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Abstract. In this study we evolve seasonal forecasting temperature
models, using Genetic Programming (GP), in order to provide an ac-
curate, localised, long-term forecast of a temperature profile as part
of the broader process of determining appropriate pricing model for
weather-derivatives, financial instruments that allow organisations to
protect themselves against the commercial risks posed by weather fluctu-
ations. Two different approaches for time-series modelling are
adopted. The first is based on a simple system identification approach
whereby the temporal index of the time-series is used as the sole regres-
sor of the evolved model. The second is based on iterated single-step
prediction that resembles autoregressive and moving average models in
statistical time-series modelling. Empirical results suggest that GP is
able to successfully induce seasonal forecasting models, and that autore-
gressive models compose a more stable unit of evolution in terms of
generalisation performance for the three datasets investigated.

1 Introduction

Weather conditions affect the cash flows and profits of businesses in a multitude
of ways. For example, energy companies (gas or electric) may sell fewer supplies
if a winter is warmer than usual, leisure industry firms such as ski resorts, theme
parks, hotels are affected by weather metrics such as temperature, snowfall or
rainfall, construction firms can be affected by rainfall, temperatures and wind
levels, and agricultural firms can be impacted by weather conditions during the
growing or harvesting seasons [3]. Firms in the retail, manufacturing, insurance,
transport, and brewing sectors will also have weather “exposure”. Less obvious
weather exposures include the correlation of events such as the occurrence of
plant disease with certain weather conditions (i.e. blight in potatoes and in
wheat) [9]. Another interesting example of weather risk is provided by the use of
“Frost Day” cover by some of the UK town/county councils whereby a payout
is obtained by them if a certain number of frost days (when roads would require
gritting - with an associated cost) are exceeded. Putting the above into context,
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it is estimated that in excess of $1 trillion of activity in the US economy is
weather-sensitive [5]. In response to the existence of weather risk, a series of
financial products have been developed in order to help organisations manage
these risks. Weather derivatives are financial products that provide a payout
which is related to the occurrence of pre-defined weather events [7].

A key component of the accurate pricing of a weather derivative are fore-
casts of the expected value of the underlying weather variable and its associated
volatility. The goal of this study is to produce predictive models by the means of
Genetic Programming [4] (GP) of the stochastic process that describes temper-
ature. Section 2 introduces weather derivatives, motivates the need for seasonal
temperature forecasting, and reviews the major statistical and heuristic time-
series modelling methods. Section 3 describes the experiment design, Section 4
discusses the empirical findings, and finally Section 5 draws our conclusions.

2 Background

2.1 OTC Weather Derivatives

The earliest weather derivatives were traded over-the-counter (OTC) as individ-
ually negotiated contracts. In OTC contracts, one party usually wishes to hedge
a weather exposure in order to reduce cash flow volatility. The payout of the
contract may be linked to the value of a weather index on the Chicago Mer-
cantile Exchange (CME) or may be custom-designed. The contract will specify
the weather metric chosen, the period (a month, a season) over which it will be
measured, where it will be measured (often a major weather station at a large
airport), the scale of payoffs depending on the actual value of the weather metric
and the cost of the contract. The contract may be a simple “swap” where one
party agrees to pay the other if the metric exceeds a pre-determined level while
the other party agrees to pay if the metric falls below that level.

In the US, many OTC (and all exchange-traded) contracts are based on the
concept of a ‘degree-day’. A degree-day is the deviation of a day’s average tem-
perature from a reference temperature. Degree days are usually defined as either
‘Heating Degree Days’ (HDDs) or ‘Cooling Degree Days’ (CDDs). The origin
of these terms lies in the energy sector which historically (in the US) used 65
degrees Fahrenheit as a baseline, as this was considered to be the temperature
below which heating furnaces would be switched on (a heating day) and above
which air-conditioners would be switched on (a cooling day). As a result HDDs
and CDDs are defined as

HDD = Max (0, 65oF - average daily temperature) (1)

CDD = Max (0, average daily temperature - 65oF) (2)

For example, if the average daily temperature for December 20th is 36oF , then
this corresponds to 29 HDDs (65 - 36 = 29). The payoff of a weather future is
usually linked to the aggregate number of these in a chosen time period (one HDD
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or CDD is typically worth $20 per contract). Hence, the payoff to a December
contract for HDDs which (for example) trades at 1025 HDDs on 1st December
- assuming that there was a total of 1080 HDDs during December - would be
$1,100 ($20 * (1080-1025). A comprehensive introduction to weather derivatives
is provided by [7].

2.2 Seasonal Forecasting for Pricing a Weather Derivative

A substantial literature exists concerning the pricing of financial derivatives.
However, models from this literature cannot be simply applied for pricing of
weather derivatives as there are a number of important differences between the
two domains. The underlying (variable) in a weather derivative (a weather met-
ric) is non-traded and has no intrinsic value in itself (unlike the underlying in a
traditional derivative which is typically a traded financial asset such as a share
or a bond). It is also notable that changes in weather metrics do not follow a
pure random walk as values will typically be quite bounded at specific loca-
tions. Standard (arbitrage-free) approaches to derivatives pricing (such as the
Black-Scholes option pricing model) are inappropriate as there is no easy way to
construct a portfolio of financial assets which replicates the payoff to a weather
derivative [6].

One method that is used to price weather risk is index modelling. This ap-
proach attempts to build a model of the distribution of the underlying weather
metric (for example, the number of seasonal cumulative heating degree days),
typically using historical data. A wide variety of forecasting approaches such as
time-series models, of differing granularity and accuracy, can be employed.

In considering the use of weather forecast information for derivatives pricing,
we can distinguish between a number of possible scenarios. In this paper we are
focusing on weather derivatives that are traded long before the start of the rele-
vant weather period. In this case we can only use seasonal forecasting methods
as current short run weather forecasts have no useful information content in pre-
dicting the weather than will arise during the weather period. Seasonal forecasts
are long-term forecasts having a time horizon beyond one month [10]. There
are a plethora of methods for producing these forecasts ranging from the use of
statistical time-series models based on historic data to the use of complex, course-
grained, simulation models which incorporate ocean and atmospheric data. The
following sections briefly review some of the major techniques that fall into the
two families of statistical and heuristic approaches to time-series forecasting.

2.3 Statistical Time-Series Forecasting Methods

Statistical time-series forecasting methods fall into the following five categories:
(a) exponential smoothing methods ; (b) regression methods ; (c) autoregressive
integrated moving average methods (ARIMA); (d) threshold methods ; (e) gener-
alised autoregressive conditionally heteroskedastic methods (GARCH). The first
three categories can be considered as linear, whereas the last two as non-linear
methods.
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In exponential smoothing, a forecast is given as a weighted moving average of
recent time-series observations. The weights assigned decrease exponentially as
the observations get older. In regression, a forecast is given as a linear combina-
tion of one or more explanatory variables. ARIMA models give a forecast as a
linear function of past observations and error values between the time-series it-
self and past observations of explanatory variables. These models are essentially
based on a composition of autoregressive models (linear prediction formulas that
attempt to predict an output of a system based on the previous outputs), and
moving average models (linear prediction model based on a white noise station-
ary time-series). For a discussion on smoothing, regression and ARIMA methods
see [8]. Linear models cannot capture some featured that commonly occur in
real-world data such as asymmetric cycles and outliers.

Threshold methods [8] assume that extant asymmetric cycles are cause by dis-
tinct underlying phases of the time-series, and that there is a transition period
between these phases. Commonly, the individual phases are given a linear func-
tional form, and the transition period is modelled as an exponential or logistic
function. GARCH methods [2] are used to deal with time-series that display
non-constant variance of residuals (error values). In these methods, the variance
of error values is modelled as a quadratic function of past variance values and
past error values.

2.4 Genetic Programming for Time-Series Modelling

In GP-based time-series prediction [1] the task is to induce a model that consists
of the best possible approximation of the stochastic process that could have
generated an observed time-series. Given delayed vectors v, the aim is to induce
a model f that maps the vector v to the value xt+1. That is,

xt+1 = f(v) = f(xt−(m−1)τ , xt−(m−2)τ , . . . , xt) (3)

where m is embedding dimension and τ is delay time. The embedding specifies
on which historical data in the series the current time value depends. These
models are known as single-step predictors, and are used to predict to predict one
value xt+1 of the time series when all inputs xt−m, . . . , xt−2, xt−1, xt are given.
For long-term forecasts, iterated single-step prediction models are employed to
forecast further than one step in the future. Each predicted output is fed back
as input for the next prediction while all other inputs are shifted back one place.
The input consists partially of predicted values as opposed to observables from
the original time-series. That is,

x′
t+1 = f(xt−m, . . . , xt−1, xt);m < t

x′
t+2 = f(xt−m+1, . . . , xt, x

′
t+1);m < t

.

.

.

x
′
t+k = f(xt−m+k−1, . . . , x

′
t+k−2, x

′
t+k−1);m < t, k ≥ 1

(4)

where k is the prediction step.
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2.5 Scope of Research

The goal of this study is to produce predictive models of the stochastic process
that describes temperature. More specifically, we are interested in modelling ag-
gregate monthly HDDs. The incorporation of this model into a complete pricing
model for weather derivatives is left for future work. We also restrict attention
to the case where the contract period for the derivative has not yet commenced.
Hence, we ignore short-run weather forecasts, and concentrate on seasonal fore-
casting.

We investigate two families of program representations for time-series mod-
elling. The first is the standard GP technique, genetic symbolic regression (GSR),
applied to the forecasting problem in the same way that is applied to sym-
bolic regression problems. The task is to approximate a periodic function, where
temperature (HDDs) is the dependent variable, and time is the sole regressor
variable. The second representation allows the induction of iterated single-step
predictors that can resemble autoregressive (GP-AR) and autoregressive moving
average (GP-ARMA) time-series models as described in Section 2.3.

3 Experiment Design

3.1 Model Data

Three US weather stations were selected: (a) Atlanta (ATL); (b) Dallas, Fort
Worth (DEN); (c) La Guardia, New York (DFW). All the weather stations
were based at major domestic airports and the information collected included
date, maximum daily temperature, minimum daily temperature, and the as-
sociated HDDs and CDDs for the day. This data was preprocessed to create
new time-series of monthly aggregate HDDs and CDDs for each weather station
respectively.

There is generally no agreement on the appropriate length of the time-series
which should be used in attempts to predict future temperatures. Prior studies
have used lengths of twenty to fifty years, and as a compromise this study uses
data for each location for the period 01/01/1979 - 31/12/2002. The monthly
HDDs data for each location is divided into a training set (15 years) that mea-
sures the performance during the learning phase, and a test set (9 years) that
quantifies model generalisation.

3.2 Forecasting Model Representations and Run Parameters

This study investigates the use of two families of seasonal forecast model repre-
sentations, where the forecasting horizon is set to 6 months. The first is based
on standard GP-based symbolic regression (GSR), where time serves as the re-
gressor variable (corresponding to a month of a year), and monthly HDDs is
the regressand variable. Assuming that time t is the start of the forecast, we can
obtain a 6-month forecast by executing the program with inputs {t+1, . . . , t+6}.
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Table 1. Learning algorithm parameters

EA panmictic, generational, elitist GP with an expression-tree representation
No. of generations 51
Population size 1,000
Tournament size 4
Tree creation ramped half-and-half (depths of 2 to 6)
Max. tree depth 17
Subtree crossover 30%
Subtree mutation 40%
Point mutation 30%
Fitness function Root Mean Squared Error (RMSE)

The second representation for evolving seasonal forecasting models is based
on the iterated single-step prediction that can emulate autoregressive models,
as described in Section 2.3. This method requires that delayed vectors from the
monthly HDDs time-series are given as input to the model, with each consecutive
model output being added at the end of the delayed input vector, while all other
inputs are shifted back one place.

Table 2. Forecasting model representation languages

Forecasting model Function set Terminal set

GSR

add, sub, mul, div, exp, index t corresponding to a month
log, sqrt, sin, cos 10 rand. constants in -1.0, . . . , 1.0

10 rand. constants in -10.0, . . . , 10.0

GP-AR(12)

add, sub, mul, div, exp, 10 rand. constants in -1.0, . . . , 1.0
log, sqrt 10 rand. constants in -10.0, . . . , 10.0

HDDt−1, . . ., HDDt−12

GP-AR(24)

add, sub, mul, div, exp, 10 rand. constants in -1.0, . . . , 1.0
log, sqrt 10 rand. constants in -10.0, . . . , 10.0

HDDt−1, . . ., HDDt−24

GP-AR(36)

add, sub, mul, div, exp, 10 rand. constants in -1.0, . . . , 1.0
log, sqrt 10 rand. constants in -10.0, . . . , 10.0

HDDt−1, . . ., HDDt−36

GP-ARMA(36)

add, sub, mul, div, exp, 10 rand. constants in -1.0, . . . , 1.0
log, sqrt 10 rand. constants in -10.0, . . . , 10.0

HDDt−1, . . ., HDDt−36

M(HDDt−1,. . ., HDDt−6), SD(HDDt−1,. . ., HDDt−6)
M(HDDt−1,. . ., HDDt−12), SD(HDDt−1,. . ., HDDt−12)
M(HDDt−1,. . ., HDDt−18), SD(HDDt−1,. . ., HDDt−18)
M(HDDt−1,. . ., HDDt−24), SD(HDDt−1,. . ., HDDt−24)
M(HDDt−1,. . ., HDDt−30), SD(HDDt−1,. . ., HDDt−30)
M(HDDt−1,. . ., HDDt−36), SD(HDDt−1,. . ., HDDt−36)

Table 2 shows the primitive single-type language elements that are being used
for forecasting model representation in different experiment configurations. For
GSR, the function set contains standard arithmetic operators (protected divi-
sion) along with ex, log(x),

√
x, and finally the trigonometric functions of sine

and cosine. The terminal set is composed of the index t representing a month,
and random constants within specified ranges. GP-AR(12), GP-AR(24), GP-
AR(36), all correspond to standard autoregressive models that are implemented
as iterated single-step prediction models. The argument in the parentheses spec-
ifies the number of past time-series values that are available as input to the
model. The function set in this case is similar to that of GSR excluding the
trigonometric functions, whereas the terminal set is augmented with histori-
cal monthly HDD values. For the final model configuration, GP-ARMA(36),
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the function set is identical to the one used in the other autoregressive models
configurations, however the terminal set contains moving averages, denoted by
M(HDDt−1, . . . , HDDt−λ), where λ is the time-lag and HDDt−1 and HDDt−λ

represent the bounds of the moving average period. For every moving average,
the associated standard deviation for that period is also given as model input,
and is denoted by SD(HDDt−1, . . . , HDDt−λ). Finally, Table 1 presents the
parameters of our learning algorithm.

4 Results

Table 3. Comparison of training and testing RMSE obtained by different forecast-
ing configurations, each experiment was ran for 50 times. Standard error for mean in
parentheses. Bold face indicates best performance on test data.

Dataset
Mean Best Mean Best

Forecasting Training Training Testing Testing
configuration RMSE RMSE RMSE RMSE

ATL

GSR 140.52 (9.55) 68.82 149.53 (8.53) 72.73
GP-AR(12) 92.44 (0.54) 81.78 111.87 (0.41) 103.60
GP-AR(24) 91.33 (0.68) 83.33 96.15 (0.51) 91.26
GP-AR(36) 88.96 (0.81) 77.30 90.38 (0.81) 79.44
GP-ARMA 85.20 (0.86) 75.84 85.71 (0.82) 74.31

DEN

GSR 165.76 (11.46) 103.09 180.46 (11.74) 95.23
GP-AR(12) 133.18 (0.43) 121.38 126.78 (0.25) 117.19
GP-AR(24) 130.41 (0.73) 111.48 124.36 (0.66) 110.31
GP-AR(36) 131.13 (1.08) 114.86 111.41 (0.57) 103.73
GP-ARMA 126.46 (1.29) 106.18 108.90 (0.64) 101.57

DFW

GSR 118.96 (8.02) 66.49 118.69 (7.20) 66.12
GP-AR(12) 88.75 (0.66) 80.64 90.37 (0.26) 86.57
GP-AR(24) 96.14 (0.95) 83.55 85.36 (0.42) 78.24
GP-AR(36) 89.52 (0.69) 81.12 62.11 (0.43) 55.84
GP-ARMA 87.09 (0.82) 75.41 60.92 (0.52) 55.10

We performed 50 independent evolutionary runs for each forecasting model con-
figuration presented in Table 2. A summary of average and best training and
test results obtained by different models is presented in Table 3. The distribu-
tions of training and test errors obtained at the end of the evolutionary runs are
depicted in Figure 1 for the DFW time-series. Graphs for the other time-series
exhibited a similar trend and were omitted due to lack of space. Results sug-
gest that the family of autoregressive moving average models perform better on
average than those obtained with standard symbolic regression. A statistical sig-
nificance difference (unpaired t-test, two-tailed, p < 0.0001, degrees of freedom
df = 98) was found between the average test RMSE for GSR and GP-ARMA in
all three datasets. Despite the fact that the ARMA representation space offers
a more stable unit for evolution than the essentially free-of-domain-knowledge
GSR space, best testing RMSE results indicated that GSR models are better
performers in ATL and DEN datasets, as opposed to the DFW dataset, where
the best-of-50-runs GP-ARMA model appeared superior.
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Given that in time-series modelling it is often practical to assume a determin-
istic and a stochastic part in a series’ dynamics, this result can well corroborate
on the ability of standard symbolic regression models to effectively capture the
deterministic aspect of a time-series, and successfully forecast future values in
the case of time-series with a weak stochastic or volatile part. Another inter-
esting observation is that there is a difference in the generalisation performance
between GP-AR models of different order, suggesting that the higher the order
of the AR process the better its performance on seasonal forecasting. Statistical
significant differences (unpaired t-test, p < 0.0001, df = 98) were found in mean
test RMSE between GP-AR models of order 12 and those of order 36, in all
three datasets.

During the learning process, we monitored the generalisation performance of
the best-of-generation individual, and we adopted a model selection strategy
whereby the best-generalising individual is designated as the outcome of the
run. In the context of early stopping for counteracting the marked tendency
of model overtraining, Figures 1(g), (h), (i) illustrate the distributions of the
generation number where model selection was performed, for the three datasets.
It can be seen that GSR models are less prone to overtraining, then follows
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Fig. 1. Distribution of best-of-run training and test RMSE accrued from 50 indepen-
dent runs. Figures (a), (b) for DFW. Figures (c), (d), (e) show the distribution of
generation number where each best-of-run individual on test data was discovered for
the cases of ATL, DEN, and DFW respectively.
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Fig. 2. Target vs. Prediction for best-performing models of GSR and GP-ARMA for
the DFW dataset. (a) training data; (b) test data.

GP-ARMA, and finally it can be noted that GP-AR models of high order are
the most sensitive to overfitting the training data. Interestingly is the fact that
this observation is consistent in all three datasets.

Finally, Figures 2(a), (b) show the target and predicted values from best-
performing GSR and GP-ARMA models for the DWF dataset, for training and
testing data respectively. Both models achieved a good fit for most of the out-
of-sample range. Equation 5 illustrates the parabolic GP-ARMA model that
generated the predictions in Figure 2.

f(t) =

√
√
√
√HDDt−12 ∗

(

HDDt−36 +

√

HDDt−12 ∗
(

HDDt−26

−0.92 + (HDDt−7 ∗ log(HDDt−21))

))

(5)

5 Conclusion

This paper adopted a time-series modelling approach to the production of a sea-
sonal weather metric forecast, as part of a general method for pricing weather
derivatives. Two GP-based methods for time series modelling were used; the
first one is based on standard symbolic regression; the second one is based
on autoregressive time-series modelling that is realised via an iterated single-
step prediction process and a specially crafted terminal set of past time-series
information.

Results are very encouraging, suggesting that GP is able to successfully evolve
accurate seasonal forecasting models. More specifically, for two of the three time-
series considered in this study, standard symbolic regression was able to capture
the deterministic aspect of the modelled data and attained the best test perfor-
mance, however its overall performance was marked as unstable, producing some
very poor-generalising models. On the other hand, the performance of search-
based autoregressive moving average models was deemed on average the most
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stable in out-of-sample data. On a more general note, experiments also revealed
a marked tendency of the GP-AR models to overfit the most, with GSR being
the most resilient program representation in this problem domain. Whether this
is due to a slower learning curve in the case of GSR, or to a very sensitive to
overfitting representation in the case on GP-AR models is left to be seen in
future work. B
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