
A Local Search Interface for Interactive

Evolutionary Architectural Design

Jonathan Byrne, Erik Hemberg, Anthony Brabazon, and Michael O’Neill

Natural Computing Research & Applications Group,
University College Dublin, Ireland

{jonathanbyrn,erikhemberg}@gmail.com,
{anthony.brabazon,m.oneill}@ucd.ie

Abstract. A designer should be able to express their intentions with a
design tool. This paper describes an evolutionary design tool that enables
the architect to directly interact with the encoding of designs they find
aesthetically pleasing. Broadening interaction beyond simple evaluation
increases the amount of feedback and bias a user can apply to the search.
Increased feedback will have the effect of directing the algorithm to more
fruitful areas of the search space. We conduct user trials on an interface
for making localised changes to an individual and evaluate if it is capable
of directing search. Examination of the locality of changes made by the
users provides an insight into how they explore the search space.

1 Introduction

Interaction was introduced to Evolutionary Algorithms (EA) for problems where
no objective fitness function could be found. This allowed EAs to tackle problems
that were aesthetic in nature. Traditional interactive evolutionary computation
(IEC) limited the users input to that of a fitness function, evaluation. Takagi [23]
defined this type of IEC as “narrowly defined” IEC (NIEC). Limiting users
to evaluation creates a bottleneck for the evolutionary algorithm. There is an
additional burden on the algorithm to intuit what the user actually desired from
their selections. We address the problem in this paper by introducing a local
search interface that enables users to focus on a particular area of the search
space.

Grammatical Evolution (GE) is an EA that uses an integer string, a genotype,
to pick rules from a grammar and generate an output, a phenotype. The grammar
based approach is capable of generating complex output and so is suitable for
generating architectural designs. The shape grammar used in this paper focuses
on the architectural domain of foot bridge designs. Our approach allows for
active user intervention [11] by providing an interface for directly manipulating
the genotypic encoding. By mutating the genotype the designer can change the
phenotype, combining the generative output of the algorithm with the intention
of the designer. Instead of cosmetic changes being made to the output, the
changes made by the designer are also reflected in the individual’s genotypic
encoding.

P. Machado, J. Romero, and A. Carballal (Eds.): EvoMUSART 2012, LNCS 7247, pp. 23–34, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



24 J. Byrne et al.

As mutation is applied to the genotype and not the phenotype, single mutation
events combined with the mapping process can result in different magnitudes of
change to the phenotype, i.e., mutation events have different locality. Locality is
a measure of how a small change in the input corresponds to the change in the
output. Previous work [4] examined the locality of mutation events in GE when
using a shape generating grammar.We shall examine the locality of user selections
to explore how they usemutations of different locality to navigate the search space.

Our work introduces a novel interface that allows the user to perform a large
number of mutation evaluations and apply mutation operations. Enabling the
user to perform single mutation events allows them to perform a local search on a
particular individual. A local search iteratively makes small changes to move be-
tween neighbouring solutions. When a user finds an aesthetically pleasing design
they generally want to explore that area of the search space. Our experiments
test if the user is capable of directing search using our local search interface.

This paper is organised as follows. Section 2 discusses related research in
computer generated design and active user intervention and gives a description
of GE and our previous interface. Our experimental setup, grammar choice and
experimental design are described in Section 3. The results of our experiments
are presented and explained in Sections 4. Finally, we discuss our conclusions
and future work in Section 5.

2 Background

2.1 Computer Generated Architectural Design

Computers are ubiquitous in architectural design but they are normally used
for analysis rather than design generation. In recent years software has been
developed that allows the user to explore the search space of possible designs. A
direct approach that allows the designer to explore the design search space is to
implement a parametric system. The user inputs their design and then modifies
individual components of that design. EIFForm [19] was a successful approach
to implementing parametric design and the results have been used to design
a structure in the inner courtyard of Schindler house. Parametric design tools
have now been introduced into more mainstream design software. There is the
Grasshopper plug-in for the Rhino modelling system [20] and Bentley Systems
have implemented a program called Generative Components [21].

An evolutionary approach to conceptual design exploration is implemented
in GENR8 [17]. This system uses GE and Hemberg Extended Map L-Systems
(HEMLS) to generate forms. The user can influence the growth of the L-System
through the use of tropism and fitness weighting. Objects can be placed in the
environment that either attract or repel the design. Each design is evaluated
by a series of metrics; symmetry, undulation, size, smoothness, etc. The user
is able to weight these metrics according to their preference. Our approach ex-
tends evolutionary design exploration by allowing the user to iterate through the
parameter values of an evolved design, thus incorporating aspects of parametric
design systems.



A Local Search Interface for Interactive Evolutionary Architectural Design 25

2.2 Active User Intervention

Approaches that increase user participation in the evolutionary process are cat-
egorised as active user intervention (AUI) [23]. Several successful methodolo-
gies have been used to increase user participation. Online knowledge embedding
(OLKE) [22] provides a mechanism for accepting hints, ideas or intentions. The
user highlights components of a design that they think have high fitness. The
genes relating to these components are then fixed, which reduces the search
space. OLKE is only possible if each component of the output maps directly to
a particular gene.

Visualised IEC (VIEC) collapses a multi-dimensional search space into a 2D
representation. The individuals are then mapped to the 2D space and presented
to the user. The user is able to observe the distribution and fitness of the popula-
tion and direct the search to particular parts of the search space, thus combining
both evolutionary and human search techniques. VIEC has been shown to dra-
matically improve convergence [11] [10] but a meaningful mapping from n-D
to 2-D space must be performed and the topological relationships must remain
intact.

Human based genetic algorithms (HBGA) enable the user to apply low level
genetic operators such as mutation, initialisation, selection and crossover to the
population [14]. Using humans is useful in problems such as evolving natural
language statements, where it is hard to design efficient computational opera-
tors. HBGA requires that an individual in the population can be understood by
the user and that the operators perform in a manner intuitive to the user. Hy-
perinteractive evolutionary computation (HIEC) extends HBGA by giving the
users access all the genetic operators. HIEC treats the operators as a tool set
for the user. Additional operators such as duplicate, delete are available to the
users [1]. Our approach is similar to HBGA in that the users choose when and
where to apply mutation operators. The difference is that we present the users
with the consequence of applying an operator and they select the change they
want.

2.3 Grammatical Evolution

To evolve architecture we required a technique to generate evolvable shapes. We
used a shape grammar in conjunction with Grammatical Evolution to accomplish
this. Grammatical Evolution is an evolutionary algorithm that is a grammar
based form of GP [7][16]. It differs from standard GP by replacing the parse-tree
based structure of GP with a linear genome. It generates programs by using a
list of integers (also called a chromosome) to select rules from the grammar. The
rule selections build a derivation tree that represents a program. Any mutation
or crossover operators are applied to the linear genome instead of the tree itself.

Standard GE mutation can be divided into two types of events, those that
are structural in nature and those that are nodal. Nodal mutation changes a
single leaf of the derivation tree. The structure of the derivation tree remains



26 J. Byrne et al.

unchanged. A nodal codon encodes for a rule that only has terminal produc-
tions. Structural mutation changes one or more internal nodes of the derivation
tree (and zero or more leaves) and can result in a change to the structure of
the derivation tree. A structural codon encodes for a rule with non-terminal
productions and zero or more terminal productions.

<var>

<op>

<expr>

<expr>

+

x

<var>

<expr>

y

(a) Original

<var>

<op>

<expr>

<expr>

+

x

<var>

<expr>

y

(b) Nodal Mutation

<var>

<op>

<expr>

<expr><expr>

<var>

+

x

y

<op> <expr><expr>

<var>

y

+

(c) Structural Mutation

Fig. 1. Nodal (green) and structural (blue) nodes of a derivation tree

Locality refers to how well neighboring genotypes correspond to neighboring
phenotypes, i.e., a small change to the genotype results in a small change to
the phenotype and vice versa. A mapping has locality if the neighbourhood
is preserved under that mapping. In EC this generally refers to the mapping
from genotype to phenotype [18]. Previous work investigating locality in GE
mutation [4, 5, 2] showed that structural and nodal mutation had different effects
on locality during the mapping process and on the resulting output. As the user
is exclusively applying mutation, we shall investigate how the different locality
of events are used to navigate the search space.

2.4 Original Interface Design

The interface plays a vital role in how the user navigates the search space. Our
previous work [3] presented the user with a panel of individuals to choose from.
The interface enabled them to apply different mutation operators to their pre-
ferred individual. The mutation events were categorised based on their locality.
“Big” changes and “small” changes equated to structural and nodal events re-
spectively. The user chose the individual and their preferred mutation operator.
When an individual was selected, 8 mutated variations of hamming distance one
were generated for the user to select from.

The interface had a number of drawbacks. User trials showed that the average
number of selections made over a five minute period was 17. As each selection
presented the user with 8 more images the user is only presented with 136 designs
during the course of a run. To assume that a significant improvement could be
made in this short distance was optimistic. The user also had no expectation of
the consequences of applying an operator, which meant that the users intention
of“big” and “small” changes may not evident in the generated individuals. The
smaller changes also presented a unique problem to the user. Some nodal changes
fell below the threshold of a Just Noticeable Difference (JND). JND is a concept



A Local Search Interface for Interactive Evolutionary Architectural Design 27

from cognitive psychology that was first described by Ernst Heinrich Weber [24].
JND is the smallest difference between two stimuli that is still capable of being
perceived. The lack of what the user perceived as new variations also hindered
them in completing the task.

3 Experiment

3.1 Interface Implementation

The interface used in this experiment addresses the problems described in
Section 2.4. A comparison of the new and old user interfaces are available on-
line [13]. Instead of the user choosing an operator, all possible mutations of
hamming distance one were applied to an individual. Each codon was mutated
in turn, the result was rendered and then the codon was restored to its origi-
nal value. The productions for each codon generated a collection of nodal and
structural mutation events to choose from. This process is shown in Figure 2. A
Euclidean comparison (described in Section 3.3) was performed so that individ-
uals identical to the original were removed from the population, thus reducing
the search space presented to the user. By making no assumption about oper-
ator choice and instead presenting the user with every possibility, we can now
examine how they navigate the search space based on their selections.

Presenting an entire population of mutation events to the user simultaneously
is not feasible. Our interface instead uses a single window for exploring the
population. The interface is shown in online at [13]. The current user selection
is on the left and the target is the image on the right. The leftmost panel states
the instructions, user controls, time remaining and the distance from the target.
The user scans through the mutation events using the left and right arrow keys
and the selects the mutation change they want and that now becomes the basis
for generating the next population. The refresh rate for the window was ten
frames per second. As the frame rate is below that of persistence of vision the
user is capable of perceiving the bridges distinctly. Codon changes were made
sequentially so a codon’s productions are grouped in their presentation to the
user. Overlaying groups of changes in the same window allowed the user to pick
up smaller JND changes by viewing them in rapid succession.

3.2 Design Grammar

The grammar was originally conceived based on a brief provided to third year
students in the UCD architecture and structural engineering course of 2010. The
brief specified that the bridge was to be composed of timber, had an optional
arch, a width of 2 metres and bridge a span of 10 metres. The size of the grammar
meant that it could not be appended to the paper. The grammar creates graphs
using networkx [9], a Python class for studying complex graphs and networks.
Three desirable characteristics for a design generator are modularity, regularity
and hierarchy [12]. We implement these characteristics using the novel method of
higher order functions. See McDermott et al. [15] for a more detailed discussion
on grammars based on higher order functions .



28 J. Byrne et al.

01001010110110110101

11001010110110110101

01101010110110110101

01011010110110110101

00001010110110110101

.

.

.

Fig. 2. Generating hamming distance 1 individuals for user selection

3.3 Euclidean Graph Distance

To analyse the participants behaviour we used a Euclidean graph comparison
to check for isomorphism between the target with the user’s selections. The
Euclidean distance is calculated using the same information presented to the
user, i.e., a bridge output. Euclidean distance is defined as the straight-line
distance between two points on the same plane. An approach was developed for
calculating the Euclidean distance between bridge designs. The bridge output is
essentially a graph where each node has a cartesian coordinate attribute. When
performing a comparison, the graph with the most nodes is selected for iteration.
This step ensures the symmetry condition for a metric, d(x, y) = d(y, x). Each
node in the larger graph is then iterated through and the nearest node in the
smaller graph is found. Exhaustively exploring the smaller graph fulfills the
triangle inequality, d(x, z) ≤ d(x, y)+d(y, z), as the global minimum is returned.
The distance between these nodes is then added to the total distance between
designs, thus ensuring non-negativity, d(x, y) ≥ 0.

Our bridge designs consist of points and the edges between them but the
Euclidean distance formula only compares points in space. The edges must be
taken into consideration if we are to fulfill the “identity of indiscernibles” con-
dition, d(x, y) = 0 if and only if x = y. Exhaustively checking for subgraph
isomorphism between the graphs is an NP Complete problem [6] and so it is
not a feasible approach. Instead, the number of edges connected to the nodes is
compared and the difference is added to the distance. This simplified approach
could theoretically allow for the distance to be 0 when x �= y, therefore Euclidean
graph distance does not satisfy all the conditions of a metric. The use of higher
order functions to connect the nodes however, means that if two graphs consist
of identical points and that each point has the same amount of node edges than
invariably the graphs would be isomorphic.

3.4 Experiment Design

The subjective nature of aesthetics makes evolutionary design search a diffi-
cult area to quantify. To generate measurable results we specify a target design
that the user must attempt to match, instead of the user searching for a design
that they like. The experiment asked the user to match ten different targets.
The random seed was fixed so that the interface always started from the same



A Local Search Interface for Interactive Evolutionary Architectural Design 29

individual. The targets were mutated variants of the starting individual and they
increased in difficulty as the Hamming distance was greater for each successive
target. The Hamming distance, the number of nodal and structural mutations
and the Euclidean graph distance from the starting graph for each target is
shown in Table 1. Each participant had two minutes in which to try to match
the target. They were free to make as many selections within this time frame
and they could undo selections if they wished. At the end of target exercise the
user was asked a short survey. 25 volunteers participated in this experiment and
the experiment itself was approved by the Ethics Committee in UCD.

A sample of random trials were generated to examine if the users were capa-
ble of using the interface to match the target. The same setup was used except
individuals were chosen randomly. 25 random samples were generated for each
of the targets. The distribution of the random selections for each target matched
the user’s click average and standard deviation, as shown in Table 1. Given a
sample of randomly selected individuals, μ0 and a sample of user selected of
individuals, μ1 the following hypothesis is stated. [H0] There will be no statis-
tically significant difference between the samples i.e., μ0 = μ1 [H1] There is a
statistically significant decrease in distance from the target, i.e., μ0 �= μ1. The
significance (α) level of the Wilcoxon rank-sum is 0.01.

Table 1. The distance and change types for each target

Target Hamming Nodal: Euclidean User User User Random
Distance Structural Distance Clicks Evaluations Matched Matched

Target 1 1 1:0 10 1.0 ± 0.0 22.4 ± 34.9 100% 4.0 %
Target 2 3 2:1 92 3.8 ± 2.1 190.3 ± 80.6 64.6% 11.8%
Target 3 3 2:2 184 2.7 ± 1.3 202.4 ± 61.6 64.9% 12.1%
Target 4 5 4:1 158 4.1 ± 2.2 245.2 ± 126.4 74.1% 20.3%
Target 5 6 5:1 214 3.3 ± 1.1 325.6 ± 130.2 36.6% 31.8%
Target 6 7 7:0 188 3.5 ± 1.3 196.0 ± 61.4 58.9% 31.3%
Target 7 8 6:2 465 3.5 ± 1.2 262.3 ± 83.2 57.6% 15.9%
Target 8 8 7:1 457 4.0 ± 1.9 364.7 ± 131.0 37.5% 27.0%
Target 9 9 7:2 273 4.8 ± 2.0 306.4 ± 86.1 28.2% 36.4%
Target 10 11 7:4 117 4.9 ± 2.0 282.4 ± 103.7 29.7% 42.5%

4 Results

All plots are available online in a larger format at [13]. The number of user
selections (user clicks) and the number of images presented to the user (user
evaluations) are shown in Table 1. In our previous experiment [3], the users se-
lected 17 individuals and evaluated 136 designs on average in a five minute time
period. The user click and user evaluation results show that while the user made
fewer selections with the new interface than in the previous experiment they



30 J. Byrne et al.

evaluated many more designs within a two minute time period. The percentage
of user mutations (User Matched) and random sampling mutations (Random
Matched) that matched the target codon changes are also shown in Figure 1.
With some exceptions, the percentage of matched codon mutations decreases as
the Hamming distance increases. The opposite is true for random sampling: as
more codons are changed there is an increased likelihood that a random mutation
would match that of the target.

To examine if this correlates the Euclidean graph distance from the target
we generated scatter plots for the data. Each user selection generated a data
point that recorded the time, distance from the target and the mutation type. A
locally weighted scatterplot smoothing (LOESS) was performed on the results
to plot a smooth curve of the average values. The set of data points was then
bootstrapped [8]. Bootstrapping is a resampling technique that generates an
estimation of the distribution during the course of a run. The LOESS curves for
each of the samples were plotted. Figure 3 compares the user average (black)
and distribution (green) with the random sampling (grey). As every participant
successfully matched the first target within one selection, the results for target
1 are not shown.

A Wilcoxon rank-sum test compared the final selections for the user and
the random sampling. The results show that user could successfully use the
interface to direct search as there was a statistically significant difference from
random with exceptions of target 5 and target 10. The result disproved the null
hypothesis for 8 of the 10 targets. Target 10 had a Hamming distance of 11,
meaning that a third of the used codons had been changed. As the user only
made 4 selections on average it is unlikely the user would be able to match the
target. Although the Hamming distance was less for target 5, the participants
only matched the target mutated codons 36% of the time resulting in a poor
score. A surprising result is that there was a definite improvement in Euclidean
graph distance for targets 8 and 9 while the overall percentage of codons matched
were low (37.5% and 28.2% respectively). The result implies that it is possible
to get close to matching a target without following the exact same path.

Figure 4 shows what type of mutational change was made for each selection.
The x-axis is the number of selections made while the y-axis shows frequency
for a particular type of mutation. The histograms show that users started by
predominantly applying a structural mutation and then moving to nodal muta-
tion. The result means that the participants commenced their search by making
large phenotypic changes and then fine tuning that solution with high locality
mutation events. The instances that ran contrary to this were target 2 and tar-
get 6. Target 2 consisted of 2 nodal changes and 1 structural change. As the
Euclidean distance from the starting point was only 92, it could be that both
nodal and structural changes had comparable locality. Target 6 consisted of only
nodal mutations and so it would follow that only nodal changes were required
to match the target.



A Local Search Interface for Interactive Evolutionary Architectural Design 31

(a) Target 2 (b) Target 3 (c) Target 4

(d) Target 5 (e) Target 6 (f) Target 7

(g) Target 8 (h) Target 9 (i) Target 10

Fig. 3. Loess and bootstrapping results for user trials. The user results are shown in
green and the random sampling shown in grey.



32 J. Byrne et al.

(a) Target 2 (b) Target 3 (c) Target 4

(d) Target 5 (e) Target 6 (f) Target 7

(g) Target 8 (h) Target 9 (i) Target 10

Fig. 4. This graph shows the types of mutation users select during the course of a
run. The x-axis is the order of the selection made by the user and the y-axis is the
cumulative frequency.

5 Conclusions and Future Work

In this paper we presented a novel interface that enabled the user to perform a
local search on an individual. Our experiments showed that the user was able to
use the interface to match a target individual by directly manipulating the geno-
typic representation. This result supports that our interface can perform user
directed local search toward a desired individual. Examining the user generated
results showed that they moved from low locality operators to high locality op-
erators to both explore and exploit the search space. As the user changes are
made to the genotypic representation, the new individual can be reintroduced
into the population and evolutionary algorithm can continue. Our future work
intends to explore the additional benefits of combining AUI with evaluation for
evolutionary architectural design.



A Local Search Interface for Interactive Evolutionary Architectural Design 33

Acknowledgments. We would like to thank Andrea McMahon for her un-
ceasing support. This research is based upon works supported by the Science
Foundation Ireland under Grant No. 08/IN.1/I1868 and 08/RFP/CMS1115.

References

1. Bush, B., Sayama, H.: Hyperinteractive evolutionary computation. IEEE Transac-
tions on Evolutionary Computation 15(3), 1–10 (2011)

2. Byrne, J., O’Neill, M., Brabazon, A.: Structural and nodal mutation in gram-
matical evolution. In: Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, pp. 1881–1882. ACM (2009)

3. Byrne, J., Hemberg, E., O’Neill, M.: Interactive operators for evolutionary archi-
tectural design. In: GECCO 2011: Proceedings of the 13th Annual Conference
Companion on Genetic and Evolutionary Computation, July 12-16, pp. 43–44.
ACM, Dublin (2011)

4. Byrne, J., McDermott, J., López, E.G., O’Neill, M.: Implementing an intuitive
mutation operator for interactive evolutionary 3d design. In: IEEE Congress on
Evolutionary Computation, pp. 1–7. IEEE (2010)

5. Byrne, J., O’Neill, M., McDermott, J., Brabazon, A.: An Analysis of the Be-
haviour of Mutation in Grammatical Evolution. In: Esparcia-Alcázar, A.I., Ekárt,
A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp.
14–25. Springer, Heidelberg (2010)

6. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–
158. ACM, New York (1971), http://doi.acm.org/10.1145/800157.805047

7. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for
Dynamic Environments. Springer (2009)

8. Efron, B., Tibshirani, R.: An introduction to the bootstrap. In: Monographs on
Statistics and Applied Probability. Chapman & Hall (1993),
http://books.google.ie/books?id=gLlpIUxRntoC

9. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynam-
ics, and function using networkx. In: Proceedings of the 7th Python in Science
Conference, Pasadena, CA USA, pp. 11–15 (2008)

10. Hayashida, N., Takagi, H.: Visualized IEC: Interactive evolutionary computation
with multidimensional data visualization. IECON-PROCEEDINGS 4, 2738–2743
(2000)

11. Hayashida, N., Takagi, H.: Acceleration of EC convergence with landscape visual-
ization and human intervention. Applied Soft Computing 1, 245–256 (2002)

12. Hornby, G.: Measuring, enabling and comparing modularity, regularity and hier-
archy in evolutionary design. In: Proceedings of the 2005 Conference on Genetic
and Evolutionary Computation, pp. 1729–1736. ACM (2005)

13. iecgallery: Online image gallery (2011), http://imgur.com/a/24fP9
14. Kosorukoff, A.: Human based genetic algorithm. In: 2001 IEEE International Con-

ference on Systems, Man, and Cybernetics, vol. 5, pp. 3464–3469. IEEE (2001)
15. McDermott, J., Byrne, J., Swafford, J.M., O’Neill, M., Brabazon, A.: Higher-order

functions in aesthetic EC encodings. In: 2010 IEEE World Congress on Computa-
tional Intelligence, pp. 2816–2823. IEEE Press, Barcelona (2010)

16. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in an Arbitrary Language. Kluwer Academic Publishers (2003)

http://doi.acm.org/10.1145/800157.805047
http://books.google.ie/books?id=gLlpIUxRntoC
http://imgur.com/a/24fP9


34 J. Byrne et al.

17. O’Reilly, U.M., Hemberg, M.: Integrating generative growth and evolutionary com-
putation for form exploration. Genetic Programming and Evolvable Machines 8(2),
163–186 (2007); special issue on developmental systems

18. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn.
Physica-Verlag (2006)

19. Shea, K., Aish, R., Gourtovaia, M.: Towards integrated performance-driven gener-
ative design tools. Automation in Construction 14(2), 253–264 (2005)

20. Software, R.: Grasshopper, generative modeling (2010),
http://www.grasshopper3d.com/

21. Sytems, B.: Generative components, v8i (2011), http://www.bentley.com/getgc/
22. Takagi, H., Kishi, K.: On-line knowledge embedding for an interactive ec-based

montage system. In: Third International Conference on Knowledge-Based Intelli-
gent Information Engineering Systems, pp. 280–283. IEEE (1999)

23. Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of EC
optimization and human evaluation. Proc. of the IEEE 89(9), 1275–1296 (2001)

24. Weber, E.: De Pulsu, resorptione, auditu et tactu: Annotationes anatomicae
et physiologicae. CF Koehler (1834)

http://www.grasshopper3d.com/
http://www.bentley.com/getgc/

	A Local Search Interface for Interactive Evolutionary Architectural Design
	Introduction
	Background
	Computer Generated Architectural Design
	Active User Intervention
	Grammatical Evolution
	Original Interface Design

	Experiment
	Interface Implementation
	Design Grammar
	Euclidean Graph Distance
	Experiment Design

	Results
	Conclusions and Future Work
	References




