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Abstract. Representation is a very important component of any evolu-
tionary algorithm. Changing the representation can cause an algorithm
to perform very differently. Such a change can have an effect that is diffi-
cult to understand. This paper examines what happens to the grammat-
ical evolution algorithm when replacing the commonly used context-free
grammar representation with a tree-adjunct grammar representation. We
model the landscapes produced when using integer flip mutation with
both representations and compare these landscapes using visualisation
methods little used in the field of genetic programming.

1 Introduction

Three very important components of any evolutionary algorithm are the repre-
sentation, the variation operations and the fitness function. The interaction of
these components within the algorithm forms a complex process and the modifi-
cation of any one of them can have a major effect on how the algorithm performs.
Such an effect may not be immediately obvious and is difficult to understand.
Koza and Poli |12] said that visualising the program search space would be useful
and help us understand how the algorithm operates.

Grammatical Evolution (GE) g, [21] has recently been extended to make use
of tree-adjunct grammars (TAG) |10, [11] in place of the usual grammar type,
context-free grammars (CFG) [16]. TAGs have shown promise in the field of
Genetic Programming (GP) |5, 16, [7, [L7] as well as other fields in natural com-
puting |1]. This promise carried over when TAGs were incorporated into GE,
i.e., Tree-Adjunct Grammatical Evolution (TAGE), in the form of an increased
ability to find fitter solutions in fewer generations and an increased success rate
[16]. Previous work has examined how the TAG representation overcomes some
of the structural difficulties present in GP [&], but the full extent of how TAGs
affect GE is unclear.

Landscapes are a tool to help understand complex processes [9]. They have
been employed here in an attempt to further understand how the use of TAGs
in GE affects performance. Using a single variation operation, Integer Flip Mu-
tation (IFM), the landscapes of a number of different problems are examined
for both TAGE and GE. The IFM operation is where the integer value of a
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codon is replaced with a new random integer value. Viewing the entire search
space/landscape is difficult due to its large size and high complexity. To alleviate
this problem, this study employs a method of visualisation little used in the field
of GP, heat maps.

This paper compares the single IFM landscapes of GE and TAGE for a series
of problems in an attempt to further understand how the change in representa-
tion affects each algorithm’s ability to search.

This section is followed by a brief introduction to the landscape model used
in this study in section [ along with a description of GE and TAGE in sections[3
and @ The experiments performed are outlined in section [ along with the
results; These are followed by a discussion in section [6l and some conclusions and
future work in the final section.

2 Landscapes

The landscape model used in this paper is as defined by Jones [9], where he
quotes Nilsson [18], “In its broadest sense, problem solving encompasses all of
computer science because any computational task can be regarded as a problem
to be solved.”, Pearl [22], “Every problem-solving activity can be regarded as the
task of finding or constructing an object with given characteristics”, and Rich
[23], “Fvery search process can be viewed as a traversal of a directed graph in
which each node represents a problem state and each arc represents a relationship
between the states represented by the nodes it connects”, stating that from the
above statements one can conclude that search is ubiquitous and that it can
be described as a process on a graph structure [9]. It is for this reason that he
adopts a graph as a view of his landscape model.

The full description of the landscape model is outlined at length in [9]. It is
sufficient to say for this study that the landscape model can be written as

L= (R, ¢ f,F,>p) (1)

where R is the representation space, ¢ is the operator (in this case a genetic
operator), the function f which maps a multi-set of R, M(R):— F for some
set F, the fitness space, and a partial ordering >p over F. The landscape, L
can be viewed as a directed labeled graph where the set of vertices, V, is a
subset of M(R) and an edge exists between the vertex v and the vertex w if
p (¢ (v,w)) > 0.

In this study the landscapes are defined using the space of chromosomes paired
with either a CFG or TAG as R. The object space, O, is the solution/phenotypic
space. ¢ is the IFM operator, and f is the fitness function. The landscapes can
be viewed as graph structures both where V' C M (R), and where V C O (each
vertex is a phenotype, but edges are dependent on ¢ and R).

3 Grammatical Evolution

GE is a grammar-based approach to GP, combining aspects of Darwinian nat-
ural selection, genetics and molecular biology with the representational power
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of grammar formalisms |2, [15, [21]]. The grammar, written in Backus-Naur form,
enables GE to define and modify the legal expressions of an arbitrary computer
language. Moreover, the grammar also enables GE to modify the structure of
the expressions generated, something that is not trivial for other forms of GP.
In addition, the separation of the genotype from the phenotype in GE allows
genetic operations to be applied not only to the phenotype, as in GP, but also
to the genotype, extending the search capabilities of GP. GE is considered to be
one of the most widely applied GP methods today [15].

3.1 Grammatical Evolution by Example

Representation in GE consists of a grammar and a chromosome, see Fig. [l A
genotype-phenotype mapping uses values from the chromosome to select pro-
duction rules from the grammar, building up a derivation tree. The phenotype
can be extracted from this tree’s frontier.

The mapping begins with the start symbol, <e>. The value of the first codon,
12, is read from the chromosome. The number of production rules for the start
symbol are counted, 2, <e><o><e> and <v>. The rule to be chosen is decided
according to the mapping function i mod c, where i is the current codon value
and c is the number of choices available, e.g, 12 mod 2 = 0, therefore the zero-
th rule is chosen. <e> is expanded to <e><o><e>. This expansion forms a partial
derivation tree with the start symbol as the root, attaching each of the new
symbols as children. The next symbol to expand is the first non-terminal leaf
node discovered while traversing the tree in a depth first manner. However, it
should be noted that there is on-going study into variations on the method used
to choose which node to expand next [19, [20]. In this case the left-most <e> is
chosen. The next codon, 3, is read, expanding this <e> to <v> and growing the
tree further. The next symbol, <v> is expanded using the next codon, 7. 7 mod
2 = 1, so the rule at index 1, Y, is chosen.

Derivation continues until there are no more non-terminal leaf nodes to ex-
pand, or until the end of the chromosome has been reached. If there are non-
terminal leaf nodes left when the end of the chromosome has been reached,
derivation can proceed in one of a few different manners. For example, a bad
fitness can be assigned to the individual, so it is highly unlikely that this indi-
vidual will survive the selection process. Alternatively the chromosome can be

Grammar:
<e>:= <ed><o><e> | <v>
<o>:= + | -

<v>:i=x | y

Chromosome:
12, 3, 7, 15, 9, 10, 14 1
<Y>

Fig. 1. Example GE grammar, chromosome and resulting derivation tree
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wrapped, reusing it a predefined number of times. If after the wrapping limit
has been reached and the individual is still invalid, it could then be assigned a
bad fitness. The complete derivation tree for this example is shown in Fig. [l

4 Tree-Adjunct Grammatical Evolution

TAGE, like GE, uses a representation consisting of a grammar and a chromo-
some. The type of grammar used in this case is a TAG rather than a CFG. A
TAG is defined by a quintuple (T, N, S, I, A) where:

T is a finite set of terminal symbols;
N is a finite set of non-terminal symbols: TN N = §;
S is the start symbol: S € N;
I is a finite set of finite trees. The trees in I are called initial trees (or «
trees). An initial tree has the following properties:
— the root node of the tree is labeled with 5
— the interior nodes are labeled with non-terminal symbols;
— the leaf nodes are labeled with terminal symbols;
5. A is a finite set of finite trees. The trees in A are called auziliary trees (or 3
trees). An auxiliary tree has the following properties:
— the interior nodes are labeled with non-terminal symbols;
— the leaf nodes are labeled with terminal symbols apart from the foot
node which is labeled with the same non-terminal symbol as the root;
the convention in [10] is followed and foot nodes are marked with *.

L

An initial tree represents a minimal non-recursive structure produced by the
grammar, i.e., it contains no recursive non-terminal symbols. Inversely, an aux-
iliary tree of type X represents a minimal recursive structure, which allows re-
cursion upon the non-terminal X [14]. The union of initial trees and auxiliary
trees forms the set of elementary trees, E; where INA=0 and TUA = E.
During derivation, composition operations join elementary trees together. The
adjunction operation takes an initial or derived tree a, creating a new derived
tree d, by combining a with an auxiliary tree, b. A sub-tree, c is selected from a.
The type of the sub-tree (the symbol at its root) is used to select an auxiliary
tree, b, of the same type. ¢ is removed temporarily from a. b is then attached to
a as a sub-tree in place of ¢ and c¢ is attached to b by replacing ¢’s root node
with 0’s foot node. An example of TAG derivation is provided in Section E1l

4.1 Tree-Adjunct Grammatical Evolution by Example

TAGE generates TAGs from the CFGs used by GE. Joshi and Schabes [10] state
that for a “finitely ambiguous CFQA1 which does not generate the empty string,
there is a lexicalised tree-adjunct grammar generating the same language and
tree set as that CFG”. An algorithm was provided by Joshi and Schabes [10] for
generating such a TAG. The TAG produced from Fig. [[lis shown in Fig.

L' A grammar is said to be finitely ambiguous if all finite length sentences produced by
that grammar cannot be analysed in an infinite number of ways.
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Fig. 2. Initial and auxiliary tree sets of the TAG produced from the CFG in Fig. [l

Derivation in TAGE is different to GE. A TAGE derivation tree is a tree of
trees. That is to say a node in a TAGE derivation tree contains an elementary
tree. The edges between those nodes are labeled with a node address of the tree
in the parent derivation node. It is at this address that the beta tree in the
child node is to be adjuncted. The derived tree in TAGE is a tree of symbols,
similar to GE’s derivation tree, resulting from the application of the adjunction
operations defined in the TAGE derivation tree.

Given the TAG G, where T' = {z,y,+,—}, N={<e>,< o> <v >},

S =< e > and I and A are shown Fig. [2 derivation, using the chromosome
from Fig.[I] operates as follows. An initial tree is chosen to start derivation. The
first codon value, 12, is read and is used to choose an initial tree based on the
number of trees in I. Using the same mapping function as GE, 12 mod 2 = 0,
the zero-th tree, ag, is chosen from I. This tree is set as the root node of, t, the
derivation tree, see Fig.

Next we enter the main stage of the algorithm. A location to perform adjunc-
tion must be chosen. The set N is created of the adjunct-able addresses available
within all nodes(trees) contained within t. An adjunct-able address in a tree is
the breadth first traversal index of a node labeled with a non-terminal symbol of
which there is an auxiliary tree of that type, and there is currently no auxiliary
tree already adjoined to the tree at that index. In this case N = {ap0}, so a
codon is read and an address is selected from N, 3 mod 1 = 0 indicating which
address to choose, N[0]. Adjunction will be performed at 0, or index 0 of tree
o, <e>. An auxiliary tree is now chosen from A that is of the type 1, i.e., the
label of it’s root node is 1, where 1 is the label of the node adjunction is being
performed at. In this case 1 = <e>. Since there are 8 such trees in A, 7 mod 8
= 7, PBr is chosen. This is added to t as a child of the tree being adjoining to,
labeling the edge with the address 0, see Fig. The adjunct-able addresses in
B7 will be added to N on the next pass of the algorithm. This process is repeated
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(c) 1 adjoined at (370. (d) Bs adjoined at (1.

Fig. 3. The derivation tree and corresponding derived tree at each stage of derivation
in TAGE. The shaded areas indicate the new content added to the tree at each step.

until all remaining codons have been read. The resulting derivation and derived
trees at each stage of this process can be seen in Fig. [

5 Experiments and Results

The aim of this study is to compare GE and TAGE IFM landscapes in order to
ascertain some insight into how TAGE improves the algorithm’s performance. In
order to compare landscapes bounds must be set on the size of the landscapes.
Since the size and form of solutions are rarely known a priori, the grammars used
in GE tend to be recursive. As a result the structural space of possible solutions
is infinite, and hence the landscape is infinite, restricted only by the number
of codons available to the mapping procedure. This applies to both TAGE and
CFG since they generate the same language.

5.1 Experimental Setup

In order to restrict the landscapes a specific number of codons, NV, is selected as
the maximum length of a TAGE chromosome. A value for N is chosen for each
problem examined in order to sufficiently restrict the size of the landscapes.
At each chromosome length, from one to N, an enumeration of all possible
chromosomes is performed, building up the representation space, R. It is required
for TAGE to process each increasing length of chromosome since with mutation
alone, the number of codons used when mapping cannot change and hence TAGE
would not be able to represent the same set of phenotypes as GE.

The enumeration is performed by initially selecting a chromosome of all zeros.
At each position along the chromosome, every possible IFM is independently
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performed. That is to say, the mapping procedure is stopped at the each codon
and the total number of possible choices at that codon is counted. This indicates
how many different IFMs can be applied at each codon, creating the set of
all chromosomes one IFM away from the original. Each of these neighbouring
chromosomes are mapped, if both the original and the neighbour is valid, i.e., if
the chromosome maps to an executable solution (for TAGE this is not an issue,
since all chromosomes are valid), an edge/connection is recorded between them.
If the neighbour has never been observed, it is added to a set of chromosomes
from which new initial chromosomes are drawn to repeat this process.

Once this set of chromosomes is depleted, the chromosome length is incre-
mented and the process repeated with a new initial chromosome. The process
halts when the all chromosomes of length N have been processed.

The resulting phenotypes are used to repeat the above process for GE. Rather
than setting a chromosome length limit, the length is incremented until the set
of phenotypes generated contains the set of phenotypes generated by TAGE.

5.2 Problems

Standard GE was compared to TAGE using four classic benchmark problems
taken from the GP literature. The CFGs used by GE and to generate TAGs for
each problem are shown in Fig. [

Even-5-parity: The five input even-parity boolean function, in which the best
fitness is obtained when the correct output is returned for each of the 2° test
cases. A value of 3 was used for N.

Symbolic Regression: The classic quartic function, = + 22 + 2% + z*. Fitness
is the sum of the error across 20 test cases drawn from the range [—1, 1].
Successful solutions have an error less than 0.01, as described in [13]. A
value of 5 was used for N.

Six Multiplexer: The classic GP two input and four output line boolean func-
tion. Fitness is measured by how many of the 64 test cases generate correct
outputs. A value of 3 was used for N.

Max: This problem, as described in [3], aims to evolve a tree whose growth is
constrained by a depth limit, that when the tree’s phenotype is executed,
returns the largest value possible. A function set of {+,*} and a terminal
set of {0.5} are used. A max tree depth of 8 was used for the purposes of
these experiments. A value of 9 was used for N.

5.3 Visualisations

Viewing the landscapes as 2D graphs is not feasible due to their large size and
high complexity. 2D heat maps are used instead to map the connections in the
landscape. Heat maps are little used in GP literature and are an effective way
of graphically representing data in a 2 dimensional map, where the values of the
variable being visualised are represented as colours.
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Even-5 parity grammar: Max grammar:
<prog> 1= <expr> <prog> ::= <expr>
<expr> ::= <expr> <op> <expr> <expr> ::= <op><expr><expr>
| ( <expr> <op> <expr> ) | <var>
| <var> <op> =+ | *
| <pre-op> ( <var> ) <var> =0.5
<pre-op> ::= not
<op> BRI N I 2
<var> :=d0 | d1 | d2 | 43 | 44
Symbolic Regression grammar: Six Multiplexer grammar:
<expr> ::= (<op><expr><expr>) <B> ::= (<B>)&&(<B>)
| <var> | (<B>)"I1"(<B>)
<op> =4 | - | % | 1(<B>)
<var> ::=x0 | 1.0 | (<B>) ? (<B>) : (<B>)

| a0 | a1 | 40| d1 | 42 | 43

Fig. 4. CFG grammars in Backus-Naur form used for all the benchmark problems

Rather than using the genotypic landscape, i.e., where each vertex represents a
single genotype from the representation, the phenotypic landscape is used, since
comparing the genotypes of two different representations may not be useful and
both representations in question generate the same phenotypic space.

Connection Maps (CM) are heat maps where the set of commonly generated
phenotypes label each axis. If the genotypes of two phenotypes are one IFM
away, the shared cell is marked. CMs give insight into how well connected each
phenotype is within the landscape. The denser the CM, the greater the repre-
sentation’s ability to move from one phenotype to another.

The CMs for both setups for each of the problems can be seen in Figs. [ and [Gl
The axes of these figures are labeled with the phenotypes in ascending order of
length, from the top left to the bottom right.

Frequency Maps aim to address one of problems with the CMs described
above. CMs do not take into account that there may be more than one con-
nection between two phenotypes. This can occur due to GE and TAGE having
redundant mappings. However, neutral mutation was not allowed in this study.
The frequency of connections between phenotypes is important since if one con-
nection from a phenotype has a high frequency and all of the other connections

ma T R |

(a) EFP CFG-GE  (b) EFP TAGE  (c) MAX CFG-GE  (d) MAX TAGE

Fig. 5. Connection Maps: Even Five Parity (a) (b) for a max TAGE chromosome length
of 3; Max (c) (d) for a max TAGE chromosome length of 9
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(a) SR CFG-GE (b) SR TAGE (c) SM CFG-GE (d) SM TAGE

Fig. 6. Connection Maps: Symbolic Regression (a) (b) for a max TAGE chromosome
length of 5; Six Multiplexer (c) (d) for a max TAGE chromosome length of 3

(a) SR CFG-GE  (b) SRTAGE  (c) SM CFG-GE  (d) SM TAGE

Fig. 7. Frequency Maps: Symbolic Regression (a) (b); Six Multiplexer (c) (d)

from that phenotype have a relatively low frequency of connections then there
is a much higher probability that a mutation will follow the connections of high
frequency. Frequency maps colour each cell from 25% grey (0) to red (200+)
depending on the cell’s degree of connectivity. The upper bound of 200 connec-
tions was to ensure a feasible colour delta when colour coding the maps due to
the large number of relatively low frequency cells and a small number of much
higher frequency cells. Frequency maps for only the symbolic regression and six
multiplexer problems can be seen in Fig. [ due to space restrictions.

6 Discussion

The CMs in figures Bl and show that phenotypes in the TAGE landscapes,
across the problems/grammars examined, are much more connected than the
same phenotypes in the GE landscapes. This might not necessarily improve
TAGE’s ability to move from one phenotype to another of better fitness since
the concept of fitness is not present in the CM plots. It was however noted by
Murphy et al. ﬂﬁ] that TAGE maintains a much larger fitness variance within
the population than GE. It was suggested that this variance, as a result of a more
diverse population, could help TAGE avoid getting stuck at local optima ﬂﬁ]
The high degree of connectivity visible here could be attributed with helping to
increase diversity within the population.
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Interestingly, it can also be seen that mutation alone is not sufficient for
TAGE to explore the entire search space. Unlike GE where an IFM can reduce
the effective size of the chromosome, TAGE makes use of the entire chromosome
and as a result IFM cannot change the size of a TAGE derivation tree. In order
to enable a full exploration of the search space additional operators capable
of changing the length of the chromosome would be needed. This would be
as simple as a codon insertion/deletion operator or more complex such as one
point crossover [16]. The clusters of connections in the top left corner of each
of the TAGE sub-figures are the connections between the shorter chromosomes
generated during setup, the remainder of the cells are white due to the lack of
connections with the phenotypes of the larger chromosome.

Furthermore, the frequency maps in Fig. [[ show that in GE, the phenotypes
produced from a smaller amount of the chromosome have a disproportionately
high frequency of connections amongst themselves (see the red cells in the top
left corner of (a) and (c)), and to a lesser extent with the rest of the phenotypes
(left and top borders of (a) and (c)). In some cases the frequency of connections
of these cells are orders of magnitude greater than the frequency of connections
of the larger phenotypes. This indicates that the CFGs used in this study have
a bias towards shorter phenotypes. A bias that doesn’t appear in the frequency
maps of TAGE’s landscapes. This feature of TAGE may help avoid some of the
initialisation problems experienced by GE outlined by Harper |4]. For example,
when the grammar is dermined to be explosive randomised individuals tend to
be short having a lasting effect on the algorithms performance.

7 Conclusions

IFM landscapes were generated for a number of problems using both CFG-
based GE and TAGE. Viewing an entire landscape directly is very difficult [12].
As such, the landscapes were restricted in size, and a number of different plots
were employed to enable indirect analysis and comparison of the landscapes.

For the problems and grammars used in this study, it was found that pheno-
types in the TAGE landscapes have a much higher degree of connectivity to the
rest of the phenotypes than their counterparts in the GE landscapes. This may
help explain the increased diversity within TAGE populations observed previ-
ously. Moreover, it was discovered that the connectivity in the TAGE landscapes
is much more evenly distributed between the other phenotypes in the landscape.
Whereas in the GE landscape, shorter phenotypes are much more densely con-
nected not only between themselves, but also, to a lesser extent, to the rest of
the landscape.

This study presented a method for comparing large and highly complex land-
scapes using specific visualisation methods. This method of comparison can not
only be further applied to the field of GE, but also to broader fields such as GP
and genetic algorithms. Such an extension might enable better comparisons of
each of the fields for a given problem, e.g., GP versus GE.
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Future work arising from this study includes extending the method to other
operators, allowing a better comparison of GE and TAGE; incorporating fitness
into the CM method; and as mentioned above, comparing other representations
with both GE and TAGE.
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