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Abstract. A new interactive evolutionary 3D design system is pre-
sented. The representation is based on graph grammars, a fascinating
and powerful formalism in which sub-graphs, nodes and edges are itera-
tively rewritten by rules analogous to those of context-free grammars and
shape grammars. The nodes of the resulting derived graph are labelled
with Euclidean coordinates: therefore the graph fully represents a 3D
beam design. Results from user-guided runs are reported, demonstrating
the flexibility of the representation. Comparison with results using an
alternative graph representation demonstrates that the graph grammar
search space is rich in appealing, organised designs. A set of numerical
graph features are defined in an attempt to computationally distinguish
between good and bad areas of the search space, leading to the definition
of a computational fitness function and non-interactive runs.

1 Introduction

3D design is an interesting and difficult application area for evolutionary com-
putation (EC). It has a very large number of real-world applications, including
product design and branding, structural engineering, conceptual architecture,
furniture design, sculpture and even artificial lifeform bodyplan design.

In this paper we describe a project in the area of exploratory and conceptual
architectural design. In this area, one may draw three important distinctions.
The purpose of the system may be either optimisation (e.g. of structural prop-
erties [1]) or open-ended exploration. Our system emphasises the latter since the
search space includes a very wide of possible designs. It cannot, for example,
be reduced to a parametric model. The representation may be sculpting or
structured. Our representation is structured in that it is composed of elements
which have individual identity and function. This is in contrast to (e.g.) rep-
resentations using voxels [3], where the primitive elements are very small and
do not have individual function. The distinction is analogous to that in 2D be-
tween pixel-based (e.g. [20]) and vector-based art (e.g. [9]). Finally the fitness
evaluation may be entirely aesthetic and subjective (as in Dawkins’ seminal
Biomorphs [4]), entirely computational, or somewhere in between. In our system
fitness is primarily aesthetic, but we also set out a framework intended to derive
a computational measure of fitness.
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In the current work we are interested in designs composed of simple beams of
uniform width and differing lengths, a domain which is sufficient to raise inter-
esting representational issues and suitable for exploratory evolutionary design.
We avoid obvious problems of beams “suspended in mid air” or failing to connect
perfectly by basing our representation on graphs, i.e. sets of nodes and edges.
With Euclidean coordinates attached to each node, a graph fully specifies a 3D
beam design. The space of such graphs then contains an extremely wide range
of valid and useful designs, in addition to many disorganised and ugly ones. One
could run EC over the space of graphs using an edge-set or adjacency-matrix en-
coding, with additional numerical parameters for Euclidean coordinates: however
such representations contain no bias towards structured, organised, architectural
designs. Instead it is useful to introduce a bias using a grammar.

Visual grammars of various types have been widely used in design, and per-
haps the best-known variation is the shape grammar, though truly general im-
plementation is very difficult. In this paper we aim to solve of the problems of
shape grammars by using instead grammars defined over the space of graphs.
Such graph grammars retain many of the advantages of shape grammars.

The structure of the paper is as follows. The concepts of shape grammars and
graph grammars, with motivation and previous work, are presented in Sect. 2.
Our graph grammar representation is described in detail in Sect. 3. Experiments
and results are in Sect. 4, and conclusions and future work are in Sect. 5.

2 Background

We begin by introducing the concept of shape grammars, leading to the mo-
tivation for graph grammars as a constrained alternative. Within each topic,
reference is made to relevant previous work in EC and design.

2.1 From Context-Free Grammars. . .

The formal string-rewriting grammars of Chomsky [2], such as the context-free
grammars, allowed the description and generation of formal languages, and led to
the development of modern linguistics. Grammar-based EC has been successful
in many domains, including in structural design [1].

2.2 . . . to Shape Grammars. . .

Explictly inspired by this powerful formalism, Stiny and Gips [21] created shape
grammars, an analogous formalism for the description and generation of shapes.
Instead of rewriting strings of symbols, shape grammar rules add, delete, or edit
shapes, which are formally defined in terms of points, lines, planes and solids.
Shape grammars have been successfully applied for four decades in both the
analysis of existing designs and the generation of new ones, where “design” is
interpreted broadly to include architecture [14], fine art [13], and other areas.



Graph Grammars for Interactive Evolutionary 3D Design 201

Formalisms for design, graphics, and geometry are of obvious interest to the
evolutionary design community, and in fact (constrained) shape grammars have
been used in combination with EC, e.g. [16,19].

However, a significant obstacle to the use of shape grammars is that computer
implementation is relatively difficult [7]. Although shape grammars have been in
use for over 40 years, there is no complete and fully general computer implemen-
tation. This is in contrast to the world of textual grammars, where simple algo-
rithms exist for deriving sentences from grammars. Such algorithms are general—
they can work with any grammar provided as an input—and complete—they can
perform the entire range of functionality implied by the formalism.

The lack of complete and general shape grammar implementations is not for
the want of trying: in fact a large number of implementations have been created,
e.g. [18,22] (see also http://www2.mech-eng.leeds.ac.uk/users/men6am/men

6am/WorkshopReport.htm), but all are tied to a particular grammar, unable to
apply some rules in situations where they are implied by the formalism to be
applicable, or otherwise limited.

One of the well-known obstacles to computer implementation is the subshape
recognition problem, illustrated in Fig. 1. In (a) a shape grammar rule is defined.
The single arrow denotes rule definition. In (b), a surprising consequence (the
double arrow denotes derivation): the original “K” shape contains infinitely many
smaller copies of itself, any of which may be used as the left-hand side of the rule
defined in (a). This is an obstacle to computer implementation both because the
copies must be recognised, and because there must be some method of choosing
to which copy the rule should be applied. Emergence [12] is a second well-known
obstacle: it is difficult to recognise (for use as rules’ left-hand sides) new shapes
which “emerge” through the combination of multiple rules’ actions.

(a) (b) (c)

Fig. 1. Shape grammars (a) are sometimes more flexible than we want (b). Graph
grammars (c) are more constrained.

2.3 . . . to Graph Grammars. . .

In response to the above problems, some researcher draw inspiration from a
very different stream of research. Graph grammars [5], again inspired partly by
Chomsky’s original work, are a formalism originally of mathematical interest.
Here the rules rewrite graphs, i.e. sets of nodes and edges. Graph grammars have
been used in combination with EC for problems such as symbolic regression and
circuit design [15].

http://www2.mech-eng.leeds.ac.uk/users/men6am/WorkshopReport.htm
http://www2.mech-eng.leeds.ac.uk/users/WorkshopReport.htm
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Graph ideas have also been used to solve some of the problems of shape gram-
mars. For example, Keles et al. [11] describe an implementable algorithm based
on graph ideas (though they do not use the term “graph grammar”). Fig. 1(c)
demonstrates that the existence of nodes allows the definition of a rule similar
in intent to that of (a) but without the problem of subshape recognition. Edges
in a graph grammar correspond to lines in a shape grammar. Thus, a graph in
which nodes have associated Euclidean coordinates can serve as a representation
for a beam or wire design in 3D space.

As in all grammars, graph grammar rules are composed of left- and right-hand
side parts (LHS and RHS). Several different types of rules are possible, but in
general the idea is to find, in the current graph, a sub-graph which matches (in
some sense) the LHS of a rule, and then to replace that sub-graph with the RHS
graph, gluing edges together in some predefined way. We use a simple algorithm
for matching LHS sub-graphs and adding (never removing) RHS graphs. It is
described fully in Sect. 3. Briefly, each rule is composed of two parts: a LHS
predicate called a selector which, when applied, selects some nodes (and hence
a sub-graph); and a RHS action which adds new material to the selected sub-
graph. Each action includes an envelope, a function specifying a curve which can
be used to set the Euclidean coordinates of any new nodes added.

2.4 . . . and Back Again

Our graph grammars consist of multiple rules, and each rule consists of a selector
(LHS) and an action (RHS), the latter including an envelope. All three compo-
nents are readily implementable directly as computer code, as described in the
next section. Since CFGs can generate code, it is possible to define a space of
graph grammars using a CFG; which brings us back to where the section began.

3 Representation and Implementation

Our graph grammars are composed of multiple rules. At each step, a sub-graph
is selected (by a rule’s left-hand side or LHS), and some new nodes and edges are
added (by a rule’s right-hand side or RHS). In addition to Euclidean coordinates,
every node is labelled with two variables: the derivation time-step t at which it
was added, and the index k indicating which rule added it.

For each rule in the grammar, the LHS is specified as a selector, that is a
fragment of code which applies a predicate to the nodes of the graph. Some
possible predicates include matching (on t) all nodes which were created in the
previous step, or (on k) all nodes which were ever created by application of
the current rule. It is also possible to match nodes which, for example, exceed
a certain z-value, or exceed a certain distance from the x = y = 0 axis. The
sub-graph on the selected nodes is returned.

The RHS is specified as an action, a fragment of code with a simple function
such as adding a new node connected to an existing one. It assigns the new node’s
x, y and z values with reference to an envelope, a numerical function such as a
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straight line, exponential curve, or sinusoidal curve in 3D space. Each action has
one envelope. Since the envelope sets the coordinates of the new nodes, they are
arranged into well-ordered lines and curves, as in Fig. 2. The action is performed
for each node in the sub-graph returned by the selector.

(a) (b)

Fig. 2. Action envelopes. New nodes’ coordinates are set according to functions of t.
In (a), x is linear, y is exponential; in (b), x is linear, y is sinusoidal.

This simple graph grammar algorithm has some useful properties. In addition
to avoiding the problem of subshape recognition, it allows rules to be specified in
quite a generic way. For example it is possible to define a rule whose LHS selects
a cycle, and whose RHS adds and connects a new cycle of the same number of
nodes, without specifying that number. See Fig. 3.

(a) (b)

Fig. 3. A cycle rule. Nodes are labelled with t. The rule illustrated with four nodes
in (a) is generic, capable of applying to a cycle of any number of nodes. In (b), it is
applied to an existing graph, selecting just those parts which form a 3-cycle with the
appropriate value of t, and correctly adding a new 3-cycle.

As stated above, the selector, the action, and the envelope can each be sim-
ply implemented as program code. This suggest the possibility of using a non-
deterministic CFG to represent a large space of possible graph grammars. A
highly simplified fragment of our grammar is as follows:

<design> ::= GraphGrammar(<init>, <rules>).run(<steps>)

<init> ::= <cube> | <star> | <single_node>

<rules> ::= [<rule>, <rule>, <rule>]

<rule> ::= [<selector>, <action>]

<selector> ::= filter(k=current_k) | filter(t=current_t - 1) | [...]

<action> ::= [<function>, <envelope>]

<function> ::= add_node | add_node_and_edge | [...]

<envelope> ::= <exponential> | <sinusoid> | <line>

<steps> ::= 2 | 3 | 4
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In order to use a CFG in an EC context, it is necessary to define an encoding: that
is, a genotype data structure and a mapping from the genotype to an output
string. We use the method of grammatical evolution (GE) [17]. GE defines a
mapping from an integer-array genome, via a CFG, to a derivation string. The
GE mapping is relatively simple: at each step in the derivation, the first non-
terminal symbol in the derivation string is chosen, and the corresponding rule is
identified; an integer is read from the genome; it determines which of the rule’s
RHS productions will be used to rewrite the non-terminal. The process repeats
until all non-terminals have been replaced by terminals. (For fuller explanation
see [17]; for previous applications of GE in the area of design see [1,10].) The
result is a string, in our case a program defining a deterministic graph grammar.
When run, this program executes a graph grammar derivation, eventually giving
rise to a graph whose nodes have x, y and z values. Feeding such a graph into a
3D rendering program results in an image.

In all the runs described in this paper, GE’s int-flip mutation was carried
out with per-gene probability 0.015, and the one-point crossover probability was
0.9. Tournament selection was used with tournament size 5. In interactive runs
the population size was 12 and the number of generations unlimited. In non-
interactive runs the population size was 100 and the number of generations 50.

3.1 Aesthetic and Computational Fitness

In our system, fitness is primarily aesthetic. In typical runs, a user interacts with
evolution, assigning a “good” or “bad” fitness value to each individual at each
generation. Individuals have “bad” fitness by default, so that the user is required
only to click the images of good individuals with the mouse.

However, the system can also be run in non-interactive mode. We derive a
(necessarily incomplete and imperfect) fitness measure by defining a set of three
numerical features which can be calculated over graphs, observing their values on
“good” and “bad” individuals as evaluated by interactive users on preliminary
experiments, and then defining fitness as the achievement of the “good” ranges.

Graph Features. We define three numerical features over graphs. Each is
intended to measure some aspect of the complexity the graph, including the
Euclidean labels of the nodes.

Coordinate complexity measures the complexity of the x, y and z coordinates
of the graph’s nodes. For each coordinate, the unique ratio is the number of
unique values of that coordinate divided by the number of nodes in the graph.
Coordinate complexity is the mean of the x, y and z unique ratios. In graphs
where most nodes’ coordinates are unique, the value will be high. Where many
nodes are aligned along the principal axes, the value will be low.

Clustering is based on the graph-theoretic concept of clustering, where a
highly-clustered node is a node most of whose neighbours are themselves also
neighbours of each other. That is, it depends on the existence of many “triangles”

involving that node. It can be calculated for node u as: cu = 2T (u)
deg(u)(deg(u)−1) ,

where T (u) is the number of triangles of u and the denominator is twice the
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maximum possible number of triangles of u. Clustering is then the mean value
of cu over all nodes. Graphs where nodes cluster in several almost-independent
subgraphs will therefore achieve high values, while graphs where all nodes are
uniformly connected to other nodes will achieve low values.

Finally, size is a simple measure of the number of nodes and edges in a graph.
The two values are summed and the log is taken on the grounds that the differ-
ence between (say) 10 and 20 graph elements is as significant as the difference
between 100 and 200. In order to normalise the value to [0, 1], the log-value is
divided by log(1000), taking 1000 graph elements as a plausible upper limit.
For very large graphs, then, the normalised value must be clamped to avoid
exceeding 1.

None of the three features is intended as an “aesthetic” measure, and indeed
it is not clear that aesthetics can be satisfactorily measured in this domain.
However, it is hypothesized that certain ranges of the measures will turn out to be
more appealing to some users, in some circumstances, than others. Experiments
using these features are presented in Sect. 4. The overall process executed by
the system is depicted in Fig. 4.

Genome

4 8 15 16 42...
GraphGrammar(
  make_init_node(), [
  [filter(t), add_node,
   lambda t: sin(t)], 
  ...]  
).run(3)

Derived string 
(Deterministic 
Graph Grammar)

Image

Derived Graph

Non-deterministic CFG

<design> ::= GraphGrammar(
    <init>, <rules>).run(<steps>)
<init> ::= <cube> | <star> | [...]
...
<rule> ::= [<selector>, <action>]
...

Feature Vector

(0.3, 0.7, 0.2)

Aesthetic Fitness

Good/Bad

Feature Vector
Fitness

0.7

CFG Derivation

Rendering

Viewing

Analysis
Mean Error
Versus Target

Graph Grammar
Derivation

Fig. 4. The genotype to phenotype and fitness process
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4 Evaluation

The system is next evaluated in both interactive and non-interactive use.

4.1 Design Outcomes

We begin by presenting, in Fig. 5, 12 designs created in three different ways.
First, designs were created by random generation using the graph grammar. That
is, many initial populations of random genomes were randomly generated and
their corresponding designs rendered. In each population of 12, between 1 and 6
individuals were subjectively marked as “good” and the rest deemed “bad”. The
feature vectors for all individuals were saved. The rationale for selecting from
randomly-generated initial populations in this case, rather than from ongoing
evolutionary runs, was to achieve more consistent data. It is well-known [8]
that during ongoing runs users tend to award inconsistent values to similar or
identical individuals, influenced by boredom and novelty. Running many one-off
populations in which the task was to mark good individuals, rather than to steer
the evolution, was intended to avoid such effects. Out of about 200 individuals
a few are presented as Fig. 5 (a-h). The designs demonstrate that the grammar
has been successful in allowing a very wide range of designs, and giving each
individual design a sense of being well-formed or cohesive.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 5. Designs created by random generation with the graph grammar (a-h); by in-
teractive evolution (i-k); and by a non-grammatical random graph model (l)
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Next, designs were created during a single interactive run of 20 generations.
Only a single individual was marked good in each generation, and a few repre-
sentative samples were chosen for presentation as Fig. 5 (i-k). The three designs
appear inter-related, as expected from a single run. Many more similar runs
have been performed, always producing similarly interesting and organised re-
sults, but are omitted to save space.

Finally, Fig. 5 (l) was created using a random graph model. Several random
graph models are in common use; one of the best-known is the G(n, p) model [6],
in which the graph G has exactly n nodes and each possible edge occurs with
probability p. We choose n uniformly in [20, 100] and set p = 0.03. Running the
algorithm multiple times then yields multiple distinct graphs of different sizes.
In each case, we then set the Euclidean coordinates of the nodes randomly,
choosing them uniformly in [0, 3] (quite similar to the ranges achieved by the
graph grammar individuals). Results are almost always highly disorganised in
appearance: Fig. 5 (l) is a typical example. There is a very clear aesthetic contrast
with the grammar-derived designs, and this contrast can also be demonstrated
computationally as we will see.

4.2 Results with Feature Vectors

Next the feature vectors of the designs created in the previous section are anal-
ysed. In Fig. 6 the feature vectors of approximately 250 individuals are presented
as scatterplots. These individuals come from four categories as above: G(n, p)
random graph individuals (small dark circles), good graph grammar individuals
from random populations (dark triangles), bad individuals from the same pop-
ulations (crosses), and single selected individuals from successive generations in
a single interactive run (large light-coloured circles, joined with lines).

The features give some useful information about the four different categories.
The random-graph model designs form a tight cluster. This is in contrast to the
individuals created using graph grammars. However, the features do not appear
to distinguish between good and bad graph-grammar individuals. In Fig. 6 (b),
good and bad individuals are intermingled with no discernible pattern. In (a),
good individuals seem to achieve higher values for clustering complexity, overall,
but the pattern is not clear-cut. The selected individuals from the 20-generation
run conform to the distribution of good individuals.

4.3 Non-interactive Runs

In the light of the previous results, it is clearly not possible to define any values
or ranges for the features which can be used as a general aesthetic fitness func-
tion. Future work will be addressed to finding an improved set of features. In
the meantime we test the system’s non-interactive evolution component using
arbitrary feature vectors as targets. We define the fitness of an individual as the
mean error of its feature vector versus a target. We ran experiments with several
targets, reporting results from just two: (0.3, 0.3, 0.6) and (0.8, 0.4, 0.8). Each
is just outside the ranges achieved in interactive runs. Non-interactive evolution
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Fig. 6. Feature distributions for random, bad, good, and best individuals: clustering
complexity versus size (left); coordinate complexity versus size (right)

turns out to be possible, but the first target appears easy and the second difficult,
as shown in Fig. 7 for 10 independent runs each. Explanation of this interesting
result requires further analysis of the search space and is left to future work.
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Fig. 7. Non-interactive evolution: an easy feature vector target (left); a more difficult
one (right). 10 independent runs for each target. Fitness is minimised.

5 Conclusions and Future Work

A representation for 3D design based on graph grammars has been introduced. It
has been demonstrated to introduce a bias on the space of graphs so that disor-
ganised designs are largely eliminated from the search space. The representation
is nevertheless capable of generating a very wide range of designs. A set of nu-
merical features over graphs has been defined. A set of experiments has been run
in order to characterise subjectively-judged good and bad individuals in terms of
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the features and thus to derive a non-interactive fitness function. Although the
good and bad individuals do not appear separable using the current features,
non-interactive evolution (with an arbitrary target) has been demonstrated.

The success of the graph grammar representation and its limitations, as de-
scribed above, together suggest that there is potential for future work in improv-
ing and understanding the system.

A careful study of the individual and combined effects of the different types of
selectors, actions, and envelopes in the graph grammar would help us to better
understand what makes it work. It might also point the way to improvements
to the grammar. Increasing the grammar’s already impressive flexibility would
be particularly interesting, but eliminating some classes of undesirable designs
from the search space would also be very useful.

The framework for computational fitness—defining graph features, observing
their values in user-judged “good” and “bad” individuals, and defining compu-
tational fitness in those terms—has the potential to be very useful, but the three
features proposed in this work have not proved capable of clearly separating good
individuals from bad. In future work, a more thorough study of graph-theoretic
and complexity-inspired features will be carried out in the hope of finding more
useful features. It would also be interesting to study EC-theoretic aspects of the
system, such as the degree of heritability via mutation and via crossover.

The system has been presented in a classroom setting with positive feedback.
A formal user study with architecture and design students and practitioners is
in progress.
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