossover and uniform
integer codon mutation.

6. Replacement: A new population is created from the selected population and from
the current population

The steps 2-7 are repeated until the maximum number of generations(iterations) is
reached.

3.2 Grammar Description

The grammars used are for generating coverage algorithm solutions which are equa-
tions, differing from the previous conditional expressions used by Ho et al. [9]. The
solutions the grammar generates does not use any predefined threshold parameters. A
wide range of functions were used to attmempt to capture different behaviours. More-
over, in order to avoid imaginary numbers, we only use the real valued part of the
function values. The argument passed to the trigonometric functionssin, cos, tan is in
degrees, hencesind, cosd, tand , and the unary minus isuminus . The gram-
mar adopted in this study is in MATLAB syntax and is presentedbelow.

<CODE> ::= value = <expr_0>;
<expr_0> ::= (<expr><op><expr>) | <preop>
<expr> ::= (<expr><op><expr>) | <var> | <preop>

| <preop_step> | <preop_monotone>
<op> ::= + | - | * | / | ˆ
<preop> ::= sind(real(<expr>)) | sind(real(<expr>))

| cosd(real(<expr>)) | log(real(<expr>))
| tand(real(<expr>))

<preop_monotone> ::= exp(round(real(<expr>)))
| uminus(<expr>)

<preop_step> ::= heaviside(<expr>) | sigmoid(<expr>)
<var> ::= my_power | my_load | my_handover | <cnst>
<cnst> ::= <nr><nr> | <nr> | 0.<nr><nr> | 0.<nr>
<nr> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Many solutions found in earlier exploratory runs were of functions that were mono-
tonic (increasing, decreasing or simply constant). Since these monotonic functions are
not capable of responding to all environmental changes we bias slightly towards non-
monotonic solutions by using<expr_0> and also reduce the probability of using
exp . In addition, we introduce sigmoid and heavyside functionsin order to increase
the number of non-monotonic solutions. An example of a solution that will always
increase the pilot power based on a constant and the current power and load isvalue
= (5 + (my power + my load))
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3.3 Fitness Function

The fitness function is used by GE to determine the quality of the generated solutions
when applied to the femtocell network. The functions are mobility, load and power, and
the duration of the simulation isT , the number of femtocells isN , andx is a vector of
femtocells. Statistics of mobility, load and power are collected over a specified update
period. These statistics are then used as inputs into the algorithm, and for calculating
the fitness. The fitness function is a vector comprised of the fitness for each function,
F = [fM (M(h, r)), fL(L(x)), fP (P (x))].

We tried two different fitness functions approaches a weighted and a Pareto optimal
front. A weighted fitness function would use the weights to modify the impact of each
fitness component. The results from using a weighted fitness function showed a very
fast convergence to a local optima, with very low diversity among the solutions in
experiment 1. Therefore we used a different approach and used the NSGA-II algorithm
to calculate fitness. The NSGA- II creates a Pareto optimal front of non-dominated
solutions[6].

3.3.1 Mobility fitness

The fitness function for mobility is based on the number of handovers and relocation
of users using the statistics of the mobility events of the femtocells involving femtocell
users. During the simulation, the number of update periods where the mobility events
(handovers and relocation) between femtocells and macrocells is recorded during the
update period. The number of femtocell handovers ish, macrocell handovers ishM ,
femtocell relocations isr, and macrocell relocations isrM . Mobility M is composed
of

MM
b (h, r) =

T
∑

t=0

N
∑

i=1

hM
it +

T
∑

t=0

N
∑

i=1

rMit

Mb(h, r) = MM
b (h, r) +

T
∑

t=0

N
∑

i=1

hit +

T
∑

t=0

N
∑

i=1

rit

Mobility is the ratio of update periods where a mobility event occurs to the total number
of update periods is calculated. It is maximized when there are no handovers or reloca-
tion to the macrocell underlay occur, and is 0 when all femtocell user handovers are to
or from macrocells. The average mobility is 1 if there are no handovers or relocation,
otherwise it is

M(h, r) =

{

MM
b (h, r)/Mb(h, r) if Mb(h, r) > 0

1 if Mb(h, r) = 0

The mobility fitness is calculated as

fM (M(h, r)) = e−M(h,r)(1 −M(h, r)
1/4

)
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3.3.2 Load Fitness

The fitness for the load is based on the average number of timesthe load has been
greater than a defined maximum load threshold,lmax. If the mean cell load during an
update period exceeds this threshold,L is equal to one, else it is equal to zero. Cell
load0 ≤ x ≤ 7 is the load,lmax = 7 users in this scenario. This is just below the
capacity of the femtocell, as the aim is to prevent the femtocell from operating at its
capacity.

L(x) =

{

1 if x > lmax

0 if x ≤ lmax

Average load is

L(x) = 1/T

T
∑

t=0

N
∑

i=1

L(xit)

The fitness function for load is

fL(L(x)) = e−L(x)(1− L(x)
1/4

)

3.3.3 Power Fitness

Finally, the fitness for powerP is the normalized power. PowerP , −50dBm ≤ x ≤
11dBm

P (x) =
x− xmin

xmax − xmin

The average power is

P (x) = 1/T
T
∑

t=0

N
∑

i=0

P (xit)

and the fitness function for power is

fP (P (x)) = 1− P (x)

3.4 Femtocell Scenario

The femtocell problem addresses distributed coverage optimization by adjusting the
coverage of the femtocells to satisfy the mobility, load andpower objectives:

Mobility: Minimize the number of mobility procedures between femtocells and macro-
cells (in both directions) for femtocell users within the building.

Load: Balance the load amongst the femtocells in the group to prevent overloading or
under-utilization
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Power: Minimize the pilot channel transmission power to prevent leakage of the fem-
tocell group’s coverage outside its intended area of coverage.

This is a multi-objective optimization problem with conflicting objectives and it is nec-
essary to balance the requirements of all three objectives.

The simulation scenario used to calculate the fitness of the algorithms is an office
environment shown in Figure 1. The building is an office with cubicles, closed meeting
rooms, and toilets. The exterior of the building is mainly glass and the interior is mostly
light interior walls and cubicle partitions. There are fourstairwells at each corner with
thick concrete walls. The location of the 12 Femtocells werechosen such that they
are spaced fairly evenly apart, but without any cell surveying done. This reflects a
plug-and-play deployment where some heuristic has been used in the deployment, i.e.
the femtocells are not placed too closely to each other. Thisis a realistic plug-and-
play femtocell deployment, but can be sub-optimal due to thelack of exhaustive cell
planning. In the simulation each femtocell has a maximum capacity of 8 voice calls,
a macrocell underlay coverage is also assumed. A path loss map is generated for the
450m x 500m area for each femtocell. For shorter distances the path loss (dB) at
d (meters) from a BS is modeled as38.5 + 20log10(d) + PLwalls, with a smooth
transition to28 + 35log10(d) + PLwalls otherwise. A correlated shadow fading with
a standard deviation of 8 dB and spatial correlation ofr(x) = ex/20 for a distance
x (meters) is considered. The assumed transmission losses for the explicit building
model are a function of the incident angle, the model is takenfrom Ho et al. [9].

A user mobility and traffic model with the users moving to predefined way points
in the map at a speed of1ms−1, spending a some time in a way point before moving
to another way point. At the start the users are randomly placed at way points. In total
200 users are modeled, and each user has a voice traffic model which produces 0.2
Erlangs of traffic.

When evaluating an algorithm, the scenario is run to simulate 24 hours of operation
time, with the algorithm adjusting the femtocell pilot power after collecting statistics
for 30 minutes. The algorithm start time for each femtocell is randomly dithered so
that the femtocells to avoid synchronous pilot powers updates, with each femtocell’s
initial pilot channel power set to -40dBm, the maximum pilotchannel power is 11dBm
and minimum power is -50dBm. In order to keep the users connected to the femtocell
network, femtocell to macrocell handovers are triggered when a user terminal’s pilot
channel receive power goes below -100dBm.

One evaluation of the Femtocell scenario on a core of an Inteli7 2.93GHz processor
takes approximately 10 minutes.

3.5 Modifications to the GE Engine

We replace the standardinteger mutationwhich randomly modifies an integer codon
value to another random value with nodal mutation proposed by Byrne et al. [2, 3].
The nodal mutation operator has a superior property of locality to the standard GE
mutation operator which is applied indiscriminately to anycodon value irrespective of
it’s context within the derivation tree. Nodal mutation is only applied to individuals
who have not undergone crossover.

10



Table 1: Experimental Parameter Settings
Parameter Value
MAX WRAPS 2
CODON SIZE 128
POPULATION SIZE 200
INITIALISATION Ramped half-and-half
GENERATIONS 50
TOURNAMENT SIZE 2
CROSSOVERPROBABILITY 0.5
MUTATION 1 event per individual
PARSIMONY PRESSURE True
EXTENDED NODAL PROBABILITY 0.5
EXTENDED NODAL TRIES 1000

NSGA-II is used to rank the individuals according to domination. The top individ-
uals from each front are used until the population is filled, see Deb et al. [6]. When
regenerating individuals the depth is picked from the distribution of depths in the first
front. This is both an attempt to restrict bloat and search atdepths were good solutions
have been found. All evaluated solutions are added to a tabu list. If a solution is already
on the tabu list it will also be regenerated.

The evolutionary parameter settings for the GE algorithm are presented in Table 1.
Due to the long run time to evaluate each individual algorithm in the femtocell scenario,
the number of generations was limited to 50.

4 Results

The equations of the two best evolved solutions (GE6andGE7) are outlined below, and
their corresponding power output behaviour during the femtocell simulation are shown
in Figure 4.

GE6: In Figure 4(a),F = [0.685, 0.562, 0.766]

tand(real(sind(real(sind(real(cosd(real(
my_handover))))))))+(log(real(exp(round(real(
(heaviside(my_handover)ˆ(98-my_load)))))))
-tand(real(sigmoid(sigmoid(my_load))))));

GE7: In Figure 4(b),F = [0.699, 0.583, 0.741]

((my_handover. * 75)-sind(real(my_load))) *
sind(real(6)));

This solution only uses mobility and load input data.

The solutions GE6 and GE7 show a desirable behaviour, where the power is step-
wise increased and then slowly decreasing, when compared with a fixed coverage fem-
tocell deployment, or other extreme forms of evolved strategies which simply switch
between power on and off.
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Figure 4: Power output of the Femtocells during simulation of the two best evolved
solutions found.
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Figure 5: Power output of the Femtocells during simulation of two evolved power
on/off switching solutions.

Examples of two evolved solutions (GE4andGE5) which alternate power on and
off can be seen in Figure 5, and the resulting expressions areprovided below.

GE4: In Figure 5(a),F = [0.842, 0.450, 0.749]

(log(real(tand(real(my_load))))/(((73 * my_handover)/
(0.8+my_power))-(heaviside(my_load)-heaviside(
sigmoid(exp(round(real(my_power))))))));

GE5: In Figure 5(b),F = [0.745, 0.490, 0.770]

(uminus((my_load * my_power))-exp(round(real(exp(
round(real(my_power)))))));

When analyzing the correlation between the fitness values there is a positive corre-
lation between power and load, and a negative correlation between mobility and power,
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as well as mobility and load, see Figure 6. This is to be expected from how the values
of the fitness functions are calculated. With higher power itis possible for a cell to
have more users and reach max capacity.

Moreover we tried to get an indication of terminal symbol fitness by studying the
number of times a terminal had been used in the solutions and the average fitness value
of the average of the fitness function values there was no correlation. In Figure 7 we
analyse the composition of solutions within a population byfocusing on the ratio of
production choices for each generation in the first pareto front. The increasing size of
the solutions in the first front can be seen from the increase in the ratio of<var> .

In summary, the best evolved solutions demonstrate that it is possible to find so-
lutions with good fitness that have non-trivial behaviour. That is, the behaviour is not
only switching power on and off or settling in constant states such as a typical fixed
coverage deployment.

5 Conclusions & Future Work

We described how to evolve the coverage of femtocells using asymbolic regression ap-
proach with GE. In order to maximize the coverage of the femtocells and minimize the
power used the algorithm controlling the power settings of the femtocell are evolved.
The study contributes to automatic equation generation of coverage optimisation for
telecoms networks, and it investigates how GE behaves in a dynamic real-world envi-
ronment.

The evolved solutions are simpler to understand and read fora human compared
to some evolved programs which use conditional statements in Ho et al. [9]. The best
evolved solutions are superior on two of the objectives thanthe current approach which
is to use the maximum power setting (11dBm).

We also introduced novel modifications to Grammatical Evolution (GE), such as in-
corporating NSGA-II and tabu search in the search engine. The use of a non-weighted
fitness function allows a more diverse set of solutions to be explored. More points on
the Pareto front were found when tabu search was used.

We are currently investigating the use of a hybrid approach where an Evolutionary
Strategy is used for a local optimisation of the constants inpromising equations. In
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Figure 7: Ratio of production choices used for each generation in the first front
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addition, alternative fitness measures are being examined.
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