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Abstract. Accurate measurements of Net Ecosystem Exchange of C'O2
between atmosphere and biosphere are required in order to estimate an-
nual carbon budgets. These are typically obtained with Eddy Covari-
ance techniques. Unfortunately, these techniques are often both noisy
and incomplete, due to data loss through equipment failure and rou-
tine maintenance, and require gap-filling techniques in order to provide
accurate annual budgets. In this study, a grammar-based version of Ge-
netic Programming is employed to generate interpolating models for flux
data. The evolved models are robust, and their symbolic nature provides
further understanding of the environmental variables involved.

Keywords: Grammatical evolution, Real-world applications, Symbolic
regression.

1 Introduction

Eddy Covariance (EC) techniques are utilised globally to measure Net Ecosystem
Exchange (NEE), defined as the net flux of Carbon Dioxide (C'Oz) between the
atmosphere and the biosphere [9]. NEE represents the balance between photo-
synthetic carbon uptake and respiratory carbon losses, and is typically measured
over 30 minute intervals, which are then summed to give an annual carbon bud-
get. Both short-term information and annual sums are of particular interest to
scientists, land managers and policy makers. They allow for a comparison of
ecosystem carbon budgets across various land use classes, provide a better un-
derstanding of the physiological driving processes, and facilitate an assessment
of both inter and intra-annual climatic variability [4].

In order to derive the most accurate annual carbon budget, a complete data set
is required; however, average data capture using the Eddy Covariance technique
is often as low as 65% [4], due to data loss through equipment failure and routine
maintenance. Furthermore, a diurnal bias exists in EC data rejection, due to the
limitations of the EC technique at night, when low turbulence conditions occur
[1l6/10).
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To augment such fragmented data sets, gap-filling procedures are required
to provide a more robust annual dataset [4]. Several gap-filling methodologies
are currently employed by the global EC flux community, including linear in-
terpolation, look-up tables, non-linear (semi-empirical) models, artificial neural
networks, and multiple imputation techniques [18[9/4T]. The utilisation of a
particular gap-filling methodology is influenced by the experimental site-specific
conditions, data availability and the particular end use of the EC data [4], how-
ever a particular effort has recently been made within the EC flux community
to standardise gap-filling methodologies in order to allow the inter-comparison
of different ecosystems, bio-climatic zones and long-term data sets [9]. There is
however, a real need to continuously evaluate the accuracy of gap-filling models,
which can be difficult to constrain, due to the multiple factors that influence EC
measurements. For example, the presence of hysteresis loops in measured day-
time NEE data can reduce the ability of semi-empirical light response functions
to accurately model daytime NEE [20].

In the work presented here, a grammar-based Genetic Programming
system was used to generate interpolating models for NEE data. The results
obtained are comparable to the best in the literature [I8], and the evolved
symbolic models are fine-tunable, and also provide an insight into the effect
of different environmental variables. These results highlight once again the real
world applicability of evolutionary computation, and genetic programming in
general.

The next section introduces the evolutionary algorithm used. Section [3] de-
tails the experimental setup, and the results obtained are analysed in Section [l
Finally, Section [bl draws some conclusions and future work directions.

2 Evolutionary Approach

Symbolic Regression is arguably one of the most successful applications of Ge-
netic Programming [I2] (GP). The tree structure of GP individuals lends itself to
good functional representation and manipulation of sub-expressions, providing
solutions that are often very precise, analysable, hand-tunable, and potentially
provable.

For the purpose of evolving an EC flux gap-filling model, Grammatical Evo-
lution (GE) [I7/22] was used. GE is a grammar-based form of GP [14], which
specifies the syntax of solutions in a grammar; this grammar is used to map
genotypically evolved strings to syntactically correct phenotypic solutions.

GE performs on par with GP for symbolic regression purposes [I7], while
its grammar allows for extra control of the syntax of evolved programs, both in
terms of biases [I6l/7] and data-structures used. This allows GE to be applied to a
variety of domains, such as Financial Modelling [3], horse gait optimisation [I5],
wall shear stress analysis in grafted arteries [2], and optimisation of controllers
for video-games [19], to name a few.
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<expr> = + <expr> <expr>
| * <expr> <expr>
| x
| <digit>.<digit>
<digit> =0l t1l21314l516l718109

Fig. 1. Example grammar for generation of prefix mathematical expressions

2.1 Mapping Process

To illustrate the mapping process employed in GE, consider the grammar shown
in Fig. [l composed of two non-terminal symbols (<expr> and <digit>) and
14 terminal symbols (+, *, x, . and 0...9). Given an integer (genotype) string,
such as (1, 7, 4, 8, 6, 5, 9), a program (phenotype) can be constructed,
which respects the syntax specified in the grammar.

This works by using each integer to choose productions from the grammar,
mapping a given start symbol (typically, the first non-terminal symbol appearing
in the grammar) to a sequence of terminal symbols. In this example, the first
integer chooses one of the four productions of the start symbol <expr>, through
the formula 1%4 = 1, i.e. the second production is chosen (as the count starts
from 0), so the mapping string becomes * <expr> <expr>.

The following integer is then used with the leftmost unmapped symbol in the
mapping string, so through the formula 7%4 = 3 the symbol <expr> is replaced
by <digit>.<digit>, so the string becomes * <digit>.<digit> <expr>.

The mapping process continues in this fashion, so in the next step the map-
ping string becomes * 4.<digit> <expr> through the formula 4%10 = 4, and
through 8%10 = 8 it becomes * 4.8 <expr>. Finally, the remaining non-terminal
symbol is mapped with 6%4 = 2, and the final expression becomes * 4.8 x,
which can then be evaluated.

The evolved strings may not have enough values to fully map syntactic valid
programs; several options are available to address this issue, such as reusing the
same integer string (in a process called wrapping [I7]), assigning the individual
the worst possible fitness, or replacing it with a legal individual. In this study,
an unmapped individual is replaced by its originating parent.

3 Experimental Setup

3.1 Quality of Data and Input Variables

The calculation of NEE represents the balance between photosynthetic carbon
assimilation or gross primary productivity (GPP) and net carbon release through
ecosystem respiration (Req,), which can be further sub-divided into autotrophic
(Rq) and heterotrophic (Rpet) components. Daytime NEE data represent the
balance between GPP and soil derived R},e;, while night time NEE data (Reco)
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Fig. 2. Observed NEE flux data for the period 2002-2006. Negative NEE values indicate
diurnal flux exchanges, whereas positive NEE flux typically occurs at night time.

represent the combined R, and Rpe: CO2 efflux from the plant and soil systems
combined. The measurement of NEE in this study was made using the closed
path EC technique, where fluxes of C'O5 were calculated over 30 minute intervals
and the data post-processed and assigned a quality control standard according
to the CarboEurope-IP criteria.

Daytime NEE tends to be controlled by both photosynthetic active radiation
and air temperature, while R.., is largely a temperature-dependant process.
However, even the high quality diurnal flux data show considerable “noise” due
to the multiple factors that influence NEE. Figure [2] shows the recorded NEE
data for the period 2002-2006. As the annual carbon budget is the typically used
unit, and due to annual variations (forest growth and management), each year
is treated independently.

As the data is seasonal by nature, the time of day and day of year are used
as input variables for model evolution. In order to reduce the linear cumulative
numerical weight of these variables (0...23.5 for time, and 0...365 for day),
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Fig. 3. Fuzzy time and day data transformations used for model evolution

Table 1. Experimental configurations

Day & Night Day only Night only
B1 B2 B3 B4 D1 D2 D3 D4 N1 N2 N3 N4

Faay, Ftime, TEMP X X X X X X X X X X X X
PAR X X X X X X X X
sin, cos X X X X X X
TEMP in, TEMP a2, TEMP 449 X X X X X X
PARmin, PARmaz, PARaug X X X X

they were transformed into two fuzzy sets, Fiime and Fyuqy, as seen in previous
studies [18]; Fig. B shows the fuzzy transformations employed.

Additional meteorological measurements, traditionally used to describe eco-
system carbon flux and model NEE, included air temperature (TEMP), Photo-
synthetic Active Radiation (PAR), Relative Humidity (RH) and Precipitation
(P). Some of these can also exhibit noise in their measurement, and full year-
round data is sometimes not available; given the quality of the available data,
TEMP and PAR were chosen as meteorological input variables.

Table [Il shows the configurations tested (B1l...N4). As diurnal and noctur-
nal NEE flux dynamics are quite different, models were evolved for either a
full dataset, or obtained by combination of separately evolved diurnal and noc-
turnal models; daytime and night time NEE data were sub-divided based on
incident PAR, with data assigned to the daytime data class when PAR >
10 u mol m~2s~! [13]. Also, given the somewhat regular nature of the data,
trigonometric functions were tested in half of the configurations. Finally, some
configurations were tested where historical data was used in the function set
(PARin, PARp s and PAR,,¢ as the minimum, maximum and average PAR
data of the last 24 hours, and likewise for TEMP).

3.2 Evolutionary Setup

Grammar design. The grammars used correspond to the function sets detailed
in Tab. [l They are balanced grammars [7], which helps to control the size of
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<e> 1= + <e> <e> | - <e><e> | x <e><e> | [/ <e> <e>
| + <e> <e> | - <e> <e> | * <e> <e> | [/ <e> <e>
| + <e><e> | - <e><e> | *x <e> <e> | [/ <e> <e>
| + <e> <e> | - <e><e> | * <e> <e> | / <e> <e>
| + <e> <e> | - <e> <e> | * <e> <e> | / <e> <e>
| Fday[i] | Fhour[i] | PAR[i] | TEMP[i] | <d><d>"."<d>
| Fday[i] | Fhour[i] | PAR[i] | TEMP[i] | <d><d>"."<d>
| Fday[i] | Fhour[i] | PAR[i] | TEMP[i] | <d><d>"."<d>
| Fday[i] | Fhour[i] | PAR[i] | TEMP[i] | <d><d>"."<d>
<d>::=0 112131415161 7[18129

Fig. 4. Grammar used for setting B1

resulting individuals and thus delaying the onset of bloat; to do so, several equal
productions were inserted, to maintain the biases of transformations [16]. Finally,
the number of non-terminals was reduced, as this has been shown to help improve
the performance of GE [16]. Fig. dl shows the grammar used for setting B1.

To evolve the integer strings used with GE, a variable-length genetic algorithm
was used [8]. The first generation was created using a ramped version of Sensible
Initialisation [21], resulting in a better spread of initial solutions (albeit not
perfect [7]). A “fair” tournament selection was used, where every individual
participates at least in one tournament event. Finally, genetic operators were
applied only to mapping regions of chromosomes.

Table 2l details the evolutionary parameters used. Note that, since the models
evolved for day time and night time are later combined together, the computation
effort of their runs doubles that of the runs where a single model is evolved;
taking this into account, the population size of the latter (B1...B4) is doubled,
resulting in a comparable computation effort per generation.

Table 2. Evolutionary Setup

Population Size 500/1000
Generations 50
Derivation-tree Max Depth (for initialisation) 5
Tail Ratio (for initialisation) 50%
Selection Tournament Size 1%
Elitism (for generational replacement) 10%
Crossover Ratio 50%
Average Mutation Events per Individual 1

3.3 Measuring Performance

Evolved models were compared to available NEE data, and the mean squared
error between predictions and available data was used as a performance measure.
The available NEE data was divided into training and test sets, so as to ascertain
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Table 3. Mean squared error (and standard deviation) on test data

B1 B2 D14+ NI D14+ N2 N2+ DI D2+ N2
2002 27.58 (1.49) 26.70 (7.62) 25.32 (0.76) 25.44 (0.83) 27.28 (2.95) 27.40 (3.01)
2003 22.68 (1.50) 25.48 (1.86) 21.15 (1.14) 21.24 (1.08) 21.64 (0.99) 21.78 (0.98)
2004 16.51 (4.74) 19.43 (1.30) 17.54 (1.59) 17.56 (1.55) 19.23 (2.19) 19.00 (1.93)
2005 12.72 (5.23) 22.13 (14.39) 7.13 (2.10) 7.25 (2.09) 8.65 (2.66) 8.66 (2.76)
2006 33.76 (49.94) 25.23 (5 99) 20.15 (2.84) 20.19 (2.78) 24.85 (3.80) 24.77 (3.91)

how well the evolved models generalise to unseen data. In this study, for every
four available data points, the first three were used for training, with the fourth
used for testing.

4 Results and Analysis

Results using trigonometric functions were on par or worse than the equivalent
setups without these functions, and generally produced more complex expres-
sions, so in accordance with the Occam’s Razor principle, they were discarded
(they are not reported here). Table[§reports the mean squared error on test data,
for all other configurations, averaged over 50 runs. Average minimum error at
end of evolution and standard deviation are reported.

The results obtained match the relative quality of different annual data, as
could be observed in Fig. 2] (steady improvement of data quality over the years,
apart from 2006). Evolving separate daytime and night time models generally
provides better performing models. The use of historical data seems to make no
difference to the results, but the resulting night time models are more compact
on average and were thus preferred. Also note that combined models can be
further enhanced, as models obtained in different runs can be matched.

Figure [B plots the measured NEE flux data for 2005, and the best single (B1)
and combined (D1 + N2) models. The difference in performance, particularly for
positive NEE values (night time data) is substantial. Also note the occurrence
of asymptotes when evolving a single model (Fig. Bl top), suggesting that the
use of interval arithmetic [T1] might be required to remove these. Figure 6l shows
the combined model prediction for April 2005, highlighting both the matching
of measured EC and the interpolation of regions with no data recorded.

Figure [1 plots the average training and testing performance over time, for
the (D1 + N2) configuration. It can be seen that the model does not overfit the
data. Comparison with runs using all the available data for training achieved
similar results, suggesting that the use of a 2-set methodology neither hinders nor
improves the performance of the obtained models, confirming previous results
reported in GP [5] and GE [23].

1 A more typical division, such as an initial large proportion of data for training and
the remaining for testing, is not feasible, given the seasonality of the data, and the
uniqueness nature of each year (different models are evolved for different years).
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Fig. 5. Eddy value predictions of best full data predictor (top) and combined predic-
tions of the best day time and night time models

The best (D1 4+ N2) model is shown in Eq.[Il The model has not been simpli-
fied; it shows a remarkably compact solution, resulting from the bloat delaying
techniques described above, and the relatively short runs (50 generations). Note
that night time data only makes use of temperature, showing that the seasonality
of this variable is sufficient to match the seasonality of the Eddy values. Similarly,
the daytime equation makes no use of Fi;p., showing that daily regularity can
be modelled by PAR and TEM P. Finally, Fig.[§ shows the correlation between
test data and model prediction for this model, including a 1:1 line. The model ex-
hibits a good correlation with measured data, apart from some instances around
values close to zero (a mixture of both noisy data and incorrect predictions).
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Fig. 6. Measured Eddy value vs. best model prediction, for the month of April 2005
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Fig. 7. Training and testing performance for the mean best individual per generation,
for (D1 4+ N2) configuration (averaged across 50 runs)
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5 Conclusions

GP in its many flavours has been applied to a multitude of symbolic regres-
sion problems over the years, with outstanding results. Yet, in most research
fields, standard gap-filling methods such as look-up tables and linear interpola-
tion are still applied as standard. This work presents a collaboration between
evolutionary computation practitioners and environmental biologists, in an ef-
fort to further highlight the applicability of GP to generate gap-filling models
for measured environmental data.

Due to the unique nature of data from different forest sites, proper comparison
with other methods is hard to achieve@; however, the results obtained seem to
be on par with the best in the literature [I§]. Not only that, but the use of
GP has certain advantages. By providing symbolic models, stating the required
input variables, decisions can be made about the required annual measurements,
affecting both budget and work force management.

There are plenty of future work directions. The evolved models can have a
direct impact on forest management and even policy making, and thus contin-
ued efforts to improve their accuracy are ongoing. Another exciting future work
direction involves identifying a maximum size of measured data gaps; this allows
expensive equipment to be used and rotated across different sites, thus bringing
the overall data-gathering costs down. Efforts are ongoing to achieve this.

2 The data presented here has only been analysed with the current method so far.
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