
Grammatical Swarm

Michael O’Neill1 and Anthony Brabazon2

1 Biocomputing and Developmental Systems Group
University of Limerick, Ireland

Michael.ONeill@ul.ie
2 University College Dublin, Ireland

Anthony.Brabazon@ucd.ie

Abstract. This proof of concept study examines the possibility of spe-
cifying the construction of programs using a Particle Swarm algorithm,
and represents a new form of automatic programming based on Social
Learning, Social Programming or Swarm Programming. Each individual
particle represents choices of program construction rules, where these
rules are specified using a Backus-Naur Form grammar. The results de-
monstrate that it is possible to generate programs using the Grammatical
Swarm technique.

1 Introduction

One model of social learning that has attracted interest in recent years is drawn
from a swarm metaphor. Two popular variants of swarm models exist, those
inspired by studies of social insects such as ant colonies, and those inspired by
studies of the flocking behavior of birds and fish. This study focuses on the latter.
The essence of these systems is that they exhibit flexibility, robustness and self-
organization [1]. Although the systems can exhibit remarkable coordination of
activities between individuals, this coordination does not stem from a ‘center
of control’ or a ‘directed’ intelligence, rather it is self-organizing and emergent.
Social ‘swarm’ researchers have emphasized the role of social learning processes
in these models [2,3]. In essence, social behavior helps individuals to adapt to
their environment, as it ensures that they obtain access to more information
than that captured by their own senses.
This paper details an investigation examining the possibility of specifying the
automated construction of a program using a Particle Swarm learning model.
In the Grammatical Swarm (GS) approach, each particle or real-valued vector,
represents choices of program construction rules specified as production rules of
a Backus-Naur Form grammar.
This approach is grounded in the linear program representation adopted in
Grammatical Evolution (GE) [4,5,6,7,8], which uses grammars to guide the con-
struction of syntactically correct programs, specified by variable-length genoty-
pic binary or integer strings. The search heuristic adopted with GE is thus a
variable-length Genetic Algorithm. In the Grammatical Swarm technique pre-
sented here, a particle’s real-valued vector is used in the same manner as the

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 163–174, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.3     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 595 842 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 2400 dpi     Downsampling für Bilder über: 24000 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments true     /DoThumbnails false     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.3     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends true     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo true     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 10.0     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 2400     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



164 M. O’Neill and A. Brabazon

genotypic binary string in GE. This results in a new form of automatic pro-
gramming based on social learning, which we could dub Social Programming, or
Swarm Programming. It is interesting to note that this approach is completely
devoid of any crossover operator characteristic of Genetic Programming.
The remainder of the paper is structured as follows. Before describing the mecha-
nism of Grammatical Swarm in section 4, introductions to the salient features
of Particle Swarm Optimization (PSO) and Grammatical Evolution (GE) are
provided in sections 2 and 3 respectively. Section 5 details the experimental ap-
proach adopted and results, section 6 provides some discussion of the results,
and finally section 7 details conclusions and future work.

2 Particle Swarm Optimization

In the context of PSO, a swarm can be defined as ‘... a population of interacting
elements that is able to optimize some global objective through collaborative
search of a space.’ [2](p. xxvii). The nature of the interacting elements (par-
ticles) depends on the problem domain, in this study they represent program
construction rules. These particles move (fly) in an n-dimensional search space,
in an attempt to uncover ever-better solutions to the problem of interest.
Each of the particles has two associated properties, a current position and a
velocity. Each particle has a memory of the best location in the search space
that it has found so far (pbest), and knows the location of the best location
found to date by all the particles in the population (or in an alternative version
of the algorithm, a neighborhood around each particle) (gbest). At each step of
the algorithm, particles are displaced from their current position by applying
a velocity vector to them. The velocity size / direction is influenced by the
velocity in the previous iteration of the algorithm (simulates ‘momentum’), and
the location of a particle relative to its pbest and gbest. Therefore, at each step,
the size and direction of each particle’s move is a function of its own history
(experience), and the social influence of its peer group.
A number of variants of the PSA exist. The following paragraphs provide a
description of the basic continuous version described by [2].

i. Initialize each particle in the population by randomly selecting values for its
location and velocity vectors.

ii. Calculate the fitness value of each particle. If the current fitness value for a
particle is greater than the best fitness value found for the particle so far,
then revise pbest.

iii. Determine the location of the particle with the highest fitness and revise
gbest if necessary.

iv. For each particle, calculate its velocity according to equation 1.
v. Update the location of each particle.
vi. Repeat steps ii - v until stopping criteria are met.

The update algorithm for the velocity, v, of each dimension, i, of a vector is:

v‘
i = (w ∗ vi) + (c1 ∗ R1 ∗ (pbest − pi)) + (c2 ∗ R2 ∗ (gbest − pi)) (1)



Grammatical Swarm 165

where,
w = wmax − ((wmax − wmin)/itermax) ∗ iter (2)

c1 = 1.0 is the weight associated with the personal best dimension value, c2 = 1.0
the weight associated with the global best dimension value, R1 and R2 are a
random real number between 0 and 1, pbest is the vector’s best dimension value to
date, pi is the vector’s current dimension value, gbest is the best dimension value
globally, wmax = 0.9, wmin = 0.4, itermax is the total number of iterations in
the simulation, iter is the current iteration value, and vmax places bounds on
the magnitude of the updated velocity value.
Once the velocity update for particle i is determined, its position is updated and
pbest is updated if necessary.

xi(t + 1) = xi(t) + vi(t + 1) (3)

After all particles have been updated, a check is made to determine whether
gbest needs to be updated.

ŷ ∈ (y0, y1, ..., yn)|f(ŷ) = max (f(y0), f(y1), ..., f(yn)) (4)

3 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm that can evolve com-
puter programs in any language [4,5,6,7,8], and can be considered a form of
grammar-based genetic programming. Rather than representing the programs
as parse trees, as in GP [9,10,11,12,13], a linear genome representation is used.
A genotype-phenotype mapping is employed such that each individual’s variable
length binary string, contains in its codons (groups of 8 bits) the information to
select production rules from a Backus Naur Form (BNF) grammar. The grammar
allows the generation of programs in an arbitrary language that are guaranteed
to be syntactically correct, and as such it is used as a generative grammar, as
opposed to the classical use of grammars in compilers to check syntactic correc-
tness of sentences. The user can tailor the grammar to produce solutions that
are purely syntactically constrained, or they may incorporate domain knowledge
by biasing the grammar to produce very specific forms of sentences.
BNF is a notation that represents a language in the form of production rules.
It is comprised of a set of non-terminals that can be mapped to elements of the
set of terminals (the primitive symbols that can be used to construct the output
program or sentence(s)), according to the production rules. A simple example
BNF grammar is given below, where <expr> is the start symbol from which all
programs are generated. These productions state that <expr> can be replaced
with either one of <expr><op><expr> or <var>. An <op> can become either +,
-, or *, and a <var> can become either x, or y.

<expr> ::= <expr><op><expr> (0)
| <var> (1)

<op> ::= + (0)
| - (1)
| * (2)



166 M. O’Neill and A. Brabazon

<var> ::= x (0)
| y (1)

The grammar is used in a developmental process to construct a program by
applying production rules, selected by the genome, beginning from the start
symbol of the grammar. In order to select a production rule in GE, the next
codon value on the genome is read, interpreted, and placed in the following
formula:

Rule = Codon V alue % Num. Rules

where % represents the modulus operator.

220 20253101203220240 102203 55 202221

241 133 30 204 140 39 202 203 10274

Fig. 1. An example GE individuals’ genome represented as integers for ease of reading.

Given the example individuals’ genome (where each 8-bit codon is represented as
an integer for ease of reading) in Fig.1, the first codon integer value is 220, and
given that we have 2 rules to select from for <expr> as in the above example, we
get 220 % 2 = 0. <expr> will therefore be replaced with <expr><op><expr>.
Beginning from the the left hand side of the genome, codon integer values are
generated and used to select appropriate rules for the left-most non-terminal
in the developing program from the BNF grammar, until one of the following
situations arise: (a) A complete program is generated. This occurs when all the
non-terminals in the expression being mapped are transformed into elements
from the terminal set of the BNF grammar. (b) The end of the genome is reached,
in which case the wrapping operator is invoked. This results in the return of the
genome reading frame to the left hand side of the genome once again. The
reading of codons will then continue unless an upper threshold representing
the maximum number of wrapping events has occurred during this individuals
mapping process. (c) In the event that a threshold on the number of wrapping
events has occurred and the individual is still incompletely mapped, the mapping
process is halted, and the individual assigned the lowest possible fitness value.
Returning to the example individual, the left-most <expr> in <expr><op><expr>
is mapped by reading the next codon integer value 240 and used in 240 % 2 =
0 to become another <expr><op><expr>. The developing program now looks
like <expr><op><expr><op><expr>. Continuing to read subsequent codons and
always mapping the left-most non-terminal the individual finally generates the
expression y*x-x-x+x, leaving a number of unused codons at the end of the
individual, which are deemed to be introns and simply ignored. Fig.2 draws an
analogy between GE’s mapping process and the molecular biological processes
of transcription and translation. A full description of GE can be found in [4].



Grammatical Swarm 167

Fig. 2. A comparison between Grammatical Evolution and the molecular biological
processes of transcription and translation. The binary string of GE is analogous to
the double helix of DNA, each guiding the formation of the phenotype. In the case of
GE, this occurs via the application of production rules to generate the terminals of the
compilable program. In the biological case by directing the formation of the phenotypic
protein by determining the order and type of protein subcomponents (amino acids) that
are joined together.

4 Grammatical Swarm

Grammatical Swarm (GS) adopts a Particle Swarm learning algorithm coup-
led to a Grammatical Evolution (GE) genotype-phenotype mapping to generate
programs in an arbitrary language. The update equations for swarm algorithm
are as described earlier, with additional constraints placed on the velocity and
dimension values, such that velocities are bound to VMAX=±255, and each di-
mension is bound to the range 0 to 255. Note that this is a continuous swarm
algorithm with real-valued particle vectors. The standard GE mapping function
is adopted with the real-values in the particle vectors being rounded up or down
to the nearest integer value, for the mapping process. In the current implemen-
tation of GS, fixed-length vectors are adopted within which it is possible for
a variable number of elements to be required during the program construction
genotype-phenotype mapping process. A vector’s values may be used more than
once if the wrapping operator is used, and in the opposite case it is possible
that not all elements will be used during the mapping process if a complete pro-
gram comprised only of terminal symbols is generated before reaching the end
of the vector. In this latter case, the extra element values are simply ignored and
considered introns that may be switched on in subsequent iterations.



168 M. O’Neill and A. Brabazon

5 Experiments and Results

A diverse selection of benchmark programs from the literature on evolutionary
automatic programming are tackled using Grammatical Swarm to demonstrate
proof of concept for the GS methodology. The parameters adopted across the
following experiments are c1 = 1.0, c2 = 1.0, wmax = 0.9, wmin = 0.4, CMIN
= 0 (minimum value a coordinate may take), CMAX = 255 (maximum value
a coordinate may take), and VMAX = CMAX (i.e., velocities are bound to
the range +VMAX to -VMAX). In addition, a swarm size of 30 running for
1000 iterations is used, where each particle is represented by a vector with 100
elements.
The same problems are also tackled with Grammatical Evolution in order to
get some indication of how well Grammatical Swarm is performing at program
generation in relation to the more traditional variable-length Genetic Algorithm-
driven search engine of standard GE. In an attempt to achieve a relatively fair
comparison of results given the differences between the search engines of Gram-
matical Swarm and Grammatical Evolution, we have restricted each algorithm
in the number of individuals they process, and using typical population sizes
from the literature adopted for each method. Grammatical Swarm running for
1000 iterations with a swarm size of 30 processes 30,000 individuals, therefore, a
standard population size of 500 running for 60 generations is adopted for Gram-
matical Evolution. The remaining parameters for Grammatical Evolution are
roulette selection, steady state replacement, one-point crossover with probabi-
lity of 0.9, and a bit mutation with probability of 0.01.

5.1 Santa Fe Ant Trail

The Santa Fe ant trail is a standard problem in the area of GP and can be
considered a deceptive planning problem with many local and global optima [14].
The objective is to find a computer program to control an artificial ant so that it
can find all 89 pieces of food located on a non-continuous trail within a specified
number of time steps, the trail being located on a 32 by 32 toroidal grid. The ant
can only turn left, right, move one square forward, and may also look ahead one
square in the direction it is facing to determine if that square contains a piece
of food. All actions, with the exception of looking ahead for food, take one time
step to execute. The ant starts in the top left-hand corner of the grid facing the
first piece of food on the trail. The grammar used in this problem is different to
the ones used later for symbolic regression and the multiplexer problem in that
we wish to produce a multi-line function in this case, as opposed to a single line
expression. The grammar for the Santa Fe ant trail problem is given below.

<code> ::= <line> | <code> <line>
<line> ::= <condition> | <op>
<condition> ::= if(food_ahead()) { <line> } else { <line> }
<op> ::= left(); | right(); | move();

A plot of the mean best fitness and cumulative frequency of success for 30 runs
can be seen in Fig.3. As can be seen, convergence towards the best fitness occurs,
and a number of runs successfully obtain the correct solution.



Grammatical Swarm 169

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  100  200  300  400  500  600  700  800  900  1000

M
ea

n 
F

itn
es

s 
(3

0 
R

un
s)

Generation(GE) / Iteration(GS)

Grammatical Swarm - Santa Fe Ant Trail

GS - Best
GS - Average

GE - Best
GE - Average

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  100  200  300  400  500  600  700  800  900  1000

C
um

ul
at

iv
e 

F
re

qu
en

cy
 o

f S
uc

ce
ss

 (
30

 R
un

s)

Generation(GE) / Iteration(GS)

Grammatical Swarm - Santa Fe Ant Trail

GS
GE

Fig. 3. Plot of the mean fitness on the Santa Fe Ant Trail problem instance (left),
and the cumulative frequency of success (right).

5.2 Quartic Symbolic Regression

The target function is f(a) = a + a2 + a3 + a4, and 100 randomly generated
input-output vectors are created for each call to the target function, with values
for the input variable drawn from the range [0,1]. The fitness for this problem
is given by the reciprocal of the sum, taken over the 100 fitness cases, of the
absolute error between the evolved and target functions. The grammar adopted
for this problem is as follows:

<expr> ::= <expr> <op> <expr> | <var>
<op> ::= + | - | * | /
<var> ::= a

A plot of the cumulative frequency of success and the mean best fitness over 30
runs can be seen in Fig.4. As can be seen, a number of runs successfully find
the correct solution to the problem, with convergence towards the best fitness
occurring on average.

5.3 3 Multiplexer

An instance of a multiplexer problem is tackled in order to further verify that it
is possible to generate programs using Grammatical Swarm. The aim with this



170 M. O’Neill and A. Brabazon

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  100  200  300  400  500  600  700  800  900  1000

M
ea

n 
F

itn
es

s 
(3

0 
R

un
s)

Generation(GE) / Iteration(GS)

Grammatical Swarm - Quartic Symbolic Regression

GS - Best
GS - Average

GE - Best
GE - Average

 0

 5

 10

 15

 20

 25

 0  100  200  300  400  500  600  700  800  900  1000

C
um

ul
at

iv
e 

F
re

qu
en

cy
 o

f S
uc

ce
ss

 (
30

 R
un

s)

Generation(GE) / Iteration(GS)

Grammatical Swarm - Quartic Symbolic Regression

GS
GE

Fig. 4. Plot of the mean fitness on the quartic symbolic regression problem instance
(left), and the cumulative frequency of success (right).

problem is to discover a boolean expression that behaves as a 3 Multiplexer.
There are 8 fitness cases for this instance, representing all possible input-output
pairs. Fitness is the number of input cases for which the evolved expression
returns the correct output. The grammar adopted for this problem is as follows:

<mult> ::= guess = <bexpr> ;
<bexpr> ::= ( <bexpr> <bilop> <bexpr> )

| <ulop> ( <bexpr> )
| <input>

<bilop> ::= and | or
<ulop> ::= not
<input> ::= input0 | input1 | input2

A plot of the mean best fitness over 30 runs can be seen in Fig.5. As can be seen,
convergence towards the best fitness occurs, and a number of runs successfully
evolve correct solutions.

5.4 Mastermind

In this problem the code breaker attempts to guess the correct combination
of colored pins in a solution. When an evolved solution to this problem (i.e. a
combination of pins) is to be evaluated, it receives one point for each pin that



Grammatical Swarm 171

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800  900  1000

M
ea

n 
F

itn
es

s 
(3

0 
R

un
s)

Generation(GE) / Iteration(GS)

Grammatical Swarm - 3 Multiplexer

GS - Best
GS - Average

GE - Best
GE - Average

 0

 5

 10

 15

 20

 25

 0  100  200  300  400  500  600  700  800  900  1000

C
um

ul
at

iv
e 

F
re

qu
en

cy
 o

f S
uc

ce
ss

 (
30

 R
un

s)

Generation(GE) / Iteration(GS)

Grammatical Swarm - 3 Multiplexer

GS
GE

Fig. 5. Plot of the mean fitness on the 3 multiplexer problem instance (left), and the
cumulative frequency of success (right).

has the correct color, regardless of its position. If all pins are in the correct order
than an additional point is awarded to that solution. This means that ordering
information is only presented when the correct order has been found for the
whole string of pins.
A solution, therefore, is in a local optimum if it has all the correct color, but in
the wrong positions. The difficulty of this problem is controlled by the number
of pins and the number of colors in the target combination. The instance tackled
here uses 4 colors and 8 pins with the following values 3 2 1 3 1 3 2 0.
Results are provided in Fig. 6 and the grammar adopted is as follows.

<pin> ::= <pin> <pin> | 0 | 1 | 2 | 3

6 Discussion

Table 1 provides a summary and comparison of the performance of Grammati-
cal Swarm and Grammatical Evolution on each of the problem domains tackled.
In two out of the four problems Grammatical Evolution outperforms Gramma-
tical Swarm, Grammatical Swarm outperforms Grammatical Evolution on one
problem instance, and there is a tie between the methods on the Mastermind
problem. The key finding is that the results demonstrate proof of concept that
Grammatical Swarm can successfully generate solutions to problems of interest.



172 M. O’Neill and A. Brabazon

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0  100  200  300  400  500  600  700  800  900  1000

M
ea

n 
F

itn
es

s 
(3

0 
R

un
s)

Generation(GE) / Iteration(GS)

Grammatical Swarm - Mastermind (4 colours, 8 pins)

GS - Best
GS - Average

GE - Best
GE - Average

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  100  200  300  400  500  600  700  800  900  1000

C
um

ul
at

iv
e 

F
re

qu
en

cy
 o

f S
uc

ce
ss

 (
30

 R
un

s)

Generation(GE) / Iteration(GS)

Grammatical Swarm - Mastermind (4 colours, 8 pins)

GS
GE

Fig. 6. Plot of the mean best and mean average fitness (left) and the cumulative
frequency of success (right) on the Mastermind problem instance using 8 pins and 4
colors. Fitness is defined as the points score of a solution divided by the maximum
possible points score.

In this initial study, we have not attempted parameter optimization for either
algorithm, but results and observations of the particle swarm engine suggests
that swarm diversity is open to improvement. We note that a number of stra-
tegies have been suggested in the swarm literature to improve diversity [15],
and we suspect that a significant improvement in Grammatical Swarms’ perfor-
mance can be obtained with the adoption of these measures. Given the relative
simplicity of the Swarm algorithm, the small population sizes involved, and the
complete absence of a crossover operator synonymous with program evolution
in GP, it is impressive that solutions to each of the benchmark problems have
been obtained.
When analyzing the results presented one has to consider the fact that the Gram-
matical Evolution representation is variable-length with individuals’ lengths re-
stricted only by the machines physical storage limitations. In the current imple-
mentation of Grammatical Swarm fixed-length vectors are adopted in which a
variable number of dimensions can be used, however, vectors have a hard length
constraint of 100 elements. We intend to implement a variable-length version of
Grammatical Swarm that will allow the number of dimensions of a particle to
increase and decrease over simulation time to overcome this current limitation.



Grammatical Swarm 173

Table 1. A comparison of the results obtained for Grammatical Swarm and Gramma-
tical Evolution across all the problems analyzed.

Mean Best Mean Average Successful
Fitness (Std.Dev.) Fitness (Std.Dev.) Runs

Santa Fe ant
GS 73.3 (17.6) 33.6 (3.32) 11
GE 80.4 (14.4) 44.3 (5.7) 17

Multiplexer
GS 0.97 (0.05) 0.88 (0.01) 23
GE 0.94 (0.06) 0.88 (0.02) 15

Symbolic Regression
GS 0.29 (0.35) 0.07 (0.02) 5
GE 0.83 (0.33) 0.26 (0.26) 24

Mastermind
GS 0.9 (0.03) 0.88 (0.013) 3
GE 0.9 (0.03) 0.89 (0.001) 3

7 Conclusions and Future Work

This study demonstrates the feasibility of the generation of computer programs
using Grammatical Swarm over four different problem domains. As such a new
form of automatic programming based on social learning is introduced, which
could be termed Social Programming, or Swarm Programming. While a per-
formance comparison to Grammatical Evolution has shown that Grammatical
Swarm is outperformed on two of the problems analyzed, the ability of Gram-
matical Swarm to generate solutions with such small populations, with a fixed-
length vector representation, an absence of any crossover, no concept of selection
or replacement, and without optimization of the algorithm’s parameters is very
encouraging for future development of the much simpler Grammatical Swarm,
and other potential Social or Swarm Programming variants. Future work will
involve developing a variable-length Particle Swarm algorithm to remove Gram-
matical Swarms length constraint, conducting an investigation into swarm di-
versity, the impact of a continuous encoding over a discrete encoding variant
such as presented in [16], and considering the implications of a social learning
approach to the automatic generation of programs.

References

1. Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999). Swarm Intelligence: From
natural to artificial systems, Oxford: Oxford University Press.

2. Kennedy, J., Eberhart, R. and Shi, Y. (2001). Swarm Intelligence, San Mateo,
California: Morgan Kauffman.

3. Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization, Proc. of the
IEEE International Conference on Neural Networks, pp.1942-1948.

4. O’Neill, M., Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic Pro-
gramming in an Arbitrary Language. Kluwer Academic Publishers.



174 M. O’Neill and A. Brabazon

5. O’Neill, M. (2001). Automatic Programming in an Arbitrary Language: Evolving
Programs in Grammatical Evolution. PhD thesis, University of Limerick, 2001.

6. O’Neill, M., Ryan, C. (2001). Grammatical Evolution, IEEE Trans. Evolutionary
Computation. Vol. 5, No.4, 2001.

7. O’Neill, M., Ryan, C., Keijzer M., Cattolico M. (2003). Crossover in Grammatical
Evolution. Genetic Programming and Evolvable Machines, Vol. 4 No. 1. Kluwer
Academic Publishers, 2003.

8. Ryan, C., Collins, J.J., O’Neill, M. (1998). Grammatical Evolution: Evolving Pro-
grams for an Arbitrary Language. Proc. of the First European Workshop on GP,
83-95, Springer-Verlag.

9. Koza, J.R. (1992). Genetic Programming. MIT Press.
10. Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of Reusable Pro-

grams. MIT Press.
11. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D. (1998). Genetic Program-

ming – An Introduction; On the Automatic Evolution of Computer Programs and
its Applications. Morgan Kaufmann.

12. Koza, J.R., Andre, D., Bennett III, F.H., Keane, M. (1999). Genetic Programming
3: Darwinian Invention and Problem Solving. Morgan Kaufmann.

13. Koza, J.R., Keane, M., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G. (2003). Ge-
netic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer
Academic Publishers.

14. Langdon, W.B., and Poli, R. (1998). Why Ants are Hard. In Genetic Programming
1998: Proc. of the Third Annual Conference, University of Wisconsin, Madison,
Wisconsin, USA, pp. 193-201, Morgan Kaufmann.

15. Silva, A., Neves, A., Costa, E. (2002). An Empirical Comparison of Particle Swarm
and Predator Prey Optimisation. In LNAI 2464, Artificial Intelligence and Cogni-
tive Science, the 13th Irish Conference AICS 2002, pp. 103-110, Limerick, Ireland,
Springer.

16. Kennedy, J., and Eberhart, R. (1997). A discrete binary version of the particle
swarm algorithm. Proc. of the 1997 Conference on Systems, Man, and Cybernetics,
pp. 4104-4109. Piscataway, NJ: IEEE Service Center.


	Introduction
	Particle Swarm Optimization
	Grammatical Evolution
	Grammatical Swarm
	Experiments and Results
	Santa Fe Ant Trail
	Quartic Symbolic Regression
	3 Multiplexer
	Mastermind

	Discussion
	Conclusions and Future Work

