Grammar Bias and Initialisation
in Grammar Based Genetic Programming

Eoin Murphy, Erik Hemberg, Miguel Nicolau,
Michael O’Neill, and Anthony Brabazon

Natural Computing Research and Applications Group,
University College Dublin, Ireland
{eoin.murphy,erik.hemberg,miguel.nicolau,m.oneill,anthony.brabazon}@ucd.ie

Abstract. Preferential language biases which are introduced when
using Tree-Adjoining Grammars in Grammatical Evolution affect the
distribution of generated derivation structures, and as such, present diffi-
culties when designing initialisation methods. Similar initial populations
allow for a fairer comparison between different GP methods. This work
proposes methods for dealing with these biases and examines their effect
on performance over four well known benchmark problems. In addition, a
comparison is performed with a previous study that did not employ sim-
ilar phenotype distributions in their initial populations. It is found that
the use of this form of initialisation has a positive effect on performance.

Keywords: Grammatical evolution, Grammar bias, Initialization.

1 Introduction

It has been shown that the form of a grammar and indeed the language bi-
ases inherent to that grammar can have a large impact on the performance of
grammar-based Genetic Programming (GP) systems |14, |2], such as Grammat-
ical Evolution (GE) [13]. Modification of the grammar, an integral part of the
GE algorithm, can cause the algorithm to behave very differently [2]. This is
due to the ease with which the language biases in the system can change by just
modifying the grammar, effecting how genotypes are mapped into phenotypes.
In a previous study by Murphy et al. [12], GE, which traditionally uses a
Context-Free Grammar (CFG), was extended to make use of Tree-Adjoining
Grammars (TAG) [6], in the form of Tree-Adjunct Grammatical Evolution
(TAGE). A preliminary comparison of the two methods was performed, testing
each method on a number of different problems, with TAGE showing improve-
ments in performance, such as finding more correct solutions, as well as finding
better solutions in fewer generations, than standard GE on those problems [12].
The transformation from CFG to TAGE modifies the existing language bias as
well as introducing new language biases into the GE algorithm. These biases
affect the algorithm’s ability to generate certain derivation structures and phe-
notypes, and hence altering the search space [11]. This can be detrimental to the

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 85196] 2012.
© Springer-Verlag Berlin Heidelberg 2012



86 E. Murphy et al.

generation of common initial populations, an important factor in performing a
fair comparison between any two GP systems.

The aim of this study, therefore, is to examine and address the different types
of language bias which are introduced by using the TAG representation (see
Section [£]in order to better align the initial populations of both setups. Biases
such as the structural biases imposed by the adjunction operation, as well as
those introduced as a result of the grammar transformation, i.e., the loss of
explicit biases imposed by the CFG. The study proposes a novel algorithm for
the elimination of the grammar transformation biases (see Section d3]) and goes
on to perform a comparison between GE and TAGE. The study observes the
effect of these biases on performance and comparing with the results observed
by Murphy et al. [12].

In the following section a brief description of GE is given. Section Bl gives an
overview of TAGE, the transformation from CFG to TAG and concludes with
a sample TAGE derivation. Following this, Section (] examines the problems in-
volved with creating similar initialisation methods for the two different grammar
types. The experimental setup is described in Section Bl with Section [ outlin-
ing the results obtained, as well as providing some discussion on these results.
Section [ concludes the study.

2 Grammatical Evolution

GE is a grammar-based approach to GP, combining aspects of Darwinian nat-
ural selection, genetics and molecular biology with the representational power
of grammar formalisms [13]. The use of a grammar enables GE to define the
legal expressions and structures of an arbitrary language, which in turn allows
the possible generated structures and syntax of solutions to be easily modified,
something that is not trivial for other forms of GP. In addition to this, the sep-
aration of the genotype from phenotype in GE allows genetic operations to be
applied to both, extending the search capabilities of GP. GE is considered to be
one of the most widely applied GP systems today [10].

Representation in GE consists of a grammar and a chromosome (see Fig. [I]).
The genotype-phenotype mapping in GE uses codon values from the chromosome
to select production rules from the grammar. By performing the modulus opera-
tion on these values with the number of possible production choices, productions
are selected from the grammar to expand each non-terminal (NT) symbol. Start-
ing from the start symbol, this process, which continues in a left-right manner
until there are no more NT leaf nodes to expand, or until the end of the chro-
mosome has been reached, constructs a derivation tree. The phenotype can then
be extracted from the leaf nodes of this tree. A sample derivation tree is shown
in Fig. M along with the grammar and chromosome used to construct it.

3 Tree-Adjunct Grammatical Evolution

TAGE, like GE, uses a representation consisting of a grammar and a chromo-
some. However, the type of grammar used in this case is a TAG rather than a



Grammar Bias and Initialisation in Grammar Based Genetic Programming 87

CFG. A TAG is defined by a quintuple (T, N, S, I, A) where T is a finite set of
terminal symbols; N is a finite set of NT symbols: TN N = (J; S is the start
symbol: S € N; I is a finite set of finite trees called initial trees (or « trees); and
A is a finite set of finite trees called auxiliary trees (or [ trees).

The root node of an initial tree is labelled with S and the interior nodes
are labelled with NT symbols. Initial tree’s leaf nodes are labelled with terminal
symbols. Similarly, the interior nodes of auxiliary trees are also labelled with NT
symbols, with their leaf nodes being labelled with terminal symbols. However,
one special leaf node called the foot node is labelled with the same NT symbol
as the root. Foot nodes are marked with * [6].

Initial trees represent the minimal non-recursive structures produced by the
grammar, i.e., they contain no repeated NT symbols. Inversely, auxiliary trees of
type X represent the minimal recursive structures, which allow recursion upon
the NT X [8]. The union of initial trees and auxiliary trees forms the set of
elementary trees, E; where INA=0 and TUA = E.

During derivation, the adjunction composition operation joins elementary
trees together. Adjunction takes an initial or derived tree a, creating a new
derived tree d, by combining a with an auxiliary tree, b. A sub-tree, c is selected
from a. The type of the sub-tree (the symbol at its root) is used to select an
auxiliary tree, b, of the same type. ¢ is removed from a. b is then attached to a
as a sub-tree in place of ¢ and c is attached to b at the position of b’s foot node.
An example of TAG derivation is provided in Section B}

3.1 TAGE Derivation Example

TAGE generates TAGs from the CFGs used by GE. Joshi and Schabes 6] state
that for a “finitely ambiguous CFG which does not generate the empty string,
there is a lexicalised tree-adjunct grammar generating the same language and
tree set as that CFG”. An algorithm was provided by Joshi and Schabes [6] for
generating such a TAG. The TAG produced from Fig. [l is shown in Fig.

Derivation in TAGE is different to GE. Unlike GE derivation trees whose
nodes are labeled by symbols, the nodes of a TAGE derivation tree are labelled
by elementary trees. The edges between those nodes are labelled with the address
of a node in the tree labelling the parent node. It is at this address that the
auxiliary tree labelling the child is to be adjuncted. A derived tree in TAGE is
a tree of symbols, similar to GE’s derivation tree, resulting from the application
of the adjunction operations defined in the TAGE derivation tree.

Given the TAG G, where T = {X, Y, +, -}, N = {<e>,<0>,<v>}, § =<e>
and I and A are shown in Fig. [ derivation using the chromosome from Fig. [l
operates as follows. The first codon value, 12, is read and is used to choose an
initial tree based on the number of trees in I. Using the same mapping function
as GE, 12 mod 2 = 0, the zero-th tree, ayg, is chosen from I. This tree is set as
the root node of t, the derivation tree (as seen in Fig. [3(a)).

Next, a location to perform adjunction must be chosen. The vector N is created
of the adjunctable addresses available within all nodes (trees) contained within
t. An adjunctable address in a tree is the breadth first traversal index of a node



88 E. Murphy et al.

labelled with a NT symbol, of which there is an auxiliary tree of that type and
there is currently no auxiliary tree already adjoined at that index. In this case N
= {ao[0]} (the zeroth node of ayp), so a codon is read and an address is selected
from N, 3 mod 1 = 0 indicating which address to choose, N[0]. Adjunction will
be performed at a[0], or index 0 of tree ag, <e>. An auxiliary tree is now chosen
from A that is of the type T, i.e., the label of its root node is T, where T is the
label of the node where adjunction is being performed. In this case T = <e>.
There are 8 such trees in A, Reading the next codon, 7, 7 mod 8 = 7, therefore
B7 is chosen. This is added to t as a child of the tree being adjoining to, labelling
the edge with the address 0, see Fig. The adjunctable addresses in 57 will
be added to N on the next pass of the algorithm. This process is repeated until
all remaining codons have been read. The resulting derivation and derived trees
at each stage of this process can be seen in Fig.

4 Difficulties with Comparing GP Systems

Performing a fair comparison between different GP systems is difficult to achieve.
As suggested by Hoai et al. [4], it is easy to assume that the benefits observed
when testing a new modification to an algorithm are a direct consequence of the
modification in question [1], whereas in reality this can be a flawed assumption.
Unless the modification is very localised, there can be far reaching indirect effects,
and if these effects influence the starting conditions of the algorithm, performing
a comparison can be difficult. This problem is even more evident when comparing
completely different algorithms.

These difficulties can be seen when comparing standard GP algorithms with
grammar-based versions, as was shown in |4] when comparing GP and TAG3P.
The change in representation makes it difficult to create common initial condi-
tions for both algorithms in order to achieve a good comparison.

Comparing similar algorithms with different representations raises an interest-
ing question: having a common initial population (or at least initial populations
drawn from similar distributions) is good practice and helps ensure a fair com-
parison, but should these similar populations be in the genotypic or phenotypic
spaces? Search is performed in the genotypic space, whereas the fitness land-
scape lies in phenotypic space, and depending on the mapping between the two
there could be a many to one relationship between genotypes and phenotypes.
That is to say, creating initial populations of genotypes for two different repre-
sentations, e.g., GE and TAGE, would likely result in very different populations
of phenotypes. The same can be said for similar populations of phenotypes, the
populations of genotypes could be very different (see Fig. H]).

In Murphy et al. [12], a set genotype length was used; as a counter point, this
study uses an initialisation method which produces similar sets of derivation
(TAG derived) trees, and hence similar sets of phenotypes, for both GE and
TAGE. The following subsections outline and address some of the problems
faced while attempting to achieve this.



Grammar Bias and Initialisation in Grammar Based Genetic Programming 89

Grammar :
<e>:= <ed><o><e> | <v>
<o>:= + | -
v>:=X | Y 1 3 4

[« ] | | [ <= ]
Chromosome: , X
12, 3, 7, 15, 9, 36, 14

Y X

Fig. 1. Sample GE grammar, chromosome and resulting derivation tree (edge labels
indicating the order of expansion). <> denotes a non-terminal symbol.

| <e> | | <e> | <e> <e> <e>
‘ <e>* ‘ ‘ <o> ‘ ‘ <e> H <e>* ‘ ‘ <o> ‘ ‘ <e> ‘ ‘ <e>* ‘ ‘ <o> ‘ ‘ <e> ‘
=1 [==] L ! L
[+ ] [« ] [+ ] [=] R
[x 1 [>]
(a) I:{Oéo, al} (b) A:{BO, 617 /82}

Fig. 2. The initial tree set (I) and a subset of the auxiliary tree set (A) of the TAG
produced from the CFG in Fig.[I]

(a) Initial (b) B7 adjoined to av, (c¢) A1 adjoined to B7, address 1.
tree ap. address 0.

(d) Bs adjoined to 87, address 0.

Fig. 3. The derivation tree (left) and derived tree (right) throughout TAGE derivation.
The shaded areas indicate new content added at each step.



90 E. Murphy et al.

1000

= TAGE
= GE

T T 1
5 10 15

Derivation Tree NT Size Chromosome Length

400 600 800
L L L

200
L

Fig. 4. The distributions of tree size Fig.5. The distributions of genotype
(NT nodes) when initialising to a com- lengths when initialising to common
mon genotype length distribution of derivation tree sizes

4.1 Initialisation and Transformation Bias

While the typical method of initialisation in GP is the Ramped Half and Half
method [7], dividing the population between a minimum and maximum depth
interval with half the trees being grown randomly and the other half being grown
to be full trees, depth is not as important in GE as in GP. In GE, to ensure that
there is a good distribution of phenotypes, the distribution of the number of NT
nodes, or tree size is more important. With that in mind, a ramped tree size
with a max depth initialisation method is employed by this study (similar to the
method used by Harper [2], and PTC2 by Luke |9] without probability tables).

As mentioned in Section [3], it is possible to generate a lexicalised TAG from
a finitely ambiguous CFG. However, there are biases inherent to TAGs which
affect the probabilities of certain shapes being generated, as well as biases inher-
ent to CFGs that are not preserved by this grammar transformation. Specifically
these are an adjunction bias, biases imposed upon the language by the choice of
adjunction points, and a grammar transformation bias, introduced when trans-
forming from one grammar type to another. More detail on these is given below.

4.2 Adjunction Bias

While TAGs are said to be both weakly and strongly equivalent to the CFG used
to generate them [5], depending on the constraints imposed upon the adjunction
operation, biases appear in the shapes of randomly generated derived trees. For
example, in the initial implementation of TAGE [12] adjunction is not allowed
to be performed on foot nodes of auxiliary trees already in the derivation tree.
The result of which is that once an adjunction is performed, the tree can only
be expanded at its other adjunctable addresses, preventing the branch contained
by the foot node from being expanded. Fig. [6(a)| shows the distribution of tree
shapes when using the adjunction constraints from Murphy et al. [12]. Tree shape
is measured as the percentage of NT nodes used to build the left branch of the
tree. This figure shows that the distribution of tree shapes are heavily skewed



Grammar Bias and Initialisation in Grammar Based Genetic Programming 91

Freq

Size of Left Branch as % of Entire Tree Size of Left Branch as % of Entire Tree Size of Left Branch as % of Entire Tree

(a) Original adjunction  (b) Addition of foot node (c¢) Foot node with no root
adjunction node adjunction

Fig. 6. Adjunction biases affecting the shape of generated trees. The histograms plot
the frequency of the percentage of nodes used by the left side of the tree. The ini-
tialisation method described in Section 1] was used to generate 4000 trees for each
approach, with a maximum depth of 20, a minimum/maximum size interval of 21/220.

towards trees with either very large left or right branches, with very few full
trees. Ideally this distribution would be even across the entire spectrum of tree
shapes favouring no particular shape. Fig. shows that the distribution of
tree shapes begins to level out once foot node adjunction is allowed.

In addition, allowing adjunction at the root nodes of auxiliary trees can have
a similar but more pronounced effect on the form of the tree shape distribution.
If at any point during derivation, an adjunction is performed on the top-most
adjunctable address, usually the root of an auxiliary tree, the derived tree below
this point of adjunction becomes the a sub-tree of the new tree’s foot node,
with the remainder of the new auxiliary tree off to one side. This causes the
shape of the tree to be heavily skewed. By eliminating the adjunction at the
root nodes of auxiliary trees, the tree shape distribution become much more
level (see Fig. . The probability of the tree reverting to a less skewed state
depends on the ratio of adjunctable addresses available in the new auxiliary tree
(usually quite small) to the adjunctable addresses in the displaced sub tree.

4.3 Grammar Transformation Bias

The probability of a specific terminal production being selected when generat-
ing a word using a CFG not only depends on the probability of that terminal
production being selected within its own rule, but also on the probability of
selecting each preceding production in order to reach the current rule from the
start symbol. When transforming a CFG into a TAG these biases are lost and
while it can be argued that this is a feature of the TAG representation, it can
have unexpected effects for certain types of grammars.

For example, when generating a word from the balanced CFG presented in
Fig. [l whose derivation does not contain any recursive productions, there is a
0.5 chance of selecting x or <digit>. If <digit> is chosen there is a 0.1 chance of
selecting any of the digits. From this it can be seen that even though there are 11
different words which could be generated, there is an equal probability of ending
up with either an x or any one of the digits. When the CFG is transformed into a



92 E. Murphy et al.

<code> <value>

<value> := <value> <value> + | | <code> | | <code> | | <code> | | <code> |
<value> <value> - |
<value> <value> * |
<value> <value> / |
<digit> | <digit> | <value> (1) | | <value> | | <value> (10) | | <value> |
x | x

<digit> :=0 | 1 | 2| ... |9 v v

<digit> (10) <digit> (10)
(a) TAGE stubs (b) PTAGE stubs

Fig.7. A sample balanced pjg 8 TAGE tree stubs with a 0.09 chance of select-

grammar (equal probability of ing x. Equivalent PTAGE stubs with a 0.5 chance.
recursion and termination)

TAG there are 11 trees to chose from, one with an x on the frontier and ten with
a digit. Consequently, there is now a 0.09 chance of generating an x, as opposed
to a 0.5 chance when using the CFG. This can make it difficult for certain words
to be generated, both during initialisation and throughout a run.

In order to correct for the problems mentioned above, a novel method was
designed which examines the probabilities contained within CFGs and applies
them to the TAG. This method, named Probabilistic Tree-Adjoining Grammat-
ical Evolution (PTAGE), is similar in theory to the structural and lexical biases
imposed using TAGs by Hoai et al. |3] with TAG3P+. Whereas TAG3P+ uses
properties of TAGs to impose language bias on the search, PTAGE’s main func-
tion is to recreate the biases imposed by the CFGs used to generate each TAG.
While this aids in generating similarly distributed initial populations, these bi-
ases affect the mapping process throughout the entire run.

In TAGE, the sets of initial and auxiliary trees are not generated at the be-
ginning of the algorithm, but rather sets of elementary tree stubs are generated.
This can greatly reduce the amount of memory needed to store the grammar.
An elementary tree stub is an almost fully expanded elementary tree, with the
terminal symbol leaf nodes excluded. In their place is a number representing the
total number of different terminal nodes (variations) that can be attached at
that point to complete the tree. For example, continuing with the sample gram-
mar from Fig. [d above, there would be a stub with the number 1 rather than an
x and another stub with the number 10 rather than 10 different trees each with
one of the digits, 0 through 9 (see Fig. [8(a)]). The process of expanding a stub
into a complete elementary tree is explained in the proceeding paragraph.

When choosing a tree in TAGE, the modulus operation is performed on the
codon value and the total number of trees to select from, resulting in a number,
¢, between zero and the total number of trees minus one. If ¢ has been used
before, the correct tree is retrieved directly from a map. Alternatively, if ¢ has
not been seen before, each stub’s variations are summed in order until the sum
is greater than ¢ in order to find the correct stub to expand. Then, proceeding
in a depth first manner, the stub is completed by visiting each NT leaf node and
dividing ¢ by the product of the variations of all the NT leaves visited so far



Grammar Bias and Initialisation in Grammar Based Genetic Programming 93

while expanding that stub, performing the modulus operation on this product
and the number of possible variations at the current NT node. This results in a
number between zero and the total variations possible at that node, allowing the
selection of the correct terminal production to expand the node by. This process
continues until there are no more NT nodes to expand, storing the complete tree
in a map for later use before being returned.

PTAGE examines the CFG and updates the number of variations at each
stub’s leaf nodes to reflect the probability of reaching those terminal symbols
when expanding using the original CFG. In this example, since there should be
an equal chance of generating an x as a digit, the variations on that stub are
updated from 1 to 10 (as shown in Fig. . The effect of this is that when
selecting a tree there are now twenty trees to chose from, ten x trees and a single
tree for each digit.

5 Experiments

The focus of this study is to improve the similarity of the initial setup of both
GE and TAGE by examining the language biases which affect this, enabling
a better comparison of performance and behaviour. As such, the experiments
run in the initial study [12] are repeated twice here. First, using only the new
method of initialisation and a second time incorporating the modified adjunction
constraints (adjunction at foot nodes and no adjunction at root nodes).

Four benchmarks are used for this study, Even Five Parity, Santa Fe Ant
Trail, Symbolic Regression and Six Multiplexer.The grammars used are identical
to those used by Murphy et al. [12] apart from those of Symbolic Regression and
Six Multiplexer, which were each given a new extra start symbol (see Fig.[@)). This
grammar change does not affect the behaviour of either algorithm but enables the
disabling of root node adjunction. 100 independent runs were performed for each
of GE, TAGE and PTAGE on both setups, the first using the new initialisation
method, outlined in Sec. [£]] with the original adjunction constraints (NT), and
a second time using the new adjunction constraints (NA), outlined in Sec.
See Table [l for the GE parameters.

6 Results and Discussion

6.1 Initialisation

It is clear from Table [2] that the improved initialisation of the population (using
the original adjunction addresses) has a dramatic effect on the performance of
GE. Improvements range from an increase of ~10% (Even Parity) to almost an
increase of an order of magnitude (Santa Fe) in the success rate. The new ini-
tialisation method did not have an effect of the same magnitude on TAGE, with
improvements in success rate between ~10% and ~80%. As a result of this, GE’s
performance has surpassed that of TAGE on the Santa Fe Ant Trail problem,
with TAGE showing superior performance on the remaining three problems.



94 E. Murphy et al.

Table 1. GE parameters adopted for  «<progs> ::=

<expr>
each of the benchmark problems <expr> ::= ( <op> <expr> <expr> ) | <var>
<op> =4+ | - | %
Parameter Value <var> ::=x0 | 1.0
Generations 200 . .
Population Size 100 (a) Symbolic Regression Grammar
Initialisation Ramped NT Size
with Max Depth e
Min NT Size 21 <prog> ::= <B>
Max NT Size 70 <B> = (<B>) && (<B>) | (<B>) "[|" (<B>)
Max Depth 10 | 1'(<B>) | (<B>) 7 (<B>) : (<B>)
Max Chromosome Wraps 0 | 20 | a1 | dof d1 | d2 | d3
Replacement Strategy Generational . .
Elitism 10 Individuals (b) Six Multiplexer Grammar
Selection Operation Tournament
Tournament Size 3 . .
One Point Crossover Prob 0.9 Fig.9. Updated grammars for Symbolic

Integer Mutation Prob 0.02 Regression and Six Multiplexer problems

Table 2. The number of successful runs out of the 100 runs performed for all setups.
GE and TAGE are the results from the original comparison (NI indicates the use
of the new initialisation method and NA indicates the use of the new adjunction
addresses).

Even 5 Santa Fe Sym. Reg. Six Multi.

GE 79 3 44 6

TAGE 88 12 76 63
GE-NI 88 28 75 18
TAGE-NI 100 22 99 72
PTAGE-NI 100 13 99 20
TAGE-NI-NA 98 23 98 78
PTAGE-NI-NA 98 14 98 34

6.2 The Effect of PTAGE

From Table. [ it can be seen that the application of PTAGE on two of the
problems examined, Santa Fe and Six Multiplexer, has had a negative effect on
performance. By examining the grammars of these two problems it can be noted
that as a result of the transformation from CFG to TAG a bias is introduced,
causing the selection of certain structures to be favoured over others. In the case
of the Six Multiplexer problem, there is a probability of ~ 0.81 of selecting a
tree containing <B>?7<B>:<B> compared to a ~ 0.18 chance of selecting a tree
containing either <B> || <B> or <B> && <B> or a < 0.01 chance of selecting a
tree containing ! (<B>). This bias causes the TAGE tree to grow much wider
than when using the PTAGE approach, as PTAGE balances these probabilities
to be equal since they have an equal chance of being selected when deriving
using CFGs. Similar effects are observed in the Santa Fe grammar. PTAGE
has no effect on the other problems as the grammar transformation does not
introduce any new biases.



Grammar Bias and Initialisation in Grammar Based Genetic Programming 95

6.3 New Adjunction Addresses

The inclusion of adjunction at root nodes and the exclusion of adjunction at the
foot nodes appear to have only a marginal difference on performance, whereas
they had a significant difference on the distribution of tree shapes as was seen in
Fig. Bl This might suggest that TAGE benefits less from having a more diverse
initial population than GE. This could be a result of the greater connectivity
observed in TAGE landscapes in |11].

7 Conclusions

In the process of creating an initialisation method which generates similar sets
of trees for both GE and TAGE, biases in the shape of the trees being generated
by TAGE were detected. These biases were introduced due to the constraints
placed upon the adjunction operation by TAGE as well as by the transforma-
tion algorithm used to generate TAGs from the original CFGs. New adjunction
constraints and a system to eliminate the transformation biases, PTAGE, were
described. It was noted that the transformation biases can be beneficial to the
algorithm but are dependant on the grammar and the problem in question.

Subsequently, by improving the initialisation method used for the comparison
of GE and TAGE, ensuring that similar distributions of trees sizes and shapes
were created by each setup, it was seen that while there does not appear to be a
statistically significant improvement in performance of TAGE over that of GE as
was suggested in [12], TAGE still manages to generate more successful solutions
in three of the four problems.

Interesting future work prompted as a result of this study includes examining
the trends of the distributions of derivation tree shapes and sizes over the course
of a run. Investigating these trends with both commonly distributed initial geno-
typic populations, as well as phenotypic populations, might give better insight
into why a more diverse initial population appeared to be more beneficial to GE
than TAGE.

Acknowledgements. This research is based upon work supported by the Sci-
ence Foundation Ireland under Grant No. 08/IN.1/I1868.

References

[1] Daida, J.M., Ampy, D.S., Ratanasavetavadhana, M., Li, H., Chaudhri, O.A.: Chal-
lenges with verification, repeatability, and meaningful comparison in genetic pro-
gramming: Gibson’s magic. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference, vol. 2, pp. 1851-1858. Morgan Kaufmann, Orlando (1999)

[2] Harper, R.: GE, explosive grammars and the lasting legacy of bad initialisation. In:
IEEE Congress on Evolutionary Computation (CEC 2010). IEEE Press, Barcelona
(2010)



96

3]

[4]

[5]

[6]
[7]
8]
[9]

[10]

[11]

[12]

[13]

[14]

E. Murphy et al.

Nguyen, X.H., McKay, R.I., Abbass, H.A.: Tree adjoining grammars, language
bias, and genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K.,
Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 335-344. Springer,
Heidelberg (2003)

Nguyen, X.H., McKay, R., I(B.), E.D.L., Abbass, H.A.: Toward an Alternative
Comparison between Different Genetic Programming Systems. In: Keijzer, M.,
O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS,
vol. 3003, pp. 67-77. Springer, Heidelberg (2004)

Joshi, A.: Tree adjoining grammars: How much context-sensitivity is required to
provide reasonable structural descriptions, ch. 6, pp. 205-250. Cambridge Univer-
sity Press, New York (1985)

Joshi, A.] Schabes, Y.: Tree-Adjoining Grammars. In: Handbook of Formal Lan-
guages, Beyond Words, vol. 3, pp. 69-123 (1997)

Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

Kroch, A., Joshi, A.: The Linguistic Relevance of Tree Adjoining Grammar, Tech-
nical Report, University Of Pennsylvania (1985)

Luke, S.: Two fast tree-creation algorithms for genetic programming. IEEE Trans-
actions on Evolutionary Computation 4(3), 274-283 (2000)

McKay, R., Hoai, N., Whigham, P., Shan, Y., O’Neill, M.: Grammar-based genetic
programming: a survey. Genetic Programming and Evolvable Machines 11, 365
396 (2010)

Murphy, E., O’Neill, M., Brabazon, A.: Examining Mutation Landscapes In Gram-
mar Based Genetic Programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado,
P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 130-141. Springer,
Heidelberg (2011)

Murphy, E., O’Neill, M., Galvan-Lopez, E., Brabazon, A.: Tree-adjunct gram-
matical evolution. In: 2010 IEEE World Congress on Computational Intelligence,
pp- 4449-4456. IEEE Computational Intelligence Society, IEEE Press, Barcelona,
Spain (2010)

O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language. Genetic programming, vol. 4. Kluwer Academic
Publishers (2003)

Whigham, P.A.: Grammatical Bias for Evolutionary Learning. Ph.D. thesis, School
of Computer Science, University College, University of New South Wales, Aus-
tralian Defence Force Academy, Canberra, Australia (1996)



	Grammar Bias and Initialisation 
in Grammar Based Genetic Programming
	Introduction
	Grammatical Evolution
	Tree-Adjunct Grammatical Evolution
	TAGE Derivation Example

	Difficulties with Comparing GP Systems
	Initialisation and Transformation Bias
	Adjunction Bias
	Grammar Transformation Bias

	Experiments
	Results and Discussion
	Initialisation
	The Effect of PTAGE
	New Adjunction Addresses

	Conclusions
	References





