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Abstract

The application of a genotype-phenotype mapping in Evolutionary Com-
putation is not a new idea, however, how this mapping process is inter-
preted, and implemented varies wildly. In the majority of cases a very sim-
ple abstraction of the biological genotype-phenotype mapping is used, but
as our understanding of this process increases, the deficiencies in current
approaches become more evident. In this paper, an outline of what ap-
proaches have been taken in the investigation of the genotype-phenotype
map in Grammatical Evolution are presented and an outline of proposed
future work is introduced.

1 Introduction

The adoption of a Genotype-Phenotype Map (GPM) for Genetic Programming
(GP) [11, 18] has demonstrated performance advantages over traditional tree-
based GP [4, 13, 10, 2]. One of the most popular grammar-based forms of
GP [12], Grammatical Evolution (GE), adopts a genotype-phenotype map which
has been argued to provide a number of advantages over standard GP [16]. The
GPM provides GE with the ability to search both genotypic space and solution
space in a many to one relationship, unlike traditional GP which has a one
to one mapping. The many-to-one mapping allows for multiple solutions to
have the same performance but be structured differently. This feature allows
for neutral search which allows the Evolutionary Algorithm(EA) to search with
zero impact on performance amongst the different variants of the same solution



and has been shown to allow GPM-based variants of GP to resist getting stuck
at local optimal solutions [2]. Whilst these results are encouraging it has yet
to be established what effect the GPM has on an EA such as GE. How does
changing the order in which the mapping is done effect the EA? Can further
inspiration be taken from biology which first inspired the GPM in GP to improve
the EA. Recently these topics have started to be tackled [8, 15, 6, 7, 1, 14], but
many more avenues of exploration remain as the interpretation of mapping used
by GE is simplistic and lacking in some of the desired advanced features of the
GPM that exist in nature [3].

GP research in dynamic environments was recently noted as an open issue
for GP [17]. Within a dynamic environment the ability to adapt to change is
crucial. Fast adaptation of a GP system requires diversity to be present within
the population. The degeneracy offered by a GPM provides the system with
diversity within the population thus making it the ideal choice when applying
GP to dynamic environments. However the current usage of GPM has been
noted to lack the complexity shown in nature [3] as it is based upon an old
model of what was once perceived to take place within Genotype-Phenotype
Mappings in the natural world.

The remainder of this paper is as follows. An overview of the main research
objective in Sections 2 and 3, followed by a summary of work done in Sections 4
and 5, and finally an outline of the future direction of the research in Section 6.

2 Research Objective

Whilst the idea of the GPM has been around for decades within the field of
GP a comprehensive in depth examination of the topic remains absent from the
field. Whilst most studies focus on the application of a new or refined mapping
process, the outcome of these studies in general, is purely performance based.
Most approaches are benchmarked and compared to a standard simplified ap-
proach to Genotype-Phenotype Mapping or even standard GP variants such as
grammar based GP. These studies lack a broad spectrum of comparison to other
approaches. The no free lunch theory states no single search algorithm can
be the best at all problems and with this in mind it makes sense to find as
many successful variations of the Genotype-Phenotype Mapping process to try
and ensure a greater spectrum of possible good approaches to mapping. It has
also been noted that we need to complexify our approaches to GP to narrow
the gap between GP and actual biological systems [17]. Through this proposed
investigation, more complex mapping approaches the need for which is further
highlighted in [3], will be considered and investigated to try and help narrow the
gap between accepted abstractions of GPM and what actually occurs in nature.

Recently it has been noted that the lack of investigation and application of
GP to dynamic domains is an open issue within the field of GP [17]. Further
focusing on this issue, the investigation of Genotype-Phenotype Mapping be-
haviour with dynamic environments it is found lacking and in need of in-depth
investigation. As understanding of the natural mapping process becomes more



widespread, it is seen that mapping is a complex two-way system that adapts at
each stage of mapping [3], unlike traditional one way approaches which are the
norm in EC. It has already been established that the GPM provides diversity
to a system and this diversity is key for fast adaptation to new environments.

It is from these two arguments above that I see the need to explore the open
issues I perceive within GPM in the field of GP. An in-depth review of current
mapping ideas is required and a comparison or benchmarking of each approach
is needed. The surface has only been scratched with regards to inspiration
from biology and further enhancement of the Genotype-Phenotype mapping
with this knowledge is worth investigation. Finally all this work needs to be
applied to Dynamic Environments and examined for performance and behaviour
of the algorithm, as Dynamic Environments are the real world problems we face
every day and desire solutions for from GP. It is my hope that a more complex
mapping process will result in the ability for a Genetic Algorithm to adjust to
Dynamic Environments appropriately and become more resistant to fall-off in
performance in highly volatile environments.

3 Research Questions

Do different GPM’s impact on GE’s performance? With any form of
Genetic Programming where a mapping from chromosome to possible solution is
performed the way in which this mapping is performed can have a large impact
on performance. With Grammatical Evolution a GPM is used in which mapping
is performed on the chromosome to a grammar and the phenotype or possible
solution is mapped in a left-most first manner. This introduces a bias in the
mapping process which can be beneficial with certain problems as noted in [9].

My approach will examine different ways of implementing this mapping from
chromosome to solution and investigate the possibility of the existence of map-
pings that are more suited to certain types of problems, or if a general mapping
can be found which exhibits acceptable performance across all problem domains.

Do advanced genetic operations exist that when applied to the new
GPMs impact GE’s performance? It is not enough to simply investigate
new mapping processes and report on findings. Genetic Operations used in many
GP systems are reliant upon the mapping process. Applying standard mutation
within a system using a different mapping can be tantamount to making the
algorithm perform no better than random search as the change is too destructive
to allow for any form of evolution or knowledge to be maintained within a
chromosome.

Different mappings require genetic operators which are firstly enhanced to
deal with the complex and different types of mappings possible. This will allow
for the evolutionary process to work, but in certain cases mappings present
an opportunity to use advanced genetic operators not possible with standard
mapping practices. These operators allow for a great degree of freedom for the
system to fine tune the evolutionary search going on and in certain cases adjust
to prevent convergence which is a big problem within GP. This idea of mapper



specific genetic operations represents a key area of investigation within the area
of GPM to enable us to get the best performance out of the various types of
GPM.

My approach will examine all the mapping approaches used within this pro-
posed thesis and examine if there exists the possibility of implementing oper-
ators to take advantage of degrees of freedom in the mapping to help refine
the searching process. As the research moves to the dynamic problem domain
the application of dynamically changing operators may prove to provide desired
improvement to the performance of the algorithm.

Do observed impacts on performance hold when applied to Dy-
namic Environments? Currently the majority of work within the field of
Genetic Programming is performed on static environments. The main goal of
all researchers within the field would be to apply their work to real world prob-
lems and as we all know the real world can be very dynamic. However, research
within static environments is very useful in that it can provides the ability to
design experiments where the behaviour or solution is known and thus allows
for focused research on certain aspects of a genetic algorithm, where changes
can be observed and performance of the changes to the algorithm can be easily
examined and benchmarked.

Once a system has been examined and fine tuned within a static environ-
ment the next logical step is to examine these changes within a, similar, dynamic
environment. This allows for the examination of the observations made within
a static testbed and to see if they translate into the new dynamic testbed envi-
ronment, or if the addition of the changeable environment will favour different
mapping strategies, and genetic operations.

4 GPM in GE

GPM in GE begins by finding the start symbol in the grammar. This non
terminal (NT) in the case of the example grammar shown in Fig. 1, <e> is then
evaluated using Eq. 1. By taking the first codon value of the GE chromosome
(12) and the number of expansions possible for the state <e> (2), we get the
first expansion of the tree, where <e> expands to <e><o><e> (12%2) . From
this point on the leftmost NT is always expanded first in the derivation process.
This action will continue to be performed until no NTs remain to be expanded
in the derivation tree. An example of this mapping is shown in Fig. 1 where the
order of expansion is indicated by a set of numbers on the arrows between the
blocks on the diagram, in the form of 1(12%2) where 1 is the expansion order
and 12%?2 is the application of Eq. 1.

New Node = Codon value % Num. of rules for NT (1)
NT to expand = Codon value % Num. of NT's (2)

The only difference between standard GE and 7GE [15] in its purest form is
in the mapping process from genotype to phenotype. 7GE’s mapping process
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Figure 1: Example Grammar and GE GPM
<e>
1. (e)-12%1=0 1(8%2)
2. (e),0,e-3%3=0 j
3. o,(e),v-T%3=1 °
4. o,(v),e,o0,e-11%5=1 ﬁn%z) 5(3%2) 3(6%2)
5. (0),e,0,e-4%4=0 ’ N ‘
<v> <e> <0> <e>
6. (e),0,e-3%3=0
7. (0),e,v-15%3=0 4(8%2) ﬁn%a 7(7%2\9(3%2)
8. e, (V) _9%2=1 ’ 0.5 ‘ <v> ’ * ‘ <v>
9. (e)-10%1=0

10(4%2)

10. (v)-7%1=0 8(8%2)
05

Figure 2: 7GE ’s Order selection and GPM

differs from that of GE in that each expansion of a NT requires two codons.
The standard GE chromosome is essentially split into pairs of values where the
first codon of the pair is used to choose which NT to expand and the second is
used to choose what to expand the NT to, based on the rules available for a NT
of that type. The chromosome shown in Fig. 1 can be viewed as a list of paired
values such as ((12,8),(3,11)..), where the first value of the pair (The Order
Codon) is used to determine the next NT to expand by using Eq. 2 and this
will return which NT to choose from a list of unexpanded NTs. Once the NT
to be expanded has been chosen, the second codon (Content Codon) is used in



conjunction with Eq. 1 (the standard GE expansion rule) to determine what the
NT expands to; and if this node happens to be an NT, it is added to the list of
unexpanded NTs. Fig. 2 shows the expansion of the example grammar in Fig. 1
using the 7GE mapping process. The number associated with each branch of
the tree is a reference to the numbered steps shown in Fig. 2 which show how
each choice of NT to expand comes about. It is interesting to note the different
shape and size of the examples based on just a change in mapping.

The two methods for GPM in GE presented above represent the starting
point, and current most advance GPM representation explored. Other variants
of the GPM in GE have been looked at as well during this research. In [8],
the above GPM and the following are examined. Breadth-first, which maps
all of the non-terminal symbols at each successive level of the derivation tree,
before moving on to the next level down and Random control strategy, which
randomly selects a NT to expand amongst all of the NTs that currently exist
in an expanding derivation sequences.

The initial study showed that of the four mapping strategies examined, 7GE
represented the best avenue to explore as it showed performance on a par with
the standard GE GPM except on the Max problem. In [6] investigation into
this observed decrease in performance of 7GE on the Max problem led to the
introduction of some new variants of both the GE and 7GE mappings. Some
new variations of mappers where required. The experiments planned required a
version of 7GE, in which the order codons of the mapping were fixed across the
whole population, that is not affected by crossover or mutation. This fixed order
7GE requires the addition of an order chromosome to standard GE and then
an edit to the 7GE mapper so it would work with the new desired setup. This
setup is referred to as Fixed-Order and was necessary to see if the constantly
changing order of expansion in the 7GE mapping process, was the cause of
the performance decrease. The mapping served as an experiment by itself, as
it showed if any randomised order might do as well as 7GE . The final GPM
explored was Right-Most, this is a variant of the standard GE GPM. Rather
than taking the left-most NT and expanding as in standard GE, in Right-Most,
GE always selects the right-most NT for expansion. This way of mapping was
required for this study as it provided a similar performance to the standard GE
GPM, whilst also furthering insight into what happens within the evolution of
a solution to the Max problem.

5 GPM Based Operators

Adopting the TGE GPM allowed for certain degrees of freedom within the map-
ping process that could be exploited. In [7] one such freedom, which exists in
the mutation operation, was used to explore the effect mapping order has on
the performance of GE. 7GE allows for the mutation of the specific codons that
control the order of expansion as well as the choice of expansion. In total four
different variants of the mutation operation where tested and the results ex-
amined. Order Mutation, restricted to codons responsible for determining the



mapping order. The results observed on this setup relative to the others allowed
us to determine the contribution of the search focused on the order codons to-
wards the success of TGE. Content Mutation, restricted to codons responsible
for production rule selection. When compared to a standard GE mapping, in
effect the mapping order is largely randomised here upon initialisation of the
order codons in the first generation. TGE Mutation events are allowed on both
order and content codons. Ratio Mutations were examined where the ratio of
order to content mutation events are varied to examine the situation where the
search is allowed to continue on both the order and content codons, but at dif-
ferent relative rates. This showed if there may be an advantage in rebalancing
the relative rate of codon and order search. Crossover is also subject to some
modification under a 7GE mapping. The ability to break up the location and
content pairs of the chromosome during crossover or preserve this relationship
is now possible.

6 Future Work

6.1 Complex Mappings

The first and primary goal of the future work will be to further examine the
existing literature for novel approaches to GPM and also try to take further
inspiration from nature and examine if different methods to perform Genotype-
Phenotype mapping can be derived and implemented. During the process of
implementing new variants of the GPM, it must also remain in focus to examine
the approach being used to perform GPM and investigate if there exists scope
for complex operators. Some operators already established such as those seen
in [7] can by dynamically changed to allow for variable performance rates. The
use of new operators go hand in hand with new GPM implementations so in the
view of this author, the development of these operations go hand in hand with
the new GPM. A successful GPM strategy is only as good as the operators that
interact with the GPM.

6.2 Dynamic Environments

The main idea behind this research is to apply GPMs to a wide range of Dynamic
Problems. Dempsey [5] provided a very in-depth survey of how to classify
dynamic problems. Dempsey examined work by many, and put forward his
idea of a spectrum or range of dynamism, based on this work, and that all
problems within the dynamic domain would have a place upon this spectrum.
The spectrum goes from the two perceived extremes of change, one side being
the very small predictable change problems and the other being the completely
random, large degree of change that was unpredictable. Since the work outlined
in previous sections called for a suite of dynamic benchmark problems this will
form one of the important tasks that needs to be completed. The goal of this
section of proposed research is to establish a suite of problems that will provide



a good coverage of this spectrum. This task is currently underway and it is
hoped to add to the initial dynamic problems implemented to date.

6.3 Apply research to Dynamic Environments

Upon establishment of a suite of Dynamic Benchmark Problems the next set
of experiments proposed will be a repeat of those performed within the static
benchmark problems. Once completed it will be possible to investigate if the
observed behaviour of the mapping process on the static benchmarks translates
into the dynamic domain. This will then lead to a series of experiments that
will be needed to see why we may observe a positive or negative impact on
performance. This should lead in nicely to the next research topic which is that
of dynamic mappers and operators.

6.4 Dynamic GPM and Genetic Operators

With the introduction of Dynamic Environments to this research the idea of
having dynamic GPM’s and operators could prove to be a very desirable feature.
The idea that certain GPM’s could be better suited to certain types of situations
that could exist in the environment such as, one type of GPM could be very good
when the environment is highly changeable, while another might be very good
at times of limited change, leads to the conclusion that some form of dynamic
approach to mapping may lead to an as yet unseen performance advantage. In
the same way, having operators that can adjust the degree of change within an
algorithm can also be of benefit. Being able to inject diversity into a converged
population after a prolonged period of time in a certain environment would
certainly be desirable.
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