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Abstract. A system for automatic composition using grammatical evo-
lution is presented. Music is created under the constraints of a genera-
tive grammar, and under the bias of an automatic fitness function and
evolutionary selection. This combination of two methods is seen to be
powerful and flexible. Human evaluation of automatically-evolved pieces
shows that a more sophisticated grammar in combination with a naive
fitness function gives better results than the reverse.
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1 Introduction

Automatic musical composition is a topic of both theoretical and practical inter-
est, and evolutionary computation (EC) has been used for this task with some
success. One approach which has received relatively little attention is EC guided
by generative grammars — for example, grammatical evolution or GE [1]. There
is a strong motivation for this approach, since generative grammars have been
used extensively in music theory and analysis.

In this paper, we present a system for automatic grammatical composition
and consider some key questions in this area. We introduce GE with an exam-
ple of a grammar for generating music, and look at methods of implementing
automatic fitness functions. This paper thus responds to McCormack’s call [2]
for research into automatic fitness functions. Since grammars can be open-ended
and recursive, this paper also responds to Bentley’s call [3] for open representa-
tions in creative domains. The chief contributions are a demonstration that GE
is a method suitable for automatic composition, and a set of experiments with
human evaluation of automatically-composed pieces.

2 Previous Work

There is a significant body of work in the area of generative composition. EC is
a popular paradigm, whether using automatically-calculated fitness (e.g. [4]) or
interactively (e.g. [5]). The ideas are not limited to academia [6].
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However, a great deal of work remains to be done. Systems which use un-
structured representations may be capable of producing all desired pieces, but
at the cost of making them “needles in a haystack”. A naive implementation of a
linear-genome GA for composition might have each integer gene giving the pitch
value of a directly-corresponding note. Such a GA could represent all possible
melodies (for a fixed note duration), but the vast majority of these melodies will
feel (at best) somewhat meandering.

An alternative is to impose structure on the search space using a formal
grammar. Grammars are well-established as tools of musical analysis and cre-
ation [7–9]. There is evidence that listeners perceive in music the hierarchical
structures characteristic of generative grammars [9]. The use of grammars ad-
dresses a key problem suffered by simple linear representations of music, which is
that the compositional form is fixed. Representations for creative evolution may
benefit from being open-ended [3]. Mapping via a grammar can lead to a piece
of music of any number of voices, or any duration — as decided by evolution.

To our knowledge, Ortega and co-authors [10] are the only researchers to
report work using GE to compose music. This paper was a useful proof-of-
concept, though the key issues such as grammar design, fitness functions, and
subjective evaluation were left unaddressed.

3 Introduction to Grammatical Evolution

GE is a type of genetic programming which uses generative grammars to define
the possible forms of “programs” [1]. A grammar consists of multiple rules, each
with a left-hand-side (LHS) and multiple possible productions. Derivation begins
with a specified LHS. At each step, the first LHS in the derived string is replaced
by one of its corresponding productions. The choices of productions are made
according to successive values in the linear integer-valued genome. Two simplified
fragments from the grammars described in Sect. 4.2 are given in Figs. 1 and 2.

<melody> ::= <chord_material><bass_material><melody_material>

<melody_material> ::= <bar><bar><bar><bar>

<bar> ::= <note_or_rest><note_or_rest><note_or_rest><note_or_rest>

<note_or_rest> ::= <quaver> | <quaver_rest> | <semiquaver><semiquaver>

<quaver> ::= <midi_pitch> 0.5

Fig. 1. A fragment of a simple musical grammar. 0.5 indicates the quaver’s duration.

4 Experimental Setup

The overall aim of the experiments was to compare human judgement of pieces
produced by contrasting GE setups. Four experiments are to be described: each
consisted of two stages, as follows.
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<melody_material> ::= <bar><bar_or_op><bar_or_op><bar_or_op>

<bar_or_op> ::= <bar> | <op>

<op> ::= COPYPREVBAR | SHUFFLEPREVBAR | TRANSPOSEPREVBAR <n>

| SHUFFLEPREVBAR | REVERSEPREVBAR | INVERTPREVBAR

| COPYPREVBARTRANSPOSEFINALNOTE <n>

Fig. 2. A fragment of a grammar with transformations. <n> indicates an integer-valued
transposition offset.

Firstly, in each case, two sets of ten short pieces were produced according
to two contrasting automatic evolution schemes. These schemes differed in each
case by the grammar, the fitness function, or the contrast between evolution and
mere random generation — as explained in Sect. 5.

A typical GE setup was used, with a population size of 200 and 300 genera-
tions. Fixed-point crossover had a probability of 0.9 and the mutation probability
was 0.01. Selection was roulette-wheel, and replacement was generational with
1-individual elitism. The chromosome size was 500 and two occurrences of the
GE wrapping operator were allowed per individual.

Secondly, in each case, the ten pairs of pieces were presented to multiple
subjects for listening and evaluation. The order within each pair was randomised.
The number of volunteers for the four experiments was between 13 and 22.
Subjects were required to state a preference for one track or the other.

4.1 Fitness Functions for Musical Composition

The question of automated fitness functions is a central one in evolutionary art
and music [2], and one which will likely never be fully resolved. Perhaps the best
that can be hoped for is to produce a fitness function which penalises obviously
undesirable qualities on a limited domain: as Dahlstedt [4] says, automatic fitness
functions can be used to weed out bad results, relying on the expressive power
of the representation to produce good ones.

With this in mind, we immediately define one simple fitness function for
short pieces of music by fixing the desired scale (say, C major) in advance, and
counting the notes in the piece which are not in this scale. By minimising this
number through evolution, it is possible to achieve pieces which conform to the
simple requirement that the piece be strictly in the desired key. However, this
fitness function is clearly insufficient in itself. There are many possibilities for
more sophisticated measurement of the overall “quality” of a piece of music.

Towsey and co-authors defined [11] a set of 21 melodic measures, each of
which calculates the value of a statistic over a melody. For example, pitch range

subtracts the lowest from the highest pitch, and note density calculates the
proportion of notes to rests. These measures were calculated over a corpus of
“good” melodies to give an allowable range for each measure.

This approach is adopted here for our second fitness function. We chose the
6 measures given by Towsey et al. with the lowest standard deviations across
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the set of melodies they used, omitting two inapplicable ones (rhythmic variety

and rhythmic range), and replacing them with two more measures with very low
standard deviations. The 6 measures to be used are summarised in Table 1.

Table 1. Melodic measures.

Measure Desired value Standard deviation

Pitch variety 0.27 0.11
Dissonance 0.01 0.02
Pitch contour 0.49 0.06
Melodic direction stability 0.40 0.11
Note density 0.49 0.15
Pitch range 0.50 0.10

Fitness was formulated based on these measures in a method similar to that
of Dahlstedt [4]. Given a desired value vd, and a standard deviation s, val-
ues v ∈ (vd − s, vd + s) within the desired range were awarded a component-
fitness value of 0. Values below the range were awarded a component-fitness value
of

√

(vd − s) − v, whereas values above the range were awarded a component-

fitness value of
√

v − (vd + s). The component-fitness values were then averaged
across all six measures (giving a result in [0, 1]), and the result was averaged
with that returned by the simple fitness function described above.

4.2 Musical Grammars

Two types of grammars were used in experiments. An unstructured grammar (as
in Fig. 1) simply states that a piece consists of N voices, a voice consists of M

bars, a bar consists of 4 beats, and each beat consists of either a quarter-note
or two eighth-notes, and each note consists of a note proper, or a rest. Such
a grammar imposes very little structure on the search space — in fact, it is
equivalent in a sense to the linear-genome GA mentioned earlier.

A structured grammar (as in Fig. 2) was designed which takes advantage
of some aspects of musical knowledge available to all composers. For example,
when composing a melody, it is common to repeat a sequence (perhaps with
alteration), to shuffle previous notes, to invert or reverse a sequence or to trans-
pose a sequence. These transformations were implemented in the grammar so
that when the mapping process chose to express a transformation, it operated
on the material of the previous bar and the result lasted exactly one bar. This
is a simple implementation to be expanded in future work.

5 Results

Some example tracks, together with the experimental software, are available for
download from http://www.skynet.ie/~jmmcd/elevated_pitch.html.
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Experiment 1 compared random generation and evolution. A 16-bar unstruc-
tured grammar was used, with a simple fitness function. Fig. 3(a) shows the re-
sults. For each user, the number of preferences of unevolved and evolved tracks
were summed: the boxplots represent the distribution of these sums. The evolved
tracks were preferred much more often.
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Fig. 3. Results from experiments 1 and 2. The evolved pieces were preferred to the
unevolved ones, but the addition of transformations to the grammar was not successful.

Experiment 2 compared (8-bar) unstructured and structured grammars using
the simple fitness function. Fig. 3(b) shows the results. There was a preference for
the outputs of the unstructured grammar — a surprising result. The hypothesis
was formed that the short length of the pieces in this experiment, together with
the possibility that the melody would rest in the first 2 or 4 bars, was hiding
the shortcomings of the unstructured grammar. This led to the design of new
grammars similar to those used in the previous experiment, but producing 12-bar
pieces and preventing the melody from remaining silent in the initial bars.

Experiment 3 compared these 12-bar unstructured and structured grammars,
again with the simpler fitness function. The results are shown in Fig. 4(a). Users
preferred the structured grammar, with results significant at the p < 0.05 level.
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Fig. 4. Results from experiments 3 and 4. This time, transformations made a big
improvement, but additions to the fitness function made things worse.

Finally, experiment 4 compared the simple fitness function and the more
sophisticated one using melodic measures. A 12-bar unstructured grammar was
used. The results (in Fig. 4(b)) turned out to be worse for the fitness function
using melodic measures, contrary to expectation. One possible explanation is
that here automatic evolution, in attempting to satisfy multiple objectives, failed
to eliminate all non-scale notes from the pieces.
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6 Conclusions

Through human evaluation of automatically-composed pieces, GE has been
shown to be capable of producing results which are better than random gen-
eration, and it has been shown to be sufficiently flexible to be extended in mul-
tiple directions, through constraints (in the grammar) and biases (in the fitness
function), separately or together. This flexibility is a great advantage of GE.

The strongest results appeared in the third experiment: subjects were able
to recognise that structure had been imposed on melodies and several subjects
reported that they enjoyed this experiment more than others. One subject com-
mented “[...] after the first few plays, I feel like I began to detect how the trans-
formations were occurring.” This is a positive result.

Our work in using GE in creative domains is ongoing. Among many pos-
sibilities we mention four for potential future work: better automated fitness
functions; the comparison of the grammatical approach with state-of-the-art im-
plementations of other methods, such as tree-genome GP and N-gram models;
more complex grammatical models; and interactive GE for musical composition.
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