
Extending the Bat Foraging Metaphor for Optimisation
Algorithm Design

Wei Cui
Complex Adaptive Systems Laboratory and School of Business
University College Dublin, Dublin, Ireland
E-mail: wei.cui.c@gmail.com

Anthony Brabazon
Complex Adaptive Systems Laboratory and School of Business
University College Dublin, Dublin, Ireland
E-mail anthony.brabazon@ucd.ie

Alexandros Agapitos
Complex Adaptive Systems Laboratory and School of Computer Science and Informatics
University College Dublin, Dublin, Ireland
E-mail: alexandros.agapitos@ucd.ie

Abstract: A particular feature of most species of bats is that they use echolocation, or ‘active
sensing’, in which pulses of acoustic energy are emitted and the resulting echo is resolved into an
‘image’ of their surrounding environment. This is used to detect objects and to locate food resources
such as flying insects. Previous work has taken inspiration from the process of echolocation
to develop the ‘bat algorithm’ (Yang, 2010) and this has demonstrated good results on a wide
range of optimisation problems. In this paper we build on this work in order to stimulate further
interest in exploration of a bat foraging metaphor as an inspiration for the design of optimisation
algorithms. This study provides a review of some recent relevant literature on bat foraging and
uncovers several aspects of the foraging process which have not been given explicit consideration
in bat algorithm design thus far. We also outline a general framework of foraging behaviour which
distinguishes between the role of ‘perception’, ‘memory’, and the use of the ‘social’ information
available to a foraging bat. We demonstrate how some of these features can be integrated into an
exemplar optimisation algorithm and test the performance of this algorithm on a series of benchmark
problems. The study also provides several ideas for future work.
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1 Introduction

Bats are small mammals and along with birds share the
accolade of being the only vertebrates that are capable of
powered flight (Jones and Teeling, 2006). Over 1,200 species
of bat have been identified, ranging in size from the small
Bumble Bee bat (weighing 2g) to the Indian Flying Fox bat
which weights some 1500g (Arita and Fenton, 2011). Most
species feed on small insects, with other species feeding on a
variety of items including fruit, nectar, and small vertebrates
(including fish).

1.1 Bat Sociality and Foraging

A notable aspect of bat behaviour is that many species of
bat live in colonies and display complex social behaviours
(Dechmann et al., 2010). Some species of bat can live for over
30 years (Fenton, 2013), providing ample time for extensive
individual and social learning to occur.

Sociality is observed in many species of animals and a rich
literature has developed in order to explain this phenomenon.
Advantages of living in groups include, access to socially-
acquirable information about mating partners, the presence or
absence of predators, and information concerning resources
such as shelter or food. There are also additional benefits
in terms of physical protection against predators and, in the
case of bats, thermoregulation which is important for the
maturation of young bats. Sociality can also have costs which
potentially include increased competition for food, or roosts,
attraction of predators, and increased disease transmission
rates.

Given the importance of foraging activities for all animals,
it is reasonable to suggest that many evolutionary adaptations
have occurred because they produced an improvement in
foraging efficiency. Indeed, it is claimed that the benefits
arising from group foraging have been an important driver
of the evolution of sociality in bats (Dechmann et al., 2009;
Kerth and Reckardt, 2003).

1.1.1 Social Foraging and Information

A key aspect of social foraging is the transmission of
information between conspecifics about food finds and
food locations. Although a huge array of specific natural
mechanisms for social communication of information about
food finds exist, these can be broadly classified as arising
from either:

i. signals deliberately produced by an animal, or

ii. cues emitted as a by-product of an animal’s behaviour.

Signals can be defined ‘as stimuli produced by a sender
and monitored by a receiver to the average net benefit of both
parties’, whereas cues are ‘assessable properties that are at
least partly correlated with a condition of interest’ (Bradbury
and Vehrencamp, 2011). In the first case, communication
is intentional, for example, the emission of a ‘food call’ to
deliberately alert other animals to a food find.

In the second case, communication to third parties
occurs unintentionally as a result of the behaviour of an
animal. An example of this is local enhancement effects
(local enhancement can be defined as ‘apparent imitation
resulting from directing an animal’s attention to a particular
object or to a particular part of the environment’ Thorpe
(1963)) as a result of one animal observing another animal
feeding at a food find. Hence, social transmission of
information concerning food or other resources can arise as
an unintentional side-effect of an animal’s behaviour, rather
than being deliberately communicated information.

More generally, social learning, of which social foraging
is a behavioural subset, can be defined as ‘learning that
is influenced by observation of or interaction with another
individual, or its products’ (Rendell et al., 2011). Social
learning is frequently contrasted with asocial learning (e.g.
individual learning arising from trial and error) and is a
potentially cheap way of acquiring valuable information.

1.2 Foraging Algorithms

The foraging literature (which is part of the wider field of
behavioural ecology) indicates that there are four primary
components to the foraging behaviour of animals (Giraldeau
and Caraco, 2000; Stephens and Krebs, 1986), they:

i. have an individual perception capability, the prey-
detection radius of which depends on the acuity of their
senses (vision, touch, smell etc.),

ii. they may have memory of previously successful /
unsuccessful food foraging locations. This is likely
to be particularly useful when food locations are
persistent for a period of time, or where food locations
‘regenerate’ cyclically,

iii. information about food locations may be socially
transmitted between animals, and

iv. there may be a stochastic element to animal movement
when searching for new food resources.

The stochastic element of animal movement whilst foraging
has been modelled in a variety of ways in the foraging
literature including power law distributions such as a Lévy
distribution, whereby most animal movements are short, with
occasional longer journeys (Viswanathan et al., 2011).

The weight given to each item by an animal can vary over
time, and they are typically combined in a foraging strategy
which can be context-sensitive. The precise strategy followed
by an animal may depend on level of resource availability,
level of hunger, degree of ‘risk’ in the immediate environment
and so on.

A significant literature has emerged in natural computing
(Brabazon, O’Neill and McGarraghy, 2015) which draws
inspiration from the foraging behaviours of insects and
animals to design algorithms for optimisation purposes. As
we have an imperfect understanding of the exact interplay
of the above four components in real-world animal foraging
scenarios, most foraging algorithms in the natural computing
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literature emphasise one or a subset of the four components
above. For example, ant colony optimisation algorithms
(Bonabeau et al., 1999; Dorigo, 1992; Dorigo and DiCaro,
1999; Dorigo et al., 1996; Dorigo and Stützle, 2004; Romero
and Robledo, 2013) and honey bee algorithms (Altwaijry and
Menai, 2013; Karaboga and Basturk, 2007; Karaboga and
Akay, 2009; Pham et al., 2006) place strong emphasis on
social learning via recruitment.

Other families of optimisation algorithms such as particle
swarm optimisation (PSO) (Kennedy and Eberhart, 1995;
Kennedy et al., 2001; Samarghandi and Jahantigh, 2011)
embed similar concepts. In the case of PSO, private and social
memory (pbest and gbest) play a key role.

1.3 Bat Algorithm

A recent addition to the family of foraging algorithms
in the natural computing literature is the bat algorithm,
developed by Yang (2010) which draws inspiration from
elements of the foraging processes of bats, specifically
echolocation, in order to design an optimisation algorithm.
The algorithm has produced very competitive results on
both benchmark optimisation problems and across a variety
of applications, encompassing constrained optimisation
(Gandomi et al., 2013; Yang and Gandomi, 2012), multi-
objective optimisation (Bora et al., 2012; Niknam et al., 2013;
Yang, 2011), binary-valued representations (Nakamura et al.,
2012), and clustering (Rui et al., 2012). A detailed review of
applications of the bat algorithm is provided in Yang (2013)
and Fister et al. (2014). Hybridisations of the bat algorithm
are presented in Iztok et al. (2014, 2013).

At a high level, the process of bat foraging has a number
of elements, and bats:

i. can directly detect items within a range of space based
on the echoes to their own calls,

ii. can eavesdrop on echolocation calls from other bats,

iii. may possess a memory as to the location of food
sources, and

iv. can move stochastically.

In the bat algorithm (Yang, 2010), two items are emphasised,
namely a concept of information as to the current best
foraging location in a population of bats, and a local
search step which exploits information in the existing
population. These processes embed some parallel with real-
world bat foraging as they encompass social information
transmission. The algorithm also seeks to maintain diversity
in the population by means of a periodic random solution
generation process.

1.4 Focus of This Study

In this study we seek to build on previous work on the bat
algorithm in order to further stimulate research interest in
exploring bat foraging metaphors as a source of inspiration
for the design of optimisation algorithms. Accordingly, the
primary focus of this paper is to develop a general framework

to guide future research work. To this end we provide a
review of a sample of relevant recent literature on bat foraging
from the field of behavioural ecology. This uncovers several
aspects of the real-world foraging process of bats which have
not been given detailed consideration in bat algorithm design
thus far. Drawing on literature from behavioural ecology we
also we highlight the role of specific information sources
such as ‘perception’, ‘memory’, and ‘social information’
in general foraging processes. We demonstrate how these
features can be integrated into a general framework. Although
the paper is not specifically focussed on developing a ‘better’
optimisation algorithm, we provide an exemplar of how the
framework can be operationalised into a specific instance
of an algorithm. We test this algorithm on a variety of test
functions and find its performance to be promising.

The remainder of this contribution is organised as
follows. Section 2 provides background on bat vocalisations,
concentrating on their potential information content in
a foraging context. Section 3 describes the developed
framework and operationalises the framework to create a
specific instance of a bat algorithm. The experimental design
and results from testing this are presented and discussed in
Section 4 and finally, conclusions and opportunities for future
work are presented in Section 5.

2 Background

Although it was documented as long ago as 1793 by the
Italian scientist Lazzaro Spallanzani that bats could avoid
obstacles whilst flying in the dark, it was only in relatively
recent times that the underlying mechanism of echolocation,
or active biosonar, was identified (Griffin, 1944, 1958).
Virtually all bat species, with the exception of some fruit bats,
use echolocation in which they emit pulses of sound, and use
the reflection (echo) of these pulses from surroundings to help
detect, localise and classify objects, including obstacles and
prey.

In essence, their brains process acoustic information
to form ‘images’ of their surroundings by comparing the
outgoing pulse with the returning echo. An echolocating
animal obtains a snapshot of environmental information
from each sound pulse and therefore, echolocation is a
discrete-time sensory system. The computational complexity
of processing echolocation information is underscored by the
fact that it may involve both a moving source (bat) and target,
and there may be a complex echo pattern arising from the
many differing objects within detection range (Madsen et al.,
2013). Information from echolocation is also integrated with
information captured from other senses which can be acute.
For example, in contrast to popular belief, no species of bat is
blind and many have good vision (Fenton, 2013).

In addition to generating echolocation calls, bats are also
capable of generating ‘social calls’ which they can use for
communication purposes. In this section, we provide some
background on each type of call and highlight how each can
be used to assist a bat in foraging.
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2.1 Why Did Echolocation Evolve?

Unlike day-time foraging animals which can primarily rely
on vision to discover foraging opportunities or visual cues
to obtain information on the foraging success of other
group members (leading to local enhancement, where birds
congregate at feeding sites), noctural hunters such as bats
need to rely on non-visual signals.

It is speculated that echolocation in bats arose as a
result of an evolutionary adaptation to hunt at night rather
than compete for food during the day (Fenton, 2013; Jones
and Teeling, 2006). A number of small nocturnal animals
including rats (Jones, 2005) and cave-dwelling birds also use
simplified versions of echolocation, as do a number of insects
such as termites (Bradbury and Vehrencamp, 2011).

Echolocation is also advantageous in other environments
where vision is less effective and is used by some
marine species including dolphins and whales. The natural
characteristics of water (sound travels 4.5 times faster and
with much less attenuation than in air, Madsen et al. (2013))
mean that sounds can travel a considerable distance and
hence, many marine animals have developed good hearing
even when they cannot echolocate.

2.2 Bat Echolocation Vocalisations

Echolocating bats use a variety of frequencies, depending on
species type, ranging from 8 to more than 200kHz (Fenton,
2013). Most, but not all, echolocating bat calls are ultrasonic
and therefore beyond the range of human hearing. Bats can
produce three canonical types of call, broadband, narrowband
and long constant frequency. The calls can be complex and
multi-harmonic (Jones and Teeling, 2006).

The nature of the echolocation calls produced by bats
varies with some being broadband signals (wide range of
frequencies with bandwidths of up to 100 kHz, typically
of short duration) and others being narrowband signals
(consisting of a narrow range of frequencies, circa 5kHz, and
of relatively long duration) (Arita and Fenton, 2011; Jones,
2005). Narrowband signals are good for ranging distant items
(or prey) and broadband signals are well adapted for the fined-
grained localisation of items. This leads to a phenomenon
whereby as insectivorous bats home in on their ariel prey,
they switch from narrowband to broadband signals, which are
emitted at an increasingly rapid rate as the bat approaches the
prey, resulting in what is known as the ‘feeding buzz’.

The key functions of echolocation pulses are to generate
echoes that permit a bat to negotiate its three dimensional
environment and for many bats, to find food. Echolocation
pulses can be very loud, reaching >120 dB at 10cm in front
of the bat’s head in some cases. Even at such decibel levels,
high frequency signals quickly attenuate in air. For example,
a 12kHz pulse is audible at about 280 metres assuming a
hearing threshold of 20 dB, whereas a 50kHz pulse is audible
at only 35 metres (Jones and Siemers, 2011). As would be
expected, returning echoes are much fainter.

The development of an echolocation capability in bats has
in turn led to an evolutionary arms race, whereby some insect
species have developed an ability to hear these echolocation

pulses and take evasive action in response to them. A study
by Nolen and Roy (1986) demonstrated negative phonotaxis
in a number of species of flying crickets in response to
detection of low intensity ultrasound of frequencies used
by echolocating bats (indicative of bats flying about 10-18
metres from the insect), with this becoming ‘last chance’
avoidance behaviour (a very sudden directional shift) in
response to the detection of high-intensity ultrasound by the
insect (indicative of bats approaching within 1-2 metres).

2.3 Broadcast Information From Echolocation Calls

As bat call echoes (reflections) are strongly attenuated in
air, bats can hear calls emitted by other bats from much
further away than they can detect echoes from their own
calls. Bats approaching feeding individuals or groups, and
eavesdropping on their calls, can therefore increase the active
space of their prey detection range between 10 to 50 times,
depending on species, over that provided by their own
echolocation ability.

Specific examples of the benefits to eavesdropping on
echolocation calls include (Jones, 2008) finding that ‘little
brown bats’, Myotis lucifugus, had an insect detection range
of some 5 metres, whereas they can hear the echolocation
calls of foraging conspecifics at some 50 metres, and
Dechmann et al. (2010) reporting the case of M. molossus
which can detect a small insect at a range of some 2 metres but
can detect calls of conspecifics at some 54 metres under the
same acoustic conditions. Other documented detection ranges
for echolocation calls of other bats run between 20 and 50
metres (Fenton, 2013).

2.4 Summary

It is clear that acoustic calls by bats serve multiple purposes
assisting them in night-time flying and resource hunting.
There is also good evidence that many bat species are capable
of decoding information from both the echolocation and
social calls of other bats in order to assist with foraging or
for other purposes. In the case of echolocation, information
transfer is usually unintentional on the part of the sender and
takes place via eavesdropping. In the case of social calls there
is a greater likelihood that information transfer is intended. In
the next section we outline a general framework which can
integrate various aspects of bat foraging behaviour and then
develop an optimisation algorithm using this framework.

3 Model Development

In the framework developed in this study, the movement of
each bat is governed by the four components of a foraging
behaviour as outlined in Sect. 1.2. In each iteration of the
algorithm, a bat is displaced from its previous position
through the application of a velocity vector:

pi,t = pi,t−1 + vi,t (1)

where pi,t is the position of the ith bat at current iteration,
pi,t−1 is the position of the ith bat at previous iteration, and
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vi,t is its current period velocity. The velocity update is a
composite of four elements namely, prior period velocity, a
social influence mechanism, a memory mechanism, and an
individual perception mechanism. The velocity update for
each bat is therefore described stylistically as:

vi,t = vi,t−1 + Sociali,t +Memoryi,t + Perceptioni,t (2)

or more generally if we allow varying weights w on each
element of the update,

vi,t = w1vi,t−1 + w2Sociali,t + w3Memoryi,t (3)
+ w4Perceptioni,t

In all the experiments of this study, Equation 2 is used
for calculating the velocity updates (i.e. we assume that all
coefficients are set to one). Hence, in essence, Equation 2 is
the ‘foraging strategy’ for bat i, as it provides the decision
rule of the bat concerning its changes of location. The next
subsection explains the operationalisation of each of the
components of the update.

3.1 Prior Period Velocity

The inclusion of a prior period velocity can be considered
as a proxy for momentum or inertia. This term is motivated
by empirical evidence from the movement ecology literature
which indicates that organisms move with a ‘directional
persistence’ (Viswanathan et al., 2011). In other words,
organisms are more inclined to continue in their current
direction of travel than to reorientate themselves randomly.

3.2 Social Influence

The social influence simulating eavesdropping of the
echolocation calls of other bats, for the ith bat is determined
by the following vector:

Sociali = pj − pi , j 6= i (4)

where pj is the position of the bat j that is currently foraging
at the best location within the hearing range of the the ith bat,
and pi is the current position of the ith bat. If no other bat is
currently within the hearing range of bat i, this term is set to
zero.

3.3 Memory Influence

The influence of memory on the movement of the ith bat is
given by the following vector:

Memoryi = pbesti − pi , (5)

where pbesti is the best foraging location found by the ith bat
during its lifetime to date, and pi is the current position of the
ith bat.

3.4 Perception Influence

Individual perception is implemented as follows. At each
update, each bat seeks to detect any prey in its local area,
within an assumed perception region of radius rperception.
While a real-world bat will have a specific arc of hearing
detection depending on the direction which it is facing,
we simulate an individual perception process by employing
random sampling in a hypersphere around the bat on grounds
of generality. The individual perception influence for the ith

bat is determined by:

Perceptioni = si − pi , (6)

where pi is the current position of the ith bat, si is the
position of the sampled point (0 <| si − pi |≤ rperception),
and rperception is the radius of the assumed range within
which the ith bat can sense environmental information. The
bat is motivated to move towards this point if it offers higher
potential than its current location, otherwise this factor is
ignored. The perception region (hearing range) rperception is
given by:

rperception =
R

1.8 D
√
N

(7)

where D is the dimensionality of the benchmark problem,
R is the radius of the search space (i.e. the search space
is a sphere if D=3 and the corresponding R is the radius
of the sphere), and N is the population size. The constant
coefficient is an adjustable parameter. Hence, rperception is
scaled appropriately as the benchmark problem is altered.

Pseudocode for the algorithm is provided in Algorithm
1. The framework could be operationalised in a multitude of
ways, and the outlined algorithm represents one member of a
large family of possible algorithms which would be consistent
with this framework. On grounds of conciseness, for the rest
of this paper we refer to the specific algorithm developed as
the Extended Bat Algorithm or ‘EBA’.

3.5 Comparison of Extended Bat Algorithm with
Other Optimisation Heuristics

At a surface level the EBA developed above bears similarities
with some other optimisation heuristics (here we consider
PSO and the GA) and it is useful to examine its workings
in order to clarify what features it shares with existing
algorithms and what features are distinct.

To provide a framework for this comparison we employ
the four elements of a foraging behaviour described in Sect.
1.2 above. Table 1 provides a synopsis of how the four
elements can be mapped to each of the algorithms considered.
While PSO and the GA are not typically considered as
foraging algorithms, they are included in this table for
discussion purposes.

3.5.1 Perception

In PSO and the GA, the particles / genotypes do not have
an explicit perception mechanism for sampling (perceiving)
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Algorithm 1: Bat Optimisation Algorithm

Randomly initialise the location (pi) and current velocity (ti) of each of the n bats (i : 1 → n);
Calculate the fitness of the current foraging location of each bat and store each of these in pbesti , being the best position found so far by each bat;
Store location of best overall fitness across n bats in best;
repeat

for all bats in turn do
Make a perception in the hypersphere of radius rperception around the bat’s current location;
For all bats within hearing range of bat i (if any), determine which one is at the best location;
Update velocity of bat i using eq. 2;
Update position of bat i using eq. 1;
Evaluate the fitness of that location and update pbesti if necessary;

end
Update best if necessary;

until terminating condition;

Table 1 Mapping of four foraging behaviours to the EBA, PSO, and GA algorithms

Foraging Behaviour EBA PSO GA

Individual Perception of Environment " # #

Personal Memory " " #

Social Transmission of Information " " "

Stochastic Search Component " " "

the quality of locations in the local environment as they
traverse it. They only assess the worth of a single location
in each iteration, in essence obtaining feedback information.
In contrast, a simple perception mechanism is embedded in
the EBA whereby a bat assesses its immediate surroundings
(within its hearing range) and this information influences its
‘move’ decision.

3.5.2 Memory

Memory is implemented in distinct ways in each algorithm.
In the canonical PSO algorithm, memory is embedded
via a concept of personal memory in which each particle
‘remembers’ the location of the best solution it has found to
date (pbest). The EBA embeds a similar concept. In contrast,
in the GA, individuals do not explicitly maintain a memory
of the best location found by them to date.

3.5.3 Social Transmission of Information

A core component of the EBA, PSO and the GA is the social
transmission of information. In the canonical version of PSO,
all particles are aware of the best location found to date by
any member of the swarm (gbest) and this information is
blended with personal information and a momentum factor in
order to produce the position update for each particle. Hence,
it can be considered that gbest is ‘publicly broadcast’ to all
members of the swarm and this information always impacts
on the position update of particles. In the GA, the selection
process (for reproduction) is typically biased in favour of the
‘better’ genotypes in the current population and hence, ‘good’
genes are preferentially carried into the next generation. In the
EBA, the social transmission of information takes place via a
simulated hearing mechanism, whereby bats can ascertain the
relative foraging success of conspecifics from eavesdropping

on their echolocation calls. This mechanism is distinct from
that of the PSO, as the social mechanism is distance-based
(based on hearing range), and therefore is not based on a pre-
defined topology of linked particles such as gbest or lbest.

3.5.4 Stochastic Search

All three algorithms embed stochastic search using different
mechanisms. In canonical PSO algorithm, the relative weight
accorded to pbest and gbest is varied stochastically and in
the GA, the selection, crossover and mutation processes are
typically stochastic. In the EBA, the perception mechanism
embeds a stochastic element and the random initialisation of
the location and velocity of the bats also injects a stochastic
element.

3.5.5 Comparison with Canonical Bat Algorithm

The canonical bat algorithm (Yang, 2010) has shown itself to
be a powerful optimisation heuristic, producing good results
across a variety of applications. An interesting element of
the search process in the canonical bat algorithm is that
the velocity update process contains a gbest concept similar
to that of PSO, in that the movement of the bats in each
iteration is partly determined by the location of the current
best foraging location across the entire population of bats.
Thus, gbest is somewhat akin to the location of the ‘loudest’
current feeding buzz in a swarm of bats. Critically, in the
algorithm all bats in the swarm know the location of this
point, and thus in effect, have infinite sensory perception for
echolocation calls across the search space.

In contrast, in real-world foraging, a bat must be within
hearing range of a call to benefit from eavesdropping,
and therefore, bats can only respond to echolocation calls
and feeding buzzes which are local to them. Apart from
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eavesdropping, bats have a personal sensory perception
region based on echoes to their own calls. The detection (or
not) of prey within this area will likely influence a real-world
bat’s response to hearing a feeding buzz from further away.

Comparing our proposed framework with the canonical
bat algorithm developed in Yang (2010), we note two
important differences:

i. The canonical bat algorithm uses the concept of gbest
that represents the the current best location across
the entire population, whereas EBA incorporates the
concept of personal best pbest that represents the best
foraging location found by an individual bat during its
life-time.

ii. In EBA, each simulated bat uses an individual
perception mechanism to stochastically sample its local
neighbourhood. This feature is not present in the
canonical bat algorithm.

4 Results and Discussion

In this section we describe the experiments undertaken and
present the results from these experiments.

4.1 Benchmark Functions

The algorithm outlined above was tested using a dozen
optimisation benchmark functions (Table 2), at three levels
of dimensionality (20, 40 and 60), giving a total of 36
experiments. The first five functions are unimodal and the
remaining seven functions are multimodal. In foraging terms,
the benchmarks can be considered as representing resource
environments with differing degrees of resource ‘patchiness’.

An interesting aspect of the functions is that the global
optima are shifted or rotated (shift is given by the parameter
o, and the parameter M represents an orthogonal matrix
which is used to rotate the function). The net effect of
applying these transformations is to move the global optimum
away from the origin in each case, due to the known issues
with using standard benchmark functions which have their
optimum at the origin (Liang et al., 2005). Known problems
in conventional benchmark functions which can sometimes
be exploited by algorithms to produce an upward bias in
reported performance, include:

• many popular benchmark functions are symmetric, and
hence have the same optimal parameter values for all
dimensions (for example, a vector of zeros); and

• the global optimum may lie at the centre of the
search space (this can produce problems if search
agents are initialised randomly along the range of each
dimension).

Hence, considering the conventional sphere function as an
example,

f(x) =

D∑
i=1

x2
i

the shifted sphere function is given by:

f(x) =

D∑
i=1

(xi − oi)
2

and the shifted rotated sphere function is given by:

f(x) =

D∑
i=1

[(xi − oi) ∗M ]2

where o is the shifted global optimum and M is a linear
transformation matrix.

The aim in all the experiments is to find the vector of
values which minimise the value of the test functions.

4.2 Overview of Experiments

In the experiments we undertake an initial assessment of the
performance of the EBA on the test problems. We benchmark
these results against those of the genetic algorithm (GA), and
the canonical version of the PSO algorithm (Kennedy and
Eberhart, 1995; Kennedy et al., 2001).

We employ the GA as a benchmark on the grounds that
it is a well-known, widely-used, optimisation algorithm. In
the experiments we have kept crossover and mutation rates
at 0.70 and 0.01 respectively. Our rationale for selecting the
PSO algorithm is that, in addition to being a widely-used
heuristic for optimisation, it bears some similarity to the EBA
in that it explicitly incorporates a concept of social and private
information and blends this information in the search process.
In our implementation we use the canonical version of the
PSO algorithm, with the following update steps:

vi(t) = ωvi(t− 1) + c1rand(0, 1)(pbest(t− 1) (8)
−xi(t− 1)) + c2rand(0, 1)(gbest(t− 1)− xi(t− 1))

xi(t) = xi(t− 1) + vi(t) (9)

where xi(t) and vi(t) are the position and velocity of particle
i at time t, ω is the inertia weight (initially set to 1),
rand(0, 1) is a random number generator which generates a
number in the interval [0, 1] and c1 and c2 are set to 2.

Of course, many variants of the GA and PSO algorithm
exist in the literature and could have been chosen for
implementation in our study. The focus of our experiments is
to obtain initial insight into the performance of the developed
EBA and assess whether it appears reasonably competitive
against other heuristics. No claim is made that the canonical
versions of the GA or PSO used in this study produces the
best possible performance from the entire family of these
algorithms on the test problems.

4.3 Experimental Settings

The experimental parameters are shown in Table 3. In each
experiment, 30 bats in the case of the proposed bat algorithm
or 30 particles / genotypes in the case of PSO / GA, are used,
and an equivalent number of fitness evaluations are allowed
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Table 2 Optimisation Problems (Suganthan et al., 2005)

Name Function Search Space Optima

Shifted Sphere (F1) F1(x) =
∑D

i=1 z
2
i − 450 , z = x− o [−100 100]D −450

Shifted Schwefel’s Problem 1.2 (F2) F2(x) =
∑D

i=1(
∑i

j=1 zi)
2 − 450 , z = x− o [−100 100]D −450

Shifted Rotated High Conditional Elliptic (F3) F3(x) =
∑D

i=1(10
6)

i−1
D−1 z2i − 450 , z = (x− o) ∗M [−100 100]D −450

Shifted Schwefel’s Problem 1.2 (F4) F4(x) = (
∑D

i=1 (
∑i

j=1 zi)
2) ∗ (1 + 0.4|N(0, 1)|)− 450 , z = x− o [−100 100]D −450

with Noise in Fitness

Schwefel’s Problem 2.6 (F5) F5(x) = max|Aix− Bi| − 310 , A is a D ∗Dmatrix,Bi = Ai ∗ o [−100 100]D −310

Shifted Rosenbrock (F6) F6(x) =
∑D−1

i=1 100(z2i − zi+1)
2 + (xi − 1)2 + 390 , z = x− o + 1 [−100 100]D 390

Shifted Rotated Griewank (F7) F7(x) =
∑D

i=1
z2i

4000
−

∏D
i=1 cos(

zi√
i
) + 1− 180 , z = (x− o) ∗M [0 600]D −180

Shifted Rotated Ackley (F8) F8(x) = −20 exp(−0.2
√

1
D

∑D
i=1 z

2
i )− exp( 1

D

∑D
i=1 cos(2πzi)) + 20 + e− 140, [−32 32]D −140

z = (x− o) ∗M

Shifted Rastrigin (F9) F9(x) =
∑D

i=1 (z2i − 10 cos(2πzi) + 10)− 330 , z = x− o [−5 5]D −330

Shifted Rotated Rastrigin (F10) F10(x) =
∑D

i=1 (z2i − 10 cos(2πzi) + 10)− 330 , z = (x− o) ∗M [−5 5]D −310

Shifted Rotated Weierstrass (F11) F11(x) =
∑D

i=1 (
∑20

k=0 [0.5k cos(2π3k(zi + 0.5))])−D
∑20

k=0 [0.5k cos(π3k)] + 90 [−0.5 0.5]D 90

z = (x− o) ∗M

Schwefel’s Problem 2.13 (F12) F12(x) =
∑D

i=1 (Ai − Bi(x))
2 − 460 , Ai =

∑D
j=1 (aij sinαj + bij cosαj), [−π π]D −460

Bi(x) =
∑D

j=1 (aij sin xj + bij cos xj), for i = 1, ..., D

to each algorithm. All reported results are averaged over 30
independent experiments for each algorithm and each test
function. For each problem, we test the statistical significance
of all differences in the means using a t-test. The experiments
were undertaken on an PC Intel Core i7 (2.93 GHz) system
with 12 GB RAM.

4.4 Presentation of Results

Figures 1-4 and Tables 4-6 present the results from our
experiments. The Figures provide boxplots of the end-of-
run mean best fitnesses for the EBA, and each comparator
algorithm, averaged over 30 runs, across all twelve test
functions (the Figures for the 20D case are qualitatively
similar and are therefore omitted to save space).

Tables 4-6 summarise the end-of-run results, over 30 runs
for each algorithm, across all three levels of dimensionality,
where ‘Best’ represents the best fitness value obtained from
all 30 runs, and ‘Mean’ represents the average of the best
fitnesses obtained on each run. ‘Std’ represents the standard
deviation of average best fitnesses over all 30 runs.

These tables also present the results from a number of
statistical tests in which the null hypothesis H0 is that there is
no difference in performance between EBA and the relevant
algorithm (PSO - particle swarm optimsation, GA - genetic
algorithm) with which it is being compared. Hence, low p
values (below 0.025) indicate that the null hypothesis of no
difference in the means is rejected as we apply a 95% level.

4.5 Discussion of Results

4.5.1 Effectiveness of EBA

Initially we overview Figures 1-4 to get an idea of the general
trends in the results. From the end-of-run boxplots (Figures 1-
4) we can observe that in terms of ‘Best’ and ‘Mean’ the EBA,
across all test functions and all three levels of dimensionality,

generally outperforms the GA, as well as performing very
competitively against PSO.

Looking at the detail in Tables 4-6, it is noticeable that
as the dimensionality of the search space increases from
20 to 60, the general ordering of the performance of the
algorithms remains similar, although as would be expected,
the absolute performance of each algorithm tends to decrease
as the problems become more difficult.

Initially, we consider the results for ‘Best’ performance
for each algorithm on the test functions. In the case of GA,
the ‘Best’ result from EBA exceeds that produced by GA
in twelve out of twelve cases on each of the three levels of
dimensionality (20D, 40D and 60D). Finally, in the case of
PSO, the ‘Best’ result from EBA exceeds that produced by
PSO in ten out of twelve cases (20D), twelve out of twelve
cases (40D), and ten out twelve cases (60D). Hence, in terms
of ‘Best’ performance, the EBA performs very competitively
against all three comparators outperforming them in virtually
all instances.

Next, we consider ‘Mean’ performance (averaged over
all 30 runs) for each algorithm on the test functions. In the
comparison with the results from GA, mean performance of
the EBA exceeds that of GA in all cases at all three levels of
dimensionality. In all cases, the difference in performance is
statistically significant. Hence, we can conclude that the EBA
outperforms GA on the tested problems. Finally, examining
the results from PSO we note that ‘Mean’ performance of the
EBA exceeds that of PSO in ten of twelve cases (20D), ten
of twelve cases (40D), and six of twelve cases (60D). Hence,
the results of EBA are competitive against those of GA and
PSO, although there is some indication that the performance
of EBA relative to PSO declines as the dimensionality of the
problem increases.
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4.5.2 Convergence and Stability of EBA

The boxplots (Figures 1-4) indicate that, in general, across
the twelve test functions at all three levels of dimensionality,
the end-of-run results for the EBA algorithm show quite good
convergence. This suggests that the results are robust to the
(random) choice of initial position and velocity for each bat.

Comparing the standard deviation (SD) of the ‘Mean’
results from EBA against that of GA, the SD of the results
from the EBA are lower than those of the GA across all twelve
test functions at all three levels of dimensionality. Finally,
considering PSO, the SD of the results from EBA is lower
than that produced by PSO on ten of twelve cases (20D),
four of twelve cases (40D), and six of twelve cases (60D)
respectively. Hence, we can conclude that EBA results for
‘Mean’ show greater convergence than those produced GA,
and similar levels of convergence to those of PSO.

Table 3 Parameter Settings for Experiments

Parameters Values

Runs 30
Size of Population N = 30

Dimension of Problem D = 20, 40, 60

Hearing Range rperception = R

1.8
D√
N

5 Conclusions

A significant stream of literature which draws inspiration
from the foraging activities of various organisms to design
optimisation algorithms has emerged over the past decade.
As with many natural computing paradigms, these algorithms
are populational in nature. A key component of many of
them is a social communication mechanism which transfers
information about good locations on the search landscape
between members of the population. As discussed in this
paper, social communication is not always intentional and
may occur as a by-product of an animal’s behaviours.

In this paper we contribute to the literature on bat
algorithm design by reviewing recent literature from
behavioural ecology on bat foraging. We uncover several
aspects of the real-world foraging process of bats which have
not been given explicit consideration in bat algorithm design
thus far. We highlight the role of specific information sources
such as ‘perception’, ‘memory’, and ‘social information’,
demonstrate how these features can be integrated into a
general framework, and provide an exemplar of how this can
be operationalised into a specific instance of an optimisation
algorithm.

The general framework developed in this paper for
conceptualising the foraging process of bats opens up
several ideas for future work. An interesting follow-on study
would be to investigate the importance of each element
of the framework in order to determine which (or which
combinations) are most important in producing effective

search behaviour. Of course, as with any empirical study,
there is also an opportunity to investigate the performance
of the algorithm(s) on additional benchmark functions and
across a variety of parameter settings. In addition to the
utility of such work for optimisation algorithm design,
such simulation studies could potentially help us to better
understand the real-world bat foraging process.

Other aspects of bat foraging behaviour could also be
usefully investigated for their inclusion into an optimisation
algorithm. As discussed in Section 2.3, the information
content from hearing a feeding buzz is likely to be substantial
as the greater the density of prey, and feeding bats, the louder
the feeding buzz will be from that area. Plausibly, a bat will be
more influenced by a heavy concentration (density) of feeding
buzzes coming from a small area than a solitary feeding buzz
coming from elsewhere.

In this study we have assumed equal weighting on each
update component. More realistically, a bat will use a tacit
decision rule or ‘strategy’ to process the multiple pieces of
information, and may apply time-varying weights to each. For
example, a bat will plausibly prioritise personal detection of
a nearby food source rather than a further away feeding buzz
as the energy cost of harvesting each resource will differ.

Apart from the processes of echolocation, we have
commented on the role of social calls amongst bats
concerning food resources. These calls can occur at a feeding
site, providing ‘real-time’ information on food resources, or
at a roost site (Wilkinson, 1992). Such information transfer
at roosts bears parallel to the colony-based information
transfer of other central place foragers such as honey
bees, and the mechanisms of this process could inspire the
design of an optimisation algorithm. Roost-based, or off-
line, learning of central place foragers is more likely to be
useful in communicating information about static resource
locations such as fruiting trees for fruigivore bats. In contrast,
information on ephemeral food resources such as a swarm
of insects cannot be shared over repeated foraging sessions,
so information can only be usefully exchanged in real-time
during a foraging flight (Dechmann et al., 2010). Hence,
mechanisms drawing on roost-based learning may be more
useful for static rather than dynamic optimisation problems.
This point reminds us that we need to consider the foraging
context from which we draw inspiration when designing
optimisation algorithms in order to apply the developed
algorithms to appropriate problem settings.

Beyond this paper, Roger’s paradox discussed in Section
1.1.1 provides some useful lessons for the design of foraging-
inspired algorithms. The paradox points to the importance of
a suitable balance between social and asocial learning in a
population. The literature on social learning also emphasises
that most animals employ more than one foraging strategy,
and alter whom they choose to copy, and the balance with
which they rely on social and asocial learning, depending on
their internal state and the context of the current environment
(Hoppitt and Laland, 2013). This suggests that adaptive
algorithms, drawing on a library of known animal foraging
strategies, could be particularly useful for solution finding in
dynamic environments.
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Table 4 Results of Algorithm Comparison (D=20). Best mean performance shown in bold.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

EBA Best 428.2378 639.258 7,701,057.35 677.5516 2,294.19 5,107,635 -175.8823 -119.3033 -253.5862 -257.025 107.9769 242,182.17

Mean 708.0956 1,176.78 13,261,519 1,518.05 2,897.94 15,534,495 -171.6913 -119.1969 -237.0346 -225.8455 111.9955 317,815.42

St.D. 151.7138 230.6098 3,155,706 319.9068 284.8901 4,801,054 1.3055 0.0509 7.4484 10.765 1.1541 31,990.65

vs.
PSO

p−
value

0 0 0 0 0 0 0 0.3442 0 0 0 0.8477

vs.
GA

p−
value

0 0 0 0 0 0 0 0 0 0 0 0

PSO Best 1,179.73 2,955.46 12,924,035 2,280.32 3,925.74 22,459,519 -158.2391 -119.3475 -227.9241 -202.5852 111.4464 238,906.38

Mean 2,521.06 4,110.20 38,321,951 4,145.58 4,983.26 92,221,055 -151.5417 -119.2102 -212.7773 -185.1564 113.4987 316,176.36

St.D. 521.6977 590.4061 13,486,329 859.0715 498.7612 35,685,360 3.6005 0.0573 8.3421 8.2535 0.7758 33,809.97

GA Best 137,517.64 14,881,234 13,788,889,580 16,188,622 41,868.52 97,896,293,156 8,765.69 -118.8864 192.4751 954.4524 121.6998 630,096.40

Mean 153,880.34 18,460,009 18,532,968,075 19,622,626 48,958.38 137,959,084,479 9,044.43 -118.6485 264.5789 1,080.44 126.0775 1,340,545

St.D. 10,906.38 1,667,132 2,290,938,680 1,233,916. 3,335.57 27,700,196,959 218.1268 0.0858 38.602 74.7103 2.2436 440,055.99

Table 5 Results of Algorithm Comparison (D=40). Best mean performance shown in bold.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

EBA Best 3,471.47 11,236.08 78,816,248 20,185.16 7,305.74 3,636,455,680 -145.1716 -119.0575 -91.1317 -63.6309 137.9536 2,544,066

Mean 4,738.39 33,691.64 216,317,530 81,536.45 11,233.66 13,590,346,206 137.9159 -118.9082 -64.0809 -29.1638 143.6124 3,305,079

St.D. 495.7435 21,804.80 114,117,372 28,352.57 3,382.50 3,534,733,328 3.4378 0.0526 12.6786 12.7743 2.1759 331,439.42

vs.
PSO

p−
value

0 0.1939 0.0005 0 0.0002 0 0 0.2041 0 0 0 0.3601

vs.
GA

p−
value

0 0 0 0 0 0 0 0 0 0 0 0

PSO Best 11,391.56 28,190.46 213,100,264 35,568.58 11,556.67 976,554,443 -73.1379 -118.9692 -29.6469 30.3937 142.6781 2,801,153

Mean 13,228.15 39,118.65 301,590,304 51,659.43 13,850.10 1,261,243,631 -34.1505 -118.8933 7.9481 76.7111 146.7097 3,383,275

St.D. 1,047.47 5,993.02 52,968,599.8 9,276.38 1,344.10 160,773,177 18.2761 0.0358 16.7116 18.7017 1.3752 325,168.72

GA Best 318,050.7 137,596,165 21,209,084,646 138,772,667 73,423.38 420,259,817,154 23,205.62 -118.7547 1,041.22 1,914.24 158.5732 3,846,763

Mean 347,608.65 150,140,983 25,051,056,390 160,354,133 83,100.05 526,904,388,789 24,327.48 -118.5514 1,144.44 2,216.18 164.1693 8,261,784

St.D. 14,317.05 6,314,061 3,245,666,865 9,260,832 5,037.62 53,430,189,982 497.6315 0.0708 69.6502 121.4512 3.4326 2,034,001

Table 6 Results of Algorithm Comparison (D=60). Best mean performance shown in bold.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

EBA Best 9,249.13 111,001.98 241,367,102 163,430.68 20,609.90 13,365,083,520 -97.0096 -118.8788 115.513 116.8995 176.8736 8,410,354

Mean 10,396.85 233,848.88 997,910,202 293,978.69 34,553.97 23,361,520,577 -82.024 -118.7818 155.3122 178.7974 181.0621 9,979,340

St.D. 666.2775 3,4674.65 305,125,038 39,604.44 4,753.83 3,563,926,580 6.661 0.0359 22.1426 17.3134 1.615 601,612.46

vs.
PSO

p−
value

0 0 0.0026 0 0 0 0 0.1665 0 0 0.0062 0.3906

vs.
GA

p−
value

0 0 0 0 0 0 0 0 0 0 0 0

PSO Best 23,260.92 123,353.74 547,017,234 167,307.58 21,710.89 2,592,890,999 42.8205 -118.8844 220.2675 307.2836 178.9255 8,673,919

Mean 30,066.11 180,471.67 810,306,210 232,580.62 25,537.50 3,983,088,950 73.3977 -118.7687 264.9804 380.9313 182.2257 9,859,002

St.D. 2,371.23 37,953.84 116,634,978 55,854.28 2,420.37 735,905,424 18.9829 0.0368 20.8808 30.186 1.5572 467,541.26

GA Best 450,361.20 480,671,568 22,732,181,837 503,840,666 83,000.91 643,278,743,103 35,432.39 -118.691 1,800.75 3,568.96 190.6897 15,048,090

Mean 504,136.40 523,277,555 27,489,303,162 562,491,729 90,311.98 771,435,272,901 36,298.92 -118.4938 1,920.94 3,846.33 197.6501 20,261,034

St.D. 16,841.97 22,814,187 2,636,979,477 31,443,478 4,898.29 55,887,093,629 435.6918 0.0718 70.4025 134.4552 4.2618 3,641,388
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